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Prediction of Creep Effect in Segmental 
Concrete Bridge Construction 

LEV KHAZANOVICH 

Presented is a theoretically sound and practical approach for determin­
ing concrete creep effects on deflection and stress distributions in rein­
forced concrete bridges subject to structural system changes during con­
struction. An approximate solution adopted by the American Concrete 
Institute (ACI) sometimes produces a significant en:or and considers 
only one structural system change. An exact solution would require cal­
culation of an integral relaxation function. A simplified and accurate so­
lution for determining concrete creep effects for any number of struc­
tural system changes is described. The proposed method is as simple to 
implement as the ACI method and is highly accurate. 

Construction of reinforced concrete bridges presents the problem of 
structures with a variable structural system. Although it is well 
known that creep and imposed displacements can cause redistribu­
tion of the stresses and bending moments in structures, the signifi­
cance of structural system changes on the long-term stress distribu­
tion in concrete structures is not well documented. Introduction of 
delayed restraints ahd the special characteristics of concrete as an 
aging viscoelastic material allow increased deflection under con­
stant loading and, as a result, lead to redistribution of stresses. The 
effect was first considered in the design of the bridges over the Neva 
in (then) Leningrad, USSR (J) and the Vltava in Hlanda, Czech 
Republic (2). 

In general, the problem requires the solution of a system of 
integral-type equations. A numerical solution may be obtained with 
a step-by-step method, taking into account particular sequences of 
construction. In that manner; a continuous beam built span by span 
has been analyzed in a: work by Bafant and Ony (3). 

In the case of homogeneous structures (i.e., structures in which 
the material properties are the same at all points), the exact solution 
in closed form was obtained by Kharlab (J) and independently (in 
less advanced form) by Dezi et al. (4). However, the solution re­
quires calculation of an integral relaxation function. A simplified 
solution by the Age-Adjusted Effective Modulus Method (AEMM) 
was obtained by Bafant and Najjar (2), Ba.Zant (5), and Kristtek and 
Bafant (6). The solution was adopted by American Concrete Insti­
tute (ACI) as a recommendation (7). In most cases, the method 
gives a good approximation, although sometimes its error is signif­
icant. Moreover, the ACI recommendation considers only the case 
of one structural system change. 

The aim of this paper is to develop a simplified but accurate so­
lution for any number of structural system changes by combining 
Kharlab's exact solution and Ba.Zant's simplified solution. 

CREEP OF CONCRETE 

Different approaches to describing the constitutive relationship of 
concrete considering creep exist: models derived by ACI (7), by 
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Bafant and Panula ( 8), and by Bafant and Prasannan (9), among 
others. 

In the present study, a linear creep law is assumed. The assump­
tion is acceptable for stresses less than 0.4 of the standard cylinder 
compressive strength. The relation between stress a and strain e 
may be written in the Stieltjes integral form, as follows: 

E (t) - Eo(t) = ft J(t, T)da(T) 
ro 

(1) 

where 

t0 = age when the stress and deformation first appear; 
e0(t) = stress-independent inelastic strain, such as shrinkage 

strain or thermal dilatation; and 
J(t, T) = creep compliance, [i.e., strain at time t (including elas­

tic strain) caused by a unit constant stress acting since 
time T]. 

In terms of the creep coefficient<!> (t, T), creep compliance is de­
fined as 

1 + <!>(t, T) 
J(t, T) = ---­

£(T) 

where E(T) is the instantaneous elastic modulus. 

(2) 

In general, a universally acceptable model does not exist. In this 
investigation, however, the ACI model has been chosen as the most 
widely used one. According to the ACI recommendation (7) 

<!>(t, T) = <!>u(T)j (t - T) 

where 

(t - T)0.6 

j(t - T) = lQ + (1 - T)0.6 

<!>u(T) = <!>(oo, 7) 1.25 T-0.118 

E(T) = £(28) J 4 + ~.85 T 

where t, T are given in days. 

STRUCTURES SUBJECTED TO ONE 
STRUCTURAL SYSTEM CHANGE 

(3) 

(4) 

(5) 

(6) 

A statically determinate or indeterminate homogeneous system V0 

is loaded by its constant dead load at age t0• At time ti. the system 
V0 is changed to system Vo> by means of introducing a redundant 
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rigid restraint _without any sudden change of stresses. Following 
Kharlab (J), consider system Vi, which has the same configuration 
at time t0 as system V(l) and has elastic modulus E(t0). Then, force 
variables (stresses, bending moments), Y(t, x), and deformation 
variables (strains, deflections), W(t, x), at time t and location x ca:n 
be represented in terms of the corresponding elastic force variables, 
Y(f(x) and Yj1(x), and elastic deformation variables, W81(x) and 
W[1(x), as follows: 

(7) 

W(t, x) = W01(x)[l + <!>(t,, to)] + W{1(x) [<l>(t, to) - <l>Ct1> to)] (8) 

w, to, t,) = r R(t, T) dJ(t, to) 

" 
(9) 

where R(t, T) is the relaxation function, which is defined as the stress 
at age t caused by unit constant strain introduced at age T. 

Integral relaxation function, ~ (t, t0, t1), may be calculated nu­
merically with high accuracy in a step-by-step manner (4), although 
such a process may at times be tedious. The simplified solution 
obtained using the AEMM (2,5,6) has the following form: 

(10) 

W(t, x) = W01(x) [1 + <l>(t" t0)] 

+ W{1
•
1(x) [<!>(t, t0) - <l>(t1, t0)] (11) 

(12) 

where Wf1(x) is the elastic deformation variable in the elastic sys­
tem Vi based on elastic modulus E(t1), and x(t, t1) is the aging co­
efficient (2,5, 7). 

TABLE 1 Delayed Coefficient a (t., to) 

ti-to </>(oo,7) 
days 10 1 

0 0.5 1. 0 
0 1. 5 1. 0 
0 2.5 1. 0 
0 3.5 1. 0 

10 0.5 0.551 
10 1. 5 0.765 
10 2.5 0.791 
10 3.5 0.798 

102 0.5 0.229 
102 1. 5 0.578 
102 2.5 0.641 
102 3.5 0.668 

>- 103 0.5 0.073 
~ 103 1. 5 0.520 
>- 103 2.5 0.608 
> 103 3.5 0.645 
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Comparison of the exact and simplified solutions for the force 
variable (Equations 7 and 10, respectively) shows that r(t, t0 , t1) can 
be considered as an approximation of the integral relaxation 
function ~ (t, t0, t1). The approximation is good enough if t0 = t 1 or 
t0 << t1• Nevertheless, sometimes the error from that approximation 
is significant. The AEMM can be improved by introducing a 
delayed coefficient a(t1> t0) and recasting the solution for the force 
variables in the form 

Y(t, x) = Yc)1(x) [1 - -y(t, to, t,)] + Yj1(x) -y(t, to, t,) (13) 

where 

(14) 

Values of coefficient a(tI> t0) have been obtained and are repre­
sented in Table 1. For interpolation in the table, it is better to assume 
linear dependence on log t0 and log (t1 - t0). For the sake of those 
who may be interested in a long-term solution only, values of 
-y(t, t0, t1) have also been computed fort - t1 = 104 days, and are 
presented in Table 2. 

Comparison of the exact and simplified solutions for the defor­
mation variable (Equations 8 and 11, respectively) shows that a dis­
crepancy arises only in the determination of elastic variables; the 
exact solution requires calculation of them based on modulus E(t0), 

but the approximate solution requires use of modulus E(t1). There­
fore, using the exact solution is not more complicated than the 
approximate one and, as a result, it is preferable. 

NUMERICAL EXAMPLE 

As an example, consider a pair of two simply supported beams, 
which are made continuous over the middle support after they have 

to 
days 

102 103 104 

1. 0 1. 0 1. 0 
1. 0 1. 0 1. 0 
1. 0 1. 0 1. 0 
1. 0 1. 0 1. 0 

0.949 0.989 0.997 
0.954 0.988 0.998 
0.953 0.989 0.998 
0.952 0.988 0.997 

0. 871 0.963 0.990 
0.892 0.962 0.990 
0.893 0.962 0.990 
0.892 0.961 0.989 

0.804 0.924 0.968 
0.856 0.925 0.968 
0.865 0.924 0.968 
0.868 0.923 0.967 
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TABLE2 Long-Term Values of Function 'Y (t, t0, t1)(t - t1 = 104 days) 

t 1-to f(oo,7) 
101 days 

10 0.5 0.282 
10 1. 5 0.550 
10 2.5 0.675 
10 3.5 0.745 

102 0.5 0.155 
102 1. 5 0.320 
102 2.5 0.405 
102 3.5 0.457 

> 103 0.5 0.047 ,.. 103 1. 5 0.102 
> 103 2.5 0.133 ,.. 103 3.5 0.153 

already started carrying their own weight [Figure 1 (a) and (b)]. The 
spans are assumed to start carrying their dead load of 17. 7 N/cm ( 10 
lb/in.) at age t0 = 28 days. At 60 days, the beams are joined mono­
lithically above the middle support. The second moment of area of 
each beam is assumed to be 0.0405 m4 (5 ft4

). Furthermore, £(28) 
= 27.9 MPa (4 Mpsi), and cf> (oo, 7) = 2.5. 

To evaluate the bending moment in the beam above the middle 
support at 100 days, it is necessary to find the following parameters: 

• Bending moments in the corresponding elastic systems. 
• Aging coefficient, x(lOO, 60); and 
• Delay coefficient, a(60, 28). 

Elastic bending moment above the inner support in the system 
without a joint above this support is Mo1 = 0. N - m. 

Elastic bending moment at the same location in the system with 
a joint is M{1 = 113.9 kN-m (84,400 ft-lb). 

According to ACI recommendations ( 7) 

x(20, 10) = 0.774 x(l 10, 100) = 0.804 

x(l 10, 10) = o.842 xc200, 100) = o.935 

From linear interpolation, x(lOO, 60) = 0.874. 
Similarly, from Table 1 

a(20, 10) = 0.764 · 

a(l 10, 10) = 0.641 

a(l 10, 100) = 0.952 

a(200, 100) = 0.888 

and from linear interpolation a(60, 28) = 0.799 
Substitution of these values into Equation 13 gives ')'(100, 28, 60) 

= 0.155. 
Finally, from Equation 14, the magnitude of the bending moment 

in the beam above the middle support at age 100 days is M(l 00) = 
0 (1-0.155) + 113.9 (0.155) = 17.7 kN-m (13080 ft-lb). 

For determination of long-term bending moment at the same 
location, one can use Table 2 

to 
days 

102 

0.190 
0.383 
0.479 
0.536 

0.101 
0.209 
0.266 
0.301 

0.030 
0.066 
0.086 
0.099 

')'(20, 10) = 0.675 

')'( 110, 10) = 0.405 

103 104 

0 .149 0.119 
0.317 0.267 
0.408 0.356 
0.465 0.414 

0.077 0.061 
0.166 0.138 
0.215 0.184 
0.246 0.215 

0.023 0.018 
0.050 0.040 
0.066 0.054 
0.076 0.063 

')'(110, 100) = 0.479 

')'(200, 100) = 0.266 

From interpolation, 'Y = 0.464; as a result, M(l0060) = 52.9 kN-m 
(39160 ft-lb). 

Figure 1 ( c) presents the bending moment distribution at t = 60, 
100, and 10,060 days. Table 3 shows a comparison of these results 
(proposed method) with the corresponding AEMM and exact solu­
tions. One may conclude that the proposed method is as simple to 
implement as the AEMM at the same time it is highly accurate. 
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FIGURE 1 (a) Initial structural system; 
(b) structural system at 60 days; (c) bending 
moment distributions at 60, 100, and 10,060 days. 
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TABLE 3 Comparison of Exact and Simplified Methods 

Bending 
t, 

days Exact solution 

60 0 
100 17.7 

10060 50.9 

STRUCTURES WITH DELAYED RESTRAINTS 
INTRODUCED AT DIFFERENT SUCCESSIVE TIMES 

For structures with delayed restraints introduced at different suc­
cessive times, use of Kharlab's principle of independent restraint 
actions (J) is justified. It states that if the principle of superposition 
is satisfied, then the (i + l)th delayed restraint acts on system v(i) as 
if it were its first and only restraint, (i.e., as if it were not introduced 
onto system V<o• which is subjected to i delayed restraints, but onto 
system V;, for which all restraints were initial, and onto which no 
new restraints would be introduced subsequently. Application of 
this principle to the case of constant loads and discrete structural 
changes leads to the following expression for any force variables 
Y; (x, t) and deformation variables ~ (x, t) in a system V<n with} de­
layed restraints, in terms of the corresponding force and deforma­
tion variables, Y{1(x) and Wt1(x), in the elastic system V; based on 
elastic modulus E (t0) 

j-I 

+ L [Y71(x) [~(t, to, t;) - ~ (t, to, t;+1)] 
i=l 

~ (t,x) = W61 (x) [l + <Wi. to)] 

j-I 

+ L [Wt1(x) [<f>(t;+i. to) - <f>(t;, to)] 
i=l 

+ WJ1[<f>(t, to) - <f>(t1, to)] 

~ (t, to, t1) = rR(t, T) dJ(t, to) 
lj 

where t; is the time when the restraint was introduced: 

(15) 

(16) 

(17) 

In a manner similar to the case involving one delayed restraint, 
the integral relaxation functions ~ (t, t0, ti) may be replaced by func­
tions 'Y (t, t0, t1). Therefore, a simplified solution for the force vari­
ables under multiple delayed restraints may be presented in the form 

Y; (t, x) = Y61(x) [1 - "{(t, t0, t1)] 

j-I 

+ L [Y{1(x) {'Y(t, t0 , t;) - "f (t, t0, t;+ 1)]} 
i=l 

(18) 

For the deformation variables, as in the case with one delayed 
restraint, the exact solution is recommended. 
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moment over inner support 
(kN-m) 

Proposed Method AEMM 

0 0 
17.7 16.1 
52.9 46.3 

CONCLUSIONS 

The study highlights an important consideration for time-dependent 
analysis of structures with a variable structural system. Concrete 
bridges are one example of structures subjected to repeated struc­
tural changes. The specific objective was to develop a simple but 
accurate method for evaluating stress and displacement redistribu­
tion in homogeneous structures.· 

The product of this study is a method obtained by modifying the 
AEMM method. It requires evaluation of one additional coefficient, 
the values of which are tabulated. 

The proposed method was compared with the AEMM. method 
and Kharlab's exact solution. It was found that the proposed method 
is as simple to implement as the AEMM and that it is highly accu­
rate. 
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