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System Optimization of Failure, 
Constitutive Modeling, and Strengths of 
Concrete and Other Geological Materials 
Using Genetic Algorithm 

M. REZA SALAMI, ABDOLLAH HOMAIFAR, AND SHILONG ZHAO 

An application of genetic algorithms (GAs) to the system optimization 
of failure, constitutive modeling, and strengths of concrete and other 
geological materials is presented. GA is a relatively new, general pur­
pose, optimization algorithm that applies the rules of natural genetics to 
explore a given search space. Knowledge of the basic constitutive prop­
erties of concrete and other geological materials is needed to analyze 
service load characteristics, design, and evaluate strengths. GA can be 
used to evaluate parameters of a concrete constitutive modeling, which 
is based on the theory of plasticity. All the parameters are constants for 
an ultimate (failure) yielding condition. GA also can be used to evalu­
ate parameters of tensile and compressive strengths for frictional mate­
rials such as igneous, sedimentary, and metamorphic rocks; ceramics; 
mortar; polymer concrete; porous limestone; river gravel; dense lime­
stone; and cemented soils. Such parameters are constants for failure 
(strengths) conditions. Numerical results indicate that GA is capable of 
optimizing the system parameters quickly and accurately. Resulting 
parameter values agree well with previous studies. 

A constitutive law or model represents a mathematical model that 
describes the behavior of a material. In other words, a constitutive 
law simulates physical behavior that has been perceived mentally. 
The main advantage of establishing a mathematical model is to 
apply it to solve (complex) events quantitatively. Therefore, the 
power of a constitutive model depends on the extent to which the 
physical phenomenon has been understood and simulated. 

In this paper, a constitutive model based on the theory of plastic­
ity, described elsewhere (1-8), is used that can be used to charac­
terize the stress-deformation behavior of concrete and geological 
materials. The model allows for factors such as stress hardening, 
volume changes, stress paths, cohesive and tensile strengths, and 
variation of yield behavior with mean pressure. To establish the 
constitutive model, determination of material constants (parame­
ters) is very important. The only rational way to determine param­
eters to define the constitutive model is to conduct appropriate lab­
oratory and field tests. 

GA is a powerful search procedure based on the mechanics of 
natural selection. It uses operations found in natural genetics to 
guide it through the paths in the search space. It provides a means 
to search poorly understood irregular spaces. Because of its robust­
ness, GA has been applied successfully to a variety of function op­
timizations, self-~daptive control systems, and learning systems. 
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of Electrical Engineering, North Carolina A & T State University, Greens­
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This study uses GAs to solve parameters of a constitutive model 
and strength models. Test data (1-6) was used to check the effec­
tiveness of GA. Finally, parameters obtained by GA are compared 
with various methods in literature (1-6). 

CONSTITUTIVE MODEL 

Theoretical development of the hierarchical model approach and 
application to soil, rock, and concrete behavior is given elsewhere 
(l-6;9-12). Application of the model for geological materials, in­
cluding comprehensive modeling and verifications for various geo­
logical materials, is discussed in words by Salami (1-5). The hier­
archical concept provides a framework for systematic development 
of models with progressively complex responses: isotropic associa­
tive hardening, isotropic nonassociative hardening, anisotropic 
hardening and strain-softening. As a result, the concept can be suf­
ficiently simplified in terms of material constants that are deter­
mined from laboratory tests (1-6). 

A compact and specialized form, F, of the general polynomial 
representation (1-5;9), adopted herein to describe both the contin­
uous yielding and ultimate (failure) yield behavior, is given by 

where 

lw = second invariant of the deviatoric stress tensor; 
sij = total stress tensor, <I;j; 

Fb = basic function; and 
Fs = shape function. 

(1) 

The function F is a continuous function in the stress space, and 
the final curve represents the ultimate behavior. In expanded form, 
Equation 1 is written as 

(2) 

where 

11 = cr1 + cr2 + cr3, the first invariant of cru; 
S, = stress ratio = (130)

113/(lw)'n, which can also be 
the Lode angle; 

130 = third invariant of Su 
ex, n, -y, and~ = response functions; 
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a0 = 1 stress unit; and 
m = - 1/2 response function. 

As a simplification, 'Y and mare assumed to be constants, whereas 
13 is expressed as a function of mean pressure, 11, to account for the 
observed yield behavior of geological materials (J-5; 10-12). 

(3) 

Here, 130 and 13 1 are constants. The constitutive model is developed 
to represent a wide range of materials. Based on Equation 2, the 
developed model is proposed to describe both failure and yielding 
of the concrete and geological materials. The model agrees with the 
experimental evidence regarding the shapes of yield surfaces on 
various planes. Moreover, ultimate failure and yielding are defined 
by a single yield surface. 

TENSILE STRENGTH EXPRESSION,/, 

The proposed analytical expression ofuniaxial strengthf,, as a func­
tion of cylindrical compressive strength for frictional materials, 
which is based on the experimental results found elsewhere 
(13;1-6;14-16), is given as 

(compression positive) (4) 

where m and n are dimensionless numbers, and Pa is atmospheric 
pressure in the same units as those off, and Jc'. Values of m and n 
have been determined by using GA for several frictional materials 
and are listed in Table 1. 

TENSILE STRENGTH,/sp 

On the basis of experimental results (1-6;14) and also Equation 4, 
the split tensile strength of concrete is given as 

{Jc'} T] Jsp = - 't...Pa Pa (compression positive) 

TABLE 1 Values of Parameters m and n Obtained by GA for 
Various Types of Concrete and Frictional Materials for Equations 
(4-6) 

MATERIALS m n 

Mortar, *ft 0.77 0.65 

Cemented Soils, ft 0.39 0.84 

Ceramics, ft 0.70 0.77 

Igneous Rock, ft 0.52 0.72 

Metamorphic Rock, ft 0.21 0.83 

Sedimentary Rock, ft 0.19 0.79 

Plain Concrete, ft 0.61 0.73 

Plain Concrete, * *fsp /..=0.69 T] =0.65 

Plain Concrete, ***fr a= 0.91 p = 0.62 

Porous Limestone, fsp '}.. = 2.13 T] = 0.43 

Porous Limestone, fr a= 1.96 p = 0.54 

River Gravel, fsp /..=2.28 T] = 0.42 

River Gravel, fr a= 2.32 p = 0.53 

Dense Limestone, fsp /..= 0.21 T] = 0.83 

Dense Limestone, fr a=0.54 p = 0.76 

•ft= Direct Tensile Strengh +•fsp =Split Tensile Strengh 
+++fr= Beam Flexural Tensile Strength 

(5) 

33 

where '!... and 11 are dimensionless numbers, and Pa is atmospheric 
pressure in the same units as those of .fsP and J:. Values of'!... and 11 
have been determined by using GA for several frictional materials 
and are listed in Table 1. 

FLEXURAL TENSILE STRENGTH,fr 

On the basis of experimental results (1-6;14) and also Equation 4, 
the flexural tensile strength is given as 

(compression positive) (6) 

where a and 13 are dimensionless numbers, and Pa is atmospheric 
pressure in the same units as those of fr and J:. Values of a and 13 
have been determined by using GA for several frictional materials 
and are listed in Table 1. 

Polymer concrete materials identified in Figure 1 are used to find 
parameters of Equation 4 for different temperatures. The values of 
parameters obtained by GA are presented in Table 2. 

GA 

GA is a general purpose, optimization algorithm with a probabilis­
tic component. It provides a means to search poorly understood, 
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FIGURE 1 Comparison of experimental and predicted results 
for polymer concrete at different temperatures. 

TABLE 2 Values of Parameters m and n Obtained by GA for 
Polymer Concrete Materials for Equation 4. 

TEMPERATURE (OF) m n 

T=O 1.29 0.69 

T=32 1.35 0.69 

T=72 2.05 0.63 

T= 100 1.93 0.64 

T= 130 1.69 0.68 

T= 160 0.35 0.64 
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irregular spaces. GA has been applied successfully to a variety of 
function optimization, parameter searches, and machine learning 
applications. Holland (17) originally developed GA and provided 
its theoretical foundations. GA was developed to simulate some of 
the processes observed in natural evolution, a process that operates 
on chromosomes (organic devices for encoding the structure of 
living beings) instead of on living beings. Natural selection links 
chromosomes with the performance of their decoded structures. The 
processes of natural selection cause those chromosomes that encode 
successful structures to reproduce more often than those that do not. 
Recombination processes create different chromosomes in children 
by combining material from the chromosomes of the two parents. 
Mutation may cause the chromosomes of children to be different 
from those of their parents. 

GA appropriately incorporates these features of natural evolution 
into computer algorithms to solve difficult problems in the way that 
nature has done, through evolution. GA requires the problem to be 
maximized (or minimized) in the form of an objective (cost) func­
tion. In GA, a set of variables for a given problem is encoded into 
a binary string, or any other coding structure, analogous to a chro­
mosome in nature. These strings are converted to a numerical value 
and then linearly mapped over the range allowed for the variable. 
The value is then used to evaluate the objective function, yielding 
a "fitness." GA selects parents from a pool of strings (population) 
according to the basic criterion of survival of the fittest. It repro­
duces new strings by recombining parts from the selected parents in 
a random manner. 

Repopulation of the next generation is done using three methods: 
reproduction, crossover, and mutation. Reproduction means simply 
that strings that are highly fit should receive multiple copies in the 
next generation, whereas strings with low fitnesses receive fewer if 
any copies. Crossover refers to splitting a string into two parts at a 
randomly generated crossover point and recombining it with an­
other string that has been split at the same crossover point. The pro­
cedure serves to promote changes in the best strings, those that will 
produce higher fitnesses. Mutation is the random alteration of a bit 
in the string, which will assist to preserve diversity in the popula­
tion of strings. 

To explain the mechanisms of GA, a few terms need to be de­
fined. Because binary strings are considered, a notation must be 
developed to denote similar subsets (schemata). A schema is a sim­
ilarity subset that has strings containing similarities at some bit 
positions. Furthermore, the format can be expanded with the intro­
duction of a wild card character, *, in addition to the binary set 
{ 0, 1}. For example, the set { 0001,0101,0011} can be described by 
the similarity template O** 1. By using this notation, a schema's 
order and defining length can be specified. For a given schema, 
h, its order o(h) is defined as the number offixed bit positions within 
that schema. The defining length of a schema, o(h), is the distance 
between the outermost fixed positions of a schema. For example, 
the schema 01 ****O has order 3, defining length 5, and can repre­
sent 16 different individuals. 

With these defini~ions, one can present the fundamental theorem 
of GA, the schema theorem (18). The schema theorem enables the 
calculation of lower bound on the expected number of a particular 
schema, h, following reproduction, crossover, and mutation. The 
theorem is stated as · 

A(h, t+ 1);;::: A.(h; t/~) [1 - Pc 1°~h)l - Pmo(h)] (7) 

where 
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A.= expected number of schemata, 
t = generation index, 
l = overall string length, 

f(h) = average fitness of those strings representing the 
subset h, 

x = average fitness of the entire population, and 
Pc and Pm = the crossover and mutation probabilities, respec­

tively. 

The schema theorem states that a schema will grow when it is short, 
has low order, and has above average fitness. 

GA has many advantages over other methods. Currently most lit­
erature defines three main types of search methods: calculus-based, 
enumerative, and random (19). Calculus-based methods can be 
divided into two classes: indirect and direct. For indirect methods, 
local extrema are determined by finding where the gradient of the 
objective function is equal to zero. Direct methods follow along 
the objective function in a direction related to the local gradient. 
Both classes share two main disadvantages that greatly limit their 
usefulness. First, both are local in scope; that is, if a function has 
multiple local maxima, the method may drive toward one of these 
values without ever approaching the global maxima. The second de­
ficiency of calculus-based methods is their dependence on the exis­
tence of derivatives. However, many real-world functions are dis­
continuous and noisy and do not work well with a method that 
prefers smooth, continuous functions. 

Enumerative methods offer an attractive advantage, simplicity, 
but that advantage carries a high cost. Enumerative schemes take 
a discretized search space and examine the objective function at 
every point. Although simple in technique, the brute force method 
is quite inefficient, and its execution time becomes too long as the 
search space becomes larger. 
, The last method is the random search method. In many respects, 
this method might perform as poorly as an enumerative method be­
cause of its inefficiency. Randomly searching through a space and 
saving the best results can be time-consuming as the space becomes 
large. 

The primary advantage of GA is its robustness. GA works 
through function evaluation, not through differentiation or other 
such means. Whereas GA begins with a randomly generated set of 
points, it exploits the information contained in those points to drive 
it through the search space. Because GA is based on function eval­
uation, it can be applied to all type of optimization problems: lin­
ear, nonlinear, discontinuous, and disc~ete, as long as the problem 
is properly coded. 

Because of its robustness, GA has been used in optimization 
problems as diverse as image analysis by Grefenstette and Fitz­
patrick (20), gaming strategy by Axelrod (21), and the traveling 
salesman problem by Homaifar (22). Another practical engineering 
example of GA's application is Goldberg's study (23) of a system 
of 10 pipes and 10 pumping stations. Also, expert systems can be 
improved on by using GA, as shown by Davis and Coombs (24). 

PROBLEM DESCRIPTION AND METHODOLOGY 

The constitutive model and strength models that were used have 
some material con~tants. Determination of such constants for any 
IT1aterial requires a comprehensive series of laboratory tests with a 
number of loading, unloading, and reloading cycles. In this paper, 
GA is used to determine material parameters: n, -y, 130, and ~ 1 and at 
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the ultimate yielding conditions of constitutive model, and m, n for 
strength models. The-materials that were tested elsewhere (1-8) are 
used in this research. 

The basis for software used in this work is the Simple Genetic 
Algorithm program developed by Goldberg (J 9). The program is 
rewritten in C language to allow the evaluation of multiple parame­
ters. Multiple parameters are incorporated by dividing each string 
up into substrings that represent different variables. For example, 
a string of length 18 could be used to represent three substrings 
of length 6, each of which could represent a different parameter. 
Obviously, using multiple parameters requires increasingly longer 
string lengths, if each variable has an acceptable precision. 

The main purpose of this computational experiment is to exam­
ine the ability of GA to perform a multiparameter objective func­
tion optimization on a real-world problem. 

The strings for the GA implementation were formed by concate­
nating the encoded value of each parameter. The string lengths were 
chosen as follows:(a) a step size of 0.001 was chosen for all param­
eters of model, and (b) the string lengths were chosen to provide ap­
propriate ranges for all parameters. The constraint for choosing the 
string lengths is given by 

2, _ 1 = range 
stepsize 

(8) 

where l is string length. The resulting string lengths of parameters 
for failure, constitutive modeling, and tensile strengths are 8, except 
n which is 10. 

A measure of performance is· derived to effectively and accu­
rately compare the performance of the GA. The error, measured 
over the entire simulation period, is described as 

E = Y!,; (y; - x;)2 (9) 

where y is actual data, and x is GA data. 
Derivation of the fitness function for the GA is one of the diffi­

cult and crucial portions of this study. The fitness function should 
be formulated to discriminate among different strings. Initial 
experiments were conducted using a simple mean square error 
measure 

Fitness = -
1
-

Error 
(10) 

However, the results provided only a mean square fit, so the fitness 
function was changed to 

F
. number of matched points 1tness = -------~--

E 
(11) 

where a matched point is a GA point within a specified tolerance. 
Roulette wheel selection and single point crossover are used 

throughout the experiments. The variables that had to be defined for 
GA are population size, crossover probability, mutation probabil­
ity, and maximum number of generations. Their respective values 
are 1,000, 0.60, 0.01, and 50. Figure 2 shows the flowchart for the 
implementation. Note that the stopping criterion is usually given in 
terms of a threshold in improvement or total number of generations. 
Population sizing is an important requirement in GA. Populations 
must b_e large enough to provide adequate diversity. However, the 
larger the population, the greater the number of calculations. 
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Selection 

Crossover 

Mutation 

Other Operation 

Until Gen.>. Max. Gen.t-----~ 

FIGURE 2 The main structure of GA implementation. 

ANALYSIS 

In this study, parameters for frictional materials, including plain 
concrete and soapstone, are determined by using GA. Three differ­
ent cases are considered: 

• Case 1: Cemented Soils, Ceramics and Mortar; Igneous, Meta­
morphic and Sedimentary Rocks are used to analyze the relation­
ships between uniaxial cylindrical compressive strength Jc' and 
uniaxial tensile strength.fr, as given in Equations 4-6. The parame­
ter values obtained by GA for these materials are shown in Table 1. 
Graph of typical results is shown in Figure 1 for polymer concrete 
materials under different temperatures, and demonstrate that param­
eter values obtained by the GA are compared very well with the ex:... 
perimental data. 

• Case 2: The growth (hardening or softening) function a equals 
zero in Equation 2 of the ultimate condition for concrete materials. 
Then Equation 2 becomes 

(12) 

where 13 = 130e - 8 1h 
The ultimate constants, n, -y, 130, and 13i. are obtained by GA when 

the solutions are reached after 100 generations. Original data ob­
tained by Salami are presented in Table 3 and Table 4, for plain con­
crete and soapstone, respectively. The GA solutions, along with 
Salami's solutions, are reported in Table 5. Parameter values ob­
tained by the GA are compared with those obtained by Salami's 
method (6); the precision is 0.068. 

• Case 3: The observed ultimate (failure) and preyielding sur­
face for four different values of a is shown in Figure 3. Figures 3(a) 
and 3(b) express the triaxial compression and simple shear 
stress path, respectively, where all are assumed to be in an octahe­
dral plane (J-6). The GA solutions for triaxial compression and 
simple shear parameters based on different values of a are given in 
Tables 6 and 7, respectively. Graphs of typical results are provided 
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TABLE 3 Ultimate Data for Plain Concrete (6) 

Load Path Spec. 

Compression 
(CTC) 

Triax1al 

Compression 

SS* Kl 
Tri axial N2 

Extension NI 
(TE) N3 

RTE** Rl 

1.0 psi = 6.89 KPa 
* SS = Simple Shear and ** RTE= Reduced Triaxial Extension 
Compression is Positive. 

TABLE 4 Ultimate Data for Soapstone (6) 

Load Path Spec. 

Conventional T4 
Triaxial T2 

Compression TI 
(CTC) T3 

Triaxial S3 
Compression SJ 

(TC) s2 
Simple P3 
Shear P2 
(SS) P1 

Tri axial M3 
Extension M2 

(TE) Ml 

1.0 psi = 6.89 KPa 
Compression is Positive. 

0"1 0"2 0"3 
(ksi) (ksi) (ksi) 

1.3533 0.1533 0.1533 
5.7l4j 1.1533 1.1533 
7.9873 2.l::>..1..1 2.1533 
10.sns 3.1533 3.1533 
4.4873 0.,110.J U.9!163 
6.3353 1.5623 1.5623 
7.:J47j :l.•DO.J :l.4563 
3.5623 2.1533 U.7453 
4.9293 3.1533 1.3773 
6.7013 4.1533 1.6063 
2.8963 2.!!~0j 0.lJ(J!!j 
4.1083 4.1083 l.L.4'U 

5.4613 5.4613 1.5373 

J1 
(ksi) 

J1 
(ksi) 

1.6599 
8.0209 
12.294 
16.885 
6.4599 
9.4599 
12.460 
6.4609 
9.4599 
12.461 
6.4609 
9.4609 
12.460 

~ 
(ksi) 

~ 
(ksi) 

0.6~L.!1 
2.6333 
3 . ..10!!..1 
4.2868 
2.0213 
2.7557 
2.9393 
1.4085 
1.7700 
2.5475 
1.2863 
1.().)j.) 
2.2655 

TABLE 5 Comparison of Material Parameters for Plain Concrete 
and Soapstone by Using Two Different Methods for Various Stress 
Paths (6) 

Po 1 
Plain 0.113 0.844 0.027 

Concrete 0.110 1.830 0.030 
Soap- 0.047 0.749 0.047 
Stone 0.050 1.460 0.060 

in Figures 3 through 6, demonstrating that GA parameters provide 
a well-shaped curve that closely matches the given curves. 

CONCLUSIONS 

GA has been applied to find material parameters for a complex fail­
ure and constitutive model for concrete material. It also has been 
applied to find strength material parameters for frictional materials 
such as concrete, polymer concrete, rocks, and ceramics. Although 
under most circumstances a multiparameter, multiobjective func­
tion optimization problem would be considered a difficult task, GA 
could handle it successfully. Although the model used here to rep­
resent a constitutive model is a relatively simple one, the procedure 
described would be the same for complex models. Results of 
assorted runs agreed with experimental and single parameter opti­
mization results. Of course, realistic failure and constitutive models 
would include many more parameters, but for GA that would only 
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FIGURE 3 Observed ultimate (failure) and preyielding 
surface in 'VJ;; - ] 1 plane for (a) triaxial compression test 
and (b) simple shear test. (1.0 psi = 6.89 kPa). · 

TABLE 6 Material Parameters for Plain Concrete for Triaxial 
Compression Tests by GA Method 

TC ex n 'Y Po P1 
Plain 4.43e-10 7.04 0.13 0.56 0.03 

Concrete l.lOe-09 7.09 0.15 0.56 O.Q7 
(Figure 3) 4.65e-09 7.09 0.15 0.56 0.05 

3.53e-08 7.12 0.16 0.56 0.10 

TABLE 7 Material Parameters for Plain Concrete for Simple Shear 
Tests by Using GA Method 

SS ex n 'Y Po P1 
Plain 4.43e-10 7.00 0.11 0.39 0.17 

Concrete l.lOe-09 7.02 0.12 0.42 0.04 
(Figure 3) 4.65e-09 7.00 0.11 0.41 0.03 

3.53e-08 7.00 0.11 0.12 0.66 

involve increasing the string length to incorporate the additional 
parameters. The ability of GA to handle a problem of that nature 
could make it a very important tool in the future of constitutive 
modeling for geological and engineering materials. 

The correlation between the experimental results and analytical 
predictions was very good and provides a simple approach for 
developing tensile strength models, failure, and constitutive models 
for frictional materials. 
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FIGURE 6 Comparison of predicted and 
experimental results in ultimate and preu!timate 
envelopes in Vfu - J1 planes for (a) triaxial 
compression and (b) simple shear tests for various a 
for plain concrete. (1.0 psi = 6.89 kPa). 
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