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Estimating Destination-Specific Traffic 
Densities on Urban Freeways for 
Advanced Traffic Management 

GARY A. DAVIS AND JEONG-GYU KANG 

A continuous-time Markov compartment model of freeway traffic flow 
is presented and tested using simulated and real data. By using the 
method of large population approximation, the underlying stochastic 
process is approximated by the sum of a nonlinear deterministic process 
and a linear, time-varying Gaussian stochastic process. With this 
approximation a Kalman filter that tracks the density of a freeway 
section, broken down by destination, was derived. The filter was then 
tested using simulated data and actual freeway data obtained from 
Interstate 35W. 

Advanced traffic management systems (A TMS) seek to combine an 
understanding of traveler route selection with improved real-time 
monitoring of traffic networks in order to alleviate the effects of traf­
fic congestion without requiring substantial new roadway capacity. 
In particular, driver information and route guidance systems attempt 
to maximize existing roadway capacity by informing drivers of 
under- and overused routes or of temporary reductions in capacity. 

The effective use of route guidance and driver information, 
however, requires the ability to forecast driver reactions, their ten­
dencies to select new routes, departure times, modes, and so on in 
response to information; a number of researchers have developed 
models aimed at producing such forecasts. In principle, route diver­
sion can be forecast using route selection models common in traf­
fic assignment, but unlike traditional traffic assignment, for short­
term (i.e., within-peak) forecasts, it generally will be insufficient to 
know the origin-destination (0-D) pattern of the traveling public. 
This is because a substantial component of the traffic, say, 15 min 
into the future will be composed of vehicles that were already en 
route when the information or guidance was made available. 

Since route selection behavior depends on the particular origin 
and destination between which a driver is traveling, real-time diver­
sion forecasting will require knowing the breakdown, by 0-D pair, 
of the number of vehicles on each link of a roadway network. A 
simplification occurs when drivers can be assumed to follow a 
Markovian routing rule, in which one's future path depends only on 
one's destination and current location in the network. This condi­
tion occurs when modeling simple freeway sections or when route 
choice follows a logit assignment principle. In this case, knowing 
the number of vehicles and their distribution across destinations on 
each link of the road network is necessary for forecasting future 
route selection activities (1,2). For demand forecasting purposes, a 
vector containing these destination-specific vehicle counts can be 
considered the state of the traffic system. 
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Unfortunately, almost all traffic sensors provide data, such as the 
traffic ~olumes and lane occupancies provided by magnetic loop 
detectors, that are aggregated across the network's 0-D-specific 
subflows, so that the traffic state must be estimated rather than mea­
sured directly. This is a filtering problem, which can be solved using 
the results of modern systems theory if one has at hand a unified, 
real-time model of traffic flow and assignment. Such models can be 
constructed using a class of stochastic process models called 
Markov compartment models (1,3). This paper describes the devel­
opment and testing of such a model for traffic flow on a segment of 
urban freeway. 

MARKOV COMPARTMENT MODEL OF 
FREEWAY TRAFFIC FLOW 

A compartmental system is defined as "a system which is made up 
of a finite number of macroscopic subsystems, called compart­
ments, each of which is well mixed, and the compartments interact 
by exchanging materials. There may be inputs from the environ­
ment into one or more of the compartments, and there may be out­
puts from one or more of the compartments into the environment" 
(4). Karmeshu and Pathria (5) proposed a Markov compartment 
model for highway traffic and provided an asymptotic analysis 
using a diffusion approximation. Here the material is composed of 
vehicles, and the stochastic nature of material transfer is caused by 
the random movement of vehicles according to a continuous-time 
Markov process. Now imagine that a segment of freeway has been 
divided into sections, such that on-ramps join the freeway only at 
the upstream boundaries of sections, off-ramps diverge from the 
freeway only at the downstream boundaries of sections, and main­
line detectors are located at the downstream boundaries of sections. 
In addition, the number of lanes, grade, and other geometric char­
acteristics are constant within the section. 

Assume that the freeway has m origins, indexed by i = 1, ... , m; 
s destinations, indexed by j = 1, ... , s; and n sections, indexed by 
k = 1, ... , Ii. By convention, origin 1 is taken to be the upstream 
mainline boundary of the original freeway segment, while destina­
tion s is taken to be the downstream mainline boundary. Next, 
define the following variables: 

x 0 ; (t) = total remaining vehicles at origin i at time t, 
xdj(t) = total vehicles that have exited the segment at destinationj 

by time t, 
xkj(t) = vehicles in section k destined for j at time t, 
y1(t) = total vehicles counted at counter l up to time t. 
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Assume that the total number of vehicles in the system is fixed, 
so that 

is constant at all times t. Let 

x(t) [Xo1 (t), ... ' Xom(t), X1 I (t), xdt), ... ' Xnit), Xd1 (t), ... 'XdsUW 

be a column vector containing the various compartment popula­
tions, and 

y(t) = [y1(t), ... 'yp(t)Y 

be a column vector containing the count totals. Letting e8 denote a 
column vector with all elements equal to 0 except for position g, 
which is 1, and letting g, h index arbitrary elements of the vector x, 
it will be assumed that over a very short time interval of length Ll, 
transitions of the form 

[
x(t + Ll)]- [x(t)J = [eh - e8] 
y(t + Ll) y(t) He8 

(1) 

occur with probability x8q8,h[x(t)]Ll + o(Ll), transition~ with 

occur with probability 1 - 2;11 ,.8x8q8,h[x(t)]Ll + o(Ll), and all other 
transitions have a probability that is o(Ll). Note that a x(t + Ll)- x(t) 
= e1z - e8 corresponds to the transition of a vehicle from compart­
ment g to compartment h. By defining 

{ 

= 1' if counter l registers departure from g 
H18 

= 0 otherwise 

y(t + Ll) - y(t) = He8 corresponds to an increment in the counter 
registering departures from g. The vehicle movements follow a 
closed, continuous-time Markov compartment model (or, equiva­
lently, a nonlinear birth and death process), with the state vector 
augmented to include vehicle counts. The problem then is to use the 
counts at time t to produce estimates of the unobserved segment 
populations xk/t). When the transition intensities q8,h[x(t)] are not 
constant, the resulting filtering problem will be nonlinear and often 
intractable. Fortunately, given reasonable conditions on the func­
tions q8,h[x(t)], Lehoczky's argument (6) can be adapted to this case 
to show that as N, the total number of vehicles in the system, 
becomes large, the stochastic evolution of the random vectors [x(tf, 
y(t)TJT can be approximated by the sum of a nonlinear determinis­
tic process and a linear, time-varying Gaussian stochastic process. 
That is, 

[ x(t)] =·[~(t)] + z(t) 
y(t) y(t) 

(2) 

where the deterministic, mean value process satisfies the ordinary 
differential equation 

dxg(t) _ 
----;;( = 2:h xh(t)qh,8 [i(t)] 

ayi(t) . - -
-;Jf = 2:8 H18 X 8(t)2:u,.8q8,u[X(t)] (3) 
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and z(t) is a zero-mean, Gaussian random vector with covariance 
matrix P(t), which evolves according to the Ricatti equation 

dP(t) . - r;: T -
-· - = F[x(t)] P(t) + P(t)F Lx(t)] + G[x(t)] 

dt 
(4) 

Here F(.) denotes the Jacobian matrix of the right-hand side of 
Equation 3 with respect to x(t), while G(.) is a covariance term that 
depends only on x(t). 

Given initial estimates x(O), P(O), y(O) = 0, Equations 3 and 4 can 
be solved numerically to give approximate expected compartment 
totals and cumulative counts, along with variances and covariances 
for any future time t. When actual counts become available at some 
time 4, the standard formulas for the Kalman filter (7) can be used 
to give a measurement update of compartment totals and their 
covariance terms. Equations 2 and 3 can then be restarted with x(O) 
= x(Jk), P(O) = P(Jk) and y(O) = 0, and the recursion continued 
until the next count becomes available. 

DETERMINING TRANSITION RA TES 

Implementation of the filter requires that appropriate functions are 
selected for the transition intensities. For the transitions from the 
origin sources to mainline sections, it is convenient to use transition 
intensities of the form q0 ;b;1, where q0 ; equals the constant arrival 
intensity from on-ramp i, and biJ is the probability that a vehicle is 
destined for off-ramp j, given it arrives at on-ramp i. 

If the origin populations x0 ;(t) are large enough so that the number 
of total arrivals during the time period of interest is a small propor­
tion of the original total, the quantity x0 ;(t)q0 ; can be taken as a 
constant A.0 ;, giving Poisson arrival rates at the freeway origins. 

To obtain functions giving the transition rates within the main­
line sections, assume that at time t the vehicles in section k have 
speeds assigned as independent, identically distributed random out­
comes from a common speed distribution, and that distances from 
the downstream boundary of section k are assigned as independent, 
identically distributed outcomes from a uniform random variable 
with probability density 1/Lb where Lk is the length of section k. It 
is then straightforward to show that the probability of a randomly 
selected vehicle exiting section k during a short interval of length Ll 
is simply uk(t)ti/Lb where uk(t) gives the space-mean speed for sec­
tion k at time t. The formulation can then be closed by requiring the 
space-mean speeds uk_to depend directly on x(t) via a form for the 
equilibrium speed-density relations of traffic flow theory, giving a 
version of the simple continuum model. As formulated though, this 
model will tend to lock up when the densities in a section rise above 
the critical density (8). 

Although Markov traffic models can be extended to produce 
analogs of higher-order continuum models (3,9), a simpler solution 
is to use a device originally attributable to Szeto and Gazis (10) and 
allow the flow across the boundary of two sections to depend on 
both the upstream and downstream densities. The two-dimensional 
per lane flow-density relation (transition rate) used in this paper 
takes the form 

(5) 
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where 

u0 = free-flow speed, 
de = critical density, 
Q0 = capacity flow, and 
d1 = jam density. 

For a constant downstream density dk+i. Equation 5 gives an 
increasing cross-boundary flow as the upstream density dk 
increases, up to the point at which dk equals the critical density. The 
cross-boundary flow then remains constant, thus modeling the 
upstream section as (approximately) an oversaturated finite-server 
queue. As the downstream density dk+ 1 approaches the jam density 
d1, the cross-boundary flow goes to 0, with the sensitivity of this 
effect being governed by the exponent r. Figure 1 displays a plot of 
Equation 5 as calibrated for an actual segment of freeway. 

The continuous-time Markov compartment (MARCOM) free­
way traffic flow simulation model incorporating transition intensi­
ties can be expressed as the following simple recursive process, 
well-suited for computer simulation: 

• Step 0: Given 0-D splitting probabilities biJ and destina­
tion-specific variables xk/O), let t = O; i = 1, ... , m; k = 1, ... , n; 

j = 1, ... 's. 
• Step 1: Generate the next arrival time at origin i destined for j, 

!::..;1, as an exponential outcome with parameter 'A0 ;b;1, X.0 ; = arrival 
rate at on-ramp i. 

• Step 2: Calculate the mainline transition rates xkJqk,h(t) from 
Equation 5, qk.h(t) = mainline transition intensity. 

• Step 3: Generate the next transition time at each compartment 
k destined for j, t::..kJ• as an exponential outcome with parameter 
Xkjqk.h· 

Q 

Q flow (vph) 
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• Step 4: Pick a minimum next arrival time !::..min among (!::..iJ, !::..k)· 
• Step 5: Lett= t + !::..min. update state variable xk1(t): 

xkj(t + !::..min) = xk1(t) + 1, if it is a birth compartment; 
xk/t + !::..min) = Xf/t) - 1, if it is a death compartment; and 
y1g(t + !::..min) = y1g(t) + 1, if detector l register departures, from g. 

• Step 6: Go to Step 1. 

PRELIMINARY TESTING OF MARCOM 
MODEL OF FREEWAY TRAFFIC FLOW 

Behavior of MARCOM at a Lane Drop Bottleneck 

Although the basic idea behind Equation 5 is not new, the traffic 
flow model that results is still somewhat novel, and it was first 
desired to see if Equation 5 could produce reasonable behavior at 
bottlenecks. To this end, a computer program implementing 
MARCOM was written and used to generate simulated flows for the 
hypothetical 3.5-mi freeway section shown in Figure 2. Here, the 
number of lanes is reduced from three to two behind the fifth of 12 
subsections (the length of subsection was uniformly chosen to 1,500 
ft). A 60-min simulation started with demand of 3,000 vehicles per 
hour (vph) and then increased to 4,800 vph, which exceeds the 
capacity of the two-lane section by approximately 20 percent, and 
finally decreased to 1,200 vph. The simulation results of this hypo­
thetical case are depicted in Figures 3 and 4, which show the volume 
and density trajectories of the bottleneck section at 5-min intervals. 
As illustrated in these figures, the MARCOM provides a reasonable 

dk density at section k 
dk+1 density at section k+l 

FIGURE 1 Two-dimensional flow-density relationship. 

----•~·Direction of travel 

7 9 10 11 12 

Bottleneck 

FIGURE 2 Geometrics of freeway section with bottleneck. 
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FIGURE 3 Density trajectories at a bottleneck.· 

500 

400 

300 

200 

100 

Volume (veh/S min) 

,L---r---r___,.<--...,,___,,___,,.'--.,;----.'-_,,___,,'--.,;---,/ 40 m In 
~-r-----r--,--r---r---r--,,.__-r---+---r---:,.___.,,, 45 min 

0 -"-T---"--.----"~.L...,---<-,,--<--.--<'-r--'--.--'-,.....<...,.--<'-r--'--.--" 55 min 

0.6 1.2 1.8 2.4 3.0 3.6 

Location (mile) 

FIGURE 4 Volume trajectories at a bottleneck. 
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description of queue build-up and dissipation in that (a) congestion 
starts in front of the bottleneck and moves in upstream direction, 
while the density within the bottleneck section is around critical 
density; and (b) the volumes in the bottleneck section are limited to 
the capacity during congestion building and dissipation. 

Calibration and Verification of MARCOM 

As stated earlier, the ultimate objective of this research is to esti­
mate destination-specific traffic densities on freeways. The solution 
strategy was to describe a Markovian traffic model, approximate 
the Markovian model with a linear stochastic model, and apply the 
theory of Kalman filtering to the linear model in order to estimate 
the destination-specific densities. Three questions then arise con­
cerning this approach: (a) how reasonable is the underlying Mar­
kovian traffic model? (b) how accurate is the linear approximation? 
and (c) how well does the resulting Kalman filter perform? Since 
destination-specific densities are almost impossible to observe in 
practice, the accuracy of the Kalman filter must be assessed using 
simulated data. To this end, the MARCOM simulation program just 
described was calibrated using real data and run for model verifica­
tion. Figure 5 depicts a seven-origin, four-destination segment of 
northbound Interstate highway I-35W that is 4.0 km (2.5 mi) long. 
Five-minute cumulative volume and lane occupancy measurements 
during a 3-hr morning peak period (6:00 to 9:00 a.m.) for mainline, 
on-ramp, and off-ramp stations were obtained from the Minnesota 
Department of Transportation (MNDOT). 

To run the stochastic simulation model, MARCOM, it is neces­
sary to know the on-ramp arrival rates A.0 ;, the 0-D splitting proba­
bilities bij, and the parameters governing the flow-density relation 
in Equation 5. The arrival rates can simply be estimated as those 
values that reproduced the corresponding 5-min arrival counts 
allowing the arrival rates to vary for each 5-min interval. 

Distance in feet 
()Detector station · 

FIGURE 5 Geometrics of test section (I-35W northbound). 
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FIGURE6 Fitted and observed steady-state flow versus density. 

To determine the parameters for Equation 5, the lane occupancy 
measurements were converted to approximate density values and 
the parameters u0, dn dj, and r in Equation 5 were estimated using 
nonlinear least squares by setting dk = dk+ 1, corresponding to the 
notion of approximate homogeneous flow. Figure 6 shows the 
observed and fitted flow-density curve obtained for the estimates 
uo = 66.6 mph, de = 64.5 veh/lane/mi, dj = 120 veh/lane/mi, and 
r = 3. Finally, the splitting probabilities bij were estimated by using 
the estimated traffic flow parameters to numerically solve the mean 
value Equation 3 given a trial set of bij values. For a given set of ori­
gin counts, this produced estimated destination counts, and those bij 
values that minimized the sum of squared errors between forecast 
and actual counts were obtained by embedding this routine in a non­
linear optimization program. This method produced reliable 0-D 
parameter estimates in a recent research (3) when incorporating an 
accurate traffic flow model. These estimates were then used as 
inputs to a MARCOM that simulated the Markov compartment 
process described earlier to generate simulated traffic counts for 
various time intervals as well as destination-specific section popu­
lations, xkj(t). 

The resulting comparisons of volume and density generally indi­
cated good agreement between simulated and actual data. In order 
to evaluate the model performance quantitatively, two error mea­
surements (mean absolute percentage difference and mean absolute 
error) are calculated. As indicated by the error measures in Table 1, 
MARCOM provided a reasonable reproduction of traffic flows. 

TABLE 1 Mean Error of Simulated Volume Results 
(6:00 to 9:00 a.m.) 

Detector 
Station 

MAPD" 

MAEb 

63N 

2.2 

13 

62N 61N 

2.0 2.0 

21 18 

"Mean Absolute Percentage Difference (%) = 

55N 

2.1 

27 

E k=l,N(l OO*(Measured-Simulated)i/MeasuredJIN 

53N 

2.2 

28 

bMean Absolute Error (veh/5 min) = E1c=i,N(Measured-Simulated)i/N 
where N is the Number of Measured Points 

O-t-~~--.--~~--.~~--,-~~----.~~~,--~--.-

0 6 12 18 24 30 36 

Time Interval (5 min) 

FIGURE 7 Simulated state and confidence interval 
(state variable: x54). 

ESTTh1A TING DESTINATION-SPECIFIC 
VEHICLES USING SIMULA TED COUNT DATA 

Next, the estimated parameter values were used to implement the 
density-tracking Kalman filter for the segment ofl-35W depicted in 
Figure 5. First, instantaneous destination-specific volume counts at 
the end of every 5-min interval and 5-min cumulative volume 
counts at designated detectors were generated by MARCOM. Next, 
the Kalman filter was used to estimate destination-specific densities 
using simulated volume counts. 

Figures 7 and 8 show the simulated destination-specific traffic 
densities along with the approximate 95 percent confidence pro­
duced by the Kalman filter. The two dotted curves in Figures 7 
through 10 indicate the two-standard deviation envelope produced 
by the Kalman filter. In each case the estimation range tracks the 
simulated values reasonably well, with the larger volume flows 
being tracked somewhat better. This indicates that the filter is 
performing properly, although it is an approximation of the origi­
nal process. 

Finally, as an additional test of the model's accuracy, the Kalman 
filter was used to generate predicted mainline and off-ramp counts 
when fed by actual on-ramp counts. Figure 9 shows actual mainline 
counts along with the 95 percent prediction range for one of the 
detector stations, and Figure 10 compares actual ramp counts along 
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FIGURE 8 Simulated state and confidence interval 
(state variable: X52). 
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FIGURE 9 Actual volume and confidence interval 
(mainline: Station 61N). 
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FIGURE 10 Actual volume and confidence interval 
(off-ramp: Station 61NX). 
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with the 95 percent prediction range. The mainline volumes are 
tracked reasonably well, and the Kalman filter appears to predict the 
mean value of the off-ramp count with accuracy but not its fluctua­
tions as well as desired. 

CONCLUSION 

This paper began by arguing that a destination-specific breakdown 
of the traffic currently on a road network is an essential input to any 
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route diversion forecasting method but that such information can­
not be measured directly by existing surveillance systems. For the 
more tractable case of freeway segments, a Kalman filter that could 
produce such estimates was derived from a Markov compartment 
model of traffic flow and tested using data from an existing segment 
of freeway. Generally, the Markov model provided a reasonable 
description of freeway traffic flow, and the Kalman filter produced 
reasonable estimates of the destination-specific volumes, although 
for the lower-volume subflows, the proportion of error was some­
what greater. 

Overall, it appears that this Kalman filtering approach provides 
the information needed for real-time diversion forecasting, at least 
for freeway segments. One obvious line of improvement would be 
to develop an adaptive filter by replacing the off-line parameter 
estimation procedures with their recursive equivalents. This would 
permit the tracking of slowly varying changes in the 0-D pattern 
and possibly improve the accuracy shown in Figure 10. The main 
challenge, however, is to extend this filtering method to general 
traffic networks; this effort is currently under investigation. 
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