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Distribution-Free Model for Estimating 
Random Queues in Signalized Networks 

ANDRZEJ TARKO AND NAGUI ROUPHAIL 

A general-arrival, bulk service time queueing model is formulated for 
studying the distribution of random queues in signalized networks. The 
model is predicated on the occurrence of three traffic stream transfor
mations: merging, splitting, and filtering. The model is applied to 
steady-state conditions (traffic intensity < 1.0) but can be eventually 
converted to a time-dependent form to account for oversaturation 
effects. A comparison of the results of the model with those of compa
rable models in the literature confirms that the use of random queue 
estimates derived from the assumption of a Poisson arrival process is 
inappropriate for networks. Marginal adjustments to the Poisson 
process by including a variance-to-mean ratio of the departure distri
bution improve the random queue estimate to a point. The results also 
confirm recent observations by Newell about the relationship of 
stochastic queues in an arterial network with their counterparts at 
isolated intersections. Ih general queue estimates for the network case 
are substantially smaller than those incurred at an isolated intersection 
with similar traffic intensity. The difference is attributable primarily to 
the process of traffic filtering. 

Vehicle delays at signalized intersections contribute substantially to 
travel times on an urban street network. Delay is now the basic cri
terion for evaluating the level of service (LOS) at signalized inter
sections and a key ingredient for evaluating the LOS on arterials (1). 
The ability of a traffic analyst to estimate vehicle delay is critical in 
evaluating advanced traffic management systems (A TMS) as well 
as quantifying the environmental consequences of traffic decisions. 

Average vehicle delay at a signalized intersection can be 
expressed as the sum of nonrandom and overflow delay compo
nents. Nonrandom delay refers to the average vehicle delay experi
enced with the assumption that traffic demand is uniform and aver
aged over all cycles during the analysis period. Overflow delay 
encompasses the additional delay caused by the randomness in 
arrival headways within each cycle and from one cycle to the next, 
in addition to that incurred when flow exceeds capacity for some 
period of time. Within-cycle random variations are usually negligi
ble in terms of their impact on delay, an effect that is also not con
sidered in this paper. Thus, the residual queue remaining at the end 
of the green phase (herein denoted as N0 ) is considered the only 
source of overflow delay. The relationship between average over
flow queue and average random delay d0 can be approximated for 
steady-state conditions as follows (2): 

d =No 
0 q (1) 
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where 

d0 =random delay (sec), 
N0 =random queue (veh), and 

q = arrival rate (veh/sec). 

Since this relationship is straightforward and independent of the 
queueing model distributions, random delay is often investigated 
through the estimation of random queues. 

BACKGROUND 

Nonrandom delay formulas exist for both isolated and coordinated 
intersections (1,3). Estimating the second delay component for a 
signalized network is still a challenging research issue. Earlier the
oretical work on queueing theory (4-6) hints at some major diffi
culties in obtaining delay formulas for general arrival and departure 
distributions. The most general steady-state delay models have been 
derived by Darroch (5), Newell (2), and McNeil (7), who incorpo
rate the variance-to-mean ratio Ia in their models to include bino
mial or compound Poisson arrivals (Darroch's processes). Since 
these works did not deal directly with signalized networks, these 
questions remained: what actually are the arrival processes in sig
nalized networks? and how is the value of Ia estimated if Darroch's 
processes are appropriate for signalized networks? 

Van As addressed these issues using the Markov chain approach 
to model delays and arrivals at two closely spaced signals (8). He 
concludes that the Miller model improves random delay estimation 
for signalized networks in comparison with the Webster model. 
However, Van As's results also indicated that Miller's formula 
overestimated random delay in some cases. It is unclear whether 
that bias was caused by the non-Darroch's arrival process or by the 
coordinate transformation technique (9) used to obtain the time
dependent models investigated by Van As. 

Tarko et al. have investigated the impact of an upstream signal 
on random delay using cycle-by-cycle macrosimulation (10). They 
found that in some cases the ratio Ia does not properly represent the 
non-Poisson arrival process and generally overestimates delay. The 
additional weakness of such models lies in the estimation of Ia. 
Although Van As worked out a straightforward formula for Ia, its 
dependence on the Ia calculated at an upstream signal creates the 
possibility of a systematic error propagation problem in the course 
of the calculations. To avoid that problem, Tarko et al. (JO) pro
posed a random delay model that uses a function of the capacity dif
ferential between the critical upstream and subject signals instead 
of the Ia ratio to improve delay estimation in signalized networks. 
Their work also confirms that traffic platooning-that is, signal pro
gression-in a signalized network operating on a common signal 
cycle has no effect on the cycle-to-cycle variation of the arrival 
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distribution process. In other words, signal offset does not affect 
random delays or queues. 

The present paper can be seen as an extension of the author's pre
vious work (10). A bulk service queueing model is presented that 
enables the description of the distribution of vehicle arrivals, depar
tures, and random queues in a signalized network. The model is 
evaluated by comparing it with well-recognized random queue 
models for isolated intersections [Khintczine-Pollaczek, Newell 
(2), and Ak9elik (J J)] and for networks [modified Newell (J 2), 
Miller (13), and Tarko-Rouphail (JO)]. Furthermore, Newell's 
hypothesis on the average random queue along a signalized arterial 
(12) is tested. Finally, a sensitivity analysis on the effect of sec
ondary flows (midblock and turning movements) on random queues 
is presented and discussed. 

ARRIVAL DISTRIBUTION IN A 
SIGNALIZED NETWORK 

Consider an urban street network on which most intersections are 
signalized. An additional, and reasonably valid, assumption is that 
all these signals operate on a common signal cycle. The traffic 
stream moving through the network is subject to the following 
transformations: it can 

• Merge with other traffic streams, 
• Split into separate traffic streams, or 
• Be filtered by traffic signals. 

In such transformations, a traffic stream is represented by its 
arrival distribution in time periods that are equivalent to the com
mon signal cycle. Arrival distributions are generated at locations 
where a given transformation takes place. For example, consider a 
traffic link connecting two signalized intersections (Figure 1). The 
link is modeled as a sequence of cross sections at which traffic 
streams are merged, split, or filtered. These arrival distribution 
transformations are modeled using the following processes: 

• Merging produces a combined distribution of arrivals P(x) 

from two independent traffic streams with arrival distributions P 1(a) 
and P2(a) as follows: 

(2) 

In cases of three or more streams, this formula is applied consecu
tively, so that P 1(a) is the result from the previous application and 
P2(a) corresponds to the next stream to be combined. 

• Splitting produces a distribution Ps(x) of arrivals drawn with 
probability p .from a traffic stream with known arrival distribution 
P( a) according to 

(3) 

where A is the maximum number of arrivals considered to have a 
finite value. For entry links into the network, the Poisson distribu
tion may usually be ·applied to estimate the number of arrivals. In 
this case the value of A is set sufficiently large to neglect the trun
cation error. 

Traffic 
Stream 
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intersection 
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movement 

downstream 
intersection 

FIGURE 1 Traffic streams on a link 
in random queue modeling. 

193 

• Signal .filtering transforms the arrival distribution P(x) just 
upstream of an intersection into a departure distribution P Jx) just 
downstream of the intersection. The number of departures per cycle 
is equivalent to the sum of overflow queue (from previous cycles) 
in addition to all "new" arrivals in the subject cycle if that sum is 
less than the signal capacity. Otherwise the number of departures is 
set equal to the signal capacity 

Pd(x) = 2:~=x IT(a)P(x - a) for x < c (4) 

for x = c (5) 

where c is the fixed signal capacity per cycle and Il(x) is the prob
ability of x vehicles in queue at the end of green time in steady-state 
conditions. · 

Random queues on any link within the network can be handled 
by these transformations, first by modeling all the upstream links 
that feed into the subject link. For simplicity, a Poisson distribution· 
may be assumed for arrivals on external links. Thus, the process of 
network link modeling is carried out in the following manner 
(Figure 1): 

1. Combine the departure distributions from all exits at the 
upstream intersection. 

2. Assume that the combined departure distribution in Step 1 
constitutes the arrival distribution at the midblock unsignalized 
intersection (real or hypothetical). Combine this profile with the 
arrival profile from midblock traffic when applicable. 

3. Assume, as in Step 2, that the combined profile at the midblock 
location constitutes the arrival profile at the downstream signal. Split 
the traffic stream in the segregation zone according to the prevailing 
lane assignment. For example, Figure 1 shows that through and 
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right-turning movements share common lanes. Thus, these move
ments are considered to form a single traffic stream. Left turners 
using exclusive lanes form a separate queue and are considered as a 
separate traffic stream that "splits" from the combined profile 
derived in Step 2. 

4. Filter all separate traffic streams at the stopline. First, the ran
dom queue distribution is obtained from the arrival distribution and 
signal capacity. Next, the random queue distribution and the arrival 
distribution are used to produce the departure distribution. For 
example, the resulting departure profile for left turners is a final pro
file and may be used in modeling the appropriate downstream link. 

5. Split shared traffic streams into individual movements (right 
turns from through traffic in Figure 1). The movements' departure 
distributions complete the requirements for processing the subject 
link. 

6. Repeat Steps 1 through 5 for the downstream intersection. 

This model assumes the arrival distribution to be identical to the 
upstream departure distribution. This assumption is valid if varia
tions in vehicle speeds between the two intersections do not affect 
the number of arrivals in cycles at the downstream intersection. For 
long road sections, this assumption results in some underestimation 
of the random queues. The variations in the arrival distribution 
between cycles, which occur along road sections on which traffic is 
uninterrupted, require additional research. The arrival distribution 
considered here should not be confused with the average fl.ow rate 
profiles used in models such as TRANSYT. 

In the next section, the distribution of the random queue is mod
eled assuming a statistical equilibrium state. The random queue dis
tribution is of main interest since it can be used to calculate expected 
random queues and delays. Splitting and merging transformations 
yield intermediate results that are required to either model random 
queues at the subject signal or continue modeling downstream links. 

RANDOM QUEUE MODEL FOR 
GENERAL ARRIVAL DISTRIBUTIONS 

A queueing system with a single server, random arrivals from a 
Poisson distribution, a deterministic bulk service, and queue disci
pline FIFO has been applied to random queue modeling at an iso
lated signalized intersection ( 4). The assumption of Poisson distri
bution is, however, too restrictive for signalized networks. Instead 
assume a general arrival distribution P(x), where xis the number of 
arrivals in cycle, and overflow queue distribution in steady-state 
conditions Il(k), where k is the number of vehicles in queue when 
green time ends. The signal capacity, expressed in number of vehi
cles that can be possibly served during cycle, is fixed and equal to 
c. An analysis of state transient probabilities under equilibrium con
ditions resulted in the system of balance equations for a general 
arrival distribution that is applicable to a signalized network: 

L7=o P(x :5 c - i)IT(i) - IT(k) = 0 fork= 0 

(6) 
L:o P(x = c - i + k)IT(i) - IT(k) = 0 for k = 1, ... , oo 

To avoid the trivial and infeasible solution [Il(i) = 0 for each i], the 
first equation in the system (Equation 6) is substituted with the con
straint on steady-state queue probabilities such that all probabilities 
IT(i) sum to 1: 
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(7) 

The proposed queueing model gives an exact solution to the prob
lem under steady-state conditions. However, to solve the equation 
numerically, the size of the problem must be limited to some finite 
and large numbers i and k, such that i = k. Finally, the system of lin
ear equations in the standard form, convenient for many solution 
techniques, is 

(a - e) · Il= b (8) 

where 

a = two-dimensional matrix (M X M) with elements as follows: 
a11 = 1 for j = 1, ... , M 
aiJ = P(x = c + i - j) for i = 1, ... , M and j = 2, ... , M 

e = two-dimensional matrix (M X M) with elements as follows: 

eiJ = { 1 for i > l,j > 1, i = j 

0 otherwise 

Il = column vector of probabilities [Il(k = 0), IT(k = 1), ... , 
IT(k = M - 1)]; 

b = column vector with M elements [1, 0, 0 ... ]; and 
M = sufficiently large number such that truncation error is 

negligible for solution of system (8). 

In the proposed model, signal capacity is assumed to have a fixed 
value. Olszewski (14) concluded that under reasonable capacity 
conditions, the use of a fixed value rather than a distribution is 
acceptable for unopposed traffic streams. The question arises 
whether this finding is applicable to a signalized network, since 
even small variations in the upstream signal capacity are propagated 
downstream when filtering takes place. 

To answer this question, one should recognize that the principal 
source of capacity variations for unopposed streams is the cycle-to
cycle variations in traffic composition. However, the traffic com
position at an upstream signal tends to be replicated downstream 
since the same vehicles arrive at both signals with some time lag. 
This means that the upstream and downstream signal capacities do 
not vary independently, which reduces the effect of capacity varia
tions. Estimating the random queues for two cases-fixed and inde
pendently varying capacities-yields lower and upper bounds of 
random queue lengths. This is beyond the scope of this work. 

COMPARISON WITH EXISTING MODELS 

Single Intersection Models 

The first step in the model evaluation is to compare its estimates with 
those of several well-known models: the Khintczine-Pollaczek 
(K-P) second term used by Webster (3) and Kimber and Hollis (9) in 
their formulas, Ak~elik (11) random delay formulas, and the Newell 
model (2) modified by Cronje (15). These models converted into the 
random queue models according to Equation 1 are presented here: 

• K-P for Poisson arrivals and deterministic.departure processes: 

x2 
No= 2(1 _ X) (9) 
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No= l.5[X - ~O·~\+ c/600)] (lO) 

• Newell (with Cronje modification) for Poisson arrivals: 

N = H(µ)X (11) 
0 2(1 - X) 

where 

H(µ) = exp[-(1 - X)c0·5 - 0.5(1 - X)2c] (12) 

In these equations, X is the degree of saturation, and c is cycle 
capacity in vehicles per cycle. 

These models are compared with the authors' results and with the 
results obtained by Olszewski (14). The comparison is presented in 
Figure 2 for degrees of saturation 0.90 and 0.95 and for capacities 
varying from 10 to 120 veh/cycle. Olszewski' s model based on the 
Markov chain produces virtually identical results to the modified 
Newell model and, therefore, is omitted from the comparison. The 
results demonstrate the significant effect of cycle capacity even for 
a fixed degree of saturation. The K-P model highly overestimated 
random queues since it does not consider the bunching of serviced 
vehicles during the green signal. Excellent agreement is evident 
between the bulk service and Newell models. Observed discrepancy 
between the Ak9elik model and other models is a result of linearity 
of the first one. 

Network-Based Models 

The second step in model evaluation is to compare the steady-state 
K-P, Miller (13), Tarko-Rouphail (10), and Newell (2) with Cronje 
modifications (15) models with the bulk service model estimates. 
All these models can be represented using the following general
ization: 

N = k · (X- X0) 

0 (1-X) (13) 

K-P 
Akcelik 

Newell-Cronje 

bulk service 

---------------~~-:~~----------------

0 30 
Cycle Capacity (veh/cycle) 

FIGURE 2 Comparison of random queue models for isolated 
signals. 

60 

where 

X = degree of saturation; 
k = 0.5X in K-P formula; 

= 0.52 X Ia X X in Miller formula; 
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= Ia X H(µ) in modified formula [H(µ) is calculated accord
ing to Equation 11]; 

= 0.408[1 - e-O.S(cu -cd)] XX, where Cu and cd are the cycle 
capacities for the critical upstream and subject signals, 
respectively, in Tarko-Rouphail formula; and 

X0 = 0 in K-P, Newell, and Miller models 
= Qd/100 in Tarko-Rouphail formula. 

In Miller's and Newell's models, Ia is meant to incorporate the 
effect of non-Poisson arrivals Ua < 1), and H(µ) incorporates the 
bulk service in Newell's model. The Tarko-Rouphail formula 
includes an adjustment factor as a function of signal capacities. 

To provide data for comparison, a system of three signals with no 
turning movements is considered. Capacities for the first and sec
ond intersections were allowed to vary from 30 to 40 veh/cycle in 
1-veh increments from one computation to the next. The third sig
nal had a fixed capacity of 30 veh/cycle. Traffic volume was also 
fixed at an average of 27 .5 veh/cycle, resulting in a fixed degree 
of saturation of 0.92 at the third intersection. Poisson arrivals 
were assumed at the first (entry) signal. Here it is recognized 
that the upstream signals will substantially transform the arrival pat
tern at the downstream intersections. Comparative results are 
depicted in Figure 3 for the second and third signals and for cases 
in which the random queue is non-zero. As expected, the K-P model 
overestimates random queues. The addition of the Ia parameter to 
that model (Miller) improves its estimates. However, the lack of the 
bulk vehicle service property in both models still resulted in an 
overestimation of random queues. The modified Newell and Tarko
Rouphail formulas are comparable to the bulk service model. 

Newell's Hypothesis 

Newell recently discussed an interesting hypothesis. He suggested 
that from the standpoint of random queues, a signalized arterial can 

5 • • • • 
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• Tarko-Rouphail 

0'~~~--.-~~~~~~~~~~~4~~~~~~-J6 

Bulk Service Model (veh) 

FIGURE 3 Comparison of random queue models for 
signalized networks. 
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be very easily considered as one system (12). He went on to state 
that the total random queue (and random delay) along all arterial 
signals is equivalent to the random queue that would be observed at 
the critical intersection were that intersection operating in isolation. 
The (limiting) assumption is made that there are no turning move
ments along all subject intersections. Approximate random delay 
formulas were also developed when turning movements are present, 
but only for modest levels. 

Newell's hypothesis was tested using the same system of three 
signals described earlier. Figure 4 depicts the total random queue at 

. the three signals as a function of the individual signal capacities. 
The results confirmed Newell's thesis that the total random queue 
along a signalized arterial is much lower than the total random 
queue if all intersections are treated as isolated (current state of the 
art). The results indicate an even stronger reduction than that 
hypothesized by Newell. It appears that Newell's estimate should 
be considered as an upper bound for total random queue, at least in 
cases in which turning movements are negligible. For practical pur
poses, however, his hypothesis provides much better random queue 
estimates than most of the formulas cited earlier. 

ILLUSTRATIVE EXAMPLES 

Two examples are provided to illustrate the modelsensiiivity to key 
traffic parameters and to highlight one or more stream transforma
tions described earlier. In the first example, a single traffic stream 
is examined between two intersections (Figure 5, top). The arrival 
distribution at Intersection 1 is described by a Poisson process. Fil
tering at Intersection 1 causes a significant reduction in the vari
ability of the departure process (Figure 5, middle). The resulting 
random queue distribution at the second signal is compared with the 
distribution when the upstream signal does not exist (Figure 5, 
bottom). In this case, the expected random queue at Intersection 2 
is less than a third of the value computed assuming no filtering (2.60 
versus 7.95). Furthermore, the total expected random queue in the 
system (1.82 + 2.60 = 4.42) falls far short of the expected queue 
length at Signal 2, assuming random arrivals (7 .95). This confirms 
the results shown in Figure 4. 

In the second example the sensitivity of the expected random 
queue at a downstream intersection to midblock flow levels is inves-

4. 

4. 

Arrival Rate= 27.5 veh/cycle 
Third Signal Capacity = 30 veh/cycle 

31 32 33 34 35 36 37 38 39 
Second Signal Capacity (veh/cycle) 

FIGURE 4 Newell's hypothesis evaluation. 
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tigated (Figure 6). Here, stream merging and filtering effects are 
examined. Downstream conditions are kept fixed, including signal 
capacity, flow, and degree of saturation. For the upstream condi
tions, two scenarios are analyzed. In the first (dotted line in Figure 
6), the upstream signal capacity is kept fixed while the rnidblock 
flow contribution to the total flow is allowed to increase. Consider 
the point at which the ratio of rnidblock to total flow is 30 percent. 
Here, the random queue reaches its maximum value. The upstream 
signal contribution is 70 percent of the total flow, or 26.6 veh/cycle, 
and its capacity is 40 veh/cycle, yielding a degree of saturation 
equal to 0.67. Consequently, the departure distribution is virtually 
unaffected by the capacity constraint (i.e., negligible filtering) and 
can be reasonably approximated by a Poisson process. Obviously, 
the combination of two Poisson processes (from signal and rnid
block) also produces a Poisson process with an equilibrium queue 
equivalent to the maximum value indicated in Figure 6. 

In the second scenario (solid line), the rnidblock flow contribu
tion to total flow is also increased, but the degree of saturation at the 
upstream intersection is maintained as fixed (0.95): for example, 
emulating the operation of an actuated or adaptive controller oper
ation. Consequently, upstream filtering is active at all flow levels. 
The expected random queue at the downstream intersection varies 
almost proportionally to the portion of rnidblock flow in the total 
stream. The results clearly demonstrate the significance of rnidblock 
and turning (i.e., unfiltered) flows on random queue estimates and 
justify further research to incorporate that effect into analytical 
models of random delays and queues for signalized networks. 

CONCLUSIONS 

A general-arrival, bulk service time queueing model has been for
mulated for the study of random queues in signalized networks. The 
model is predicated on the occurrence of three traffic stream trans
formations in the network: merging, splitting, and filtering. The 
model is applied to steady-state conditions (traffic intensity < 1.0) 
but can be eventually converted to a time-dependent form to 
account for the effects of oversaturation. The study yielded the fol
lowing conclusions: 

1. Models for random queues (or delay) that are based on the 
Poisson arrival process (e.g., isolated intersections) are not gener
ally transferable to networks because of the filtering effect of 
upstream signals. 

2. Filtering tends to reduce the size of random queues. Although 
this finding is consistent with earlier observations by Newell (J 2), 
the observed reductions were even higher than Newell's estimates. 

3. When two or more traffic streams merge, the resulting down
stream random queue is dependent on the level of filtering that has 
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taken place before merging. If streams are unfiltered (e.g., rnidblock 
flows, or signal departures at very low volume-to-capacity ratios), 
the random queue will be similar to that expected at an isolated 
intersection. Highly filtered streams, however, can substantially 
reduce random queues. 

4. There is a need to consider incorporating the model results 
into network signal timing software, since many control strategies 
use a minimum delay or queue criterion for signal optimization. If 
methods for estimating random queues in networks must be revis
ited, then signal strategies that rely on such estimates should be 
examined. 
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