
TRANSPORTATION RESEARCH RECORD 1466 31 

Application Frameworks, Information 
Systems, and lntermodal Surface 
Transportation Efficiency Act 

DANIELS. HALBACH 

Numerous problems traditionally exist in translating engineering mod
els into usable software systems. The high-level logic of the model is 
often compromised or confused by the low-level programming logic. 
The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) 
has established the need for six information management systems, the 
requirements for which may serve to magnify these problems. An ap
proach to solving these problems involving application frameworks is 
presented. This approach promises to empower engineers and decision 
makers by relieving the constraints imposed by traditional software de
velopment practices. Application frameworks appropriately place the 
emphasis of software system development on engineering modeling 
rather than on details of programming. A 6-year U.S. Department of De
fense logistics management program that provides evidence of the via
bility of application frameworks is described. General recommenda
tions for ISTEA information systems are provided. 

Translating engineering analysis and decision models into informa
tion systems and decision support software has traditionally been 
subject to several common problems: 

• The information in the models is often lost or obscured in th~ 
resulting code; 

• The structure and complexity of the models are sometimes 
compromised to facilitate simpler code structure and programming 
logic; 

• Low-level control logic and language-specific overhead are in
termixed with the higher-level logic of the original model, making 
it difficult to locate the model in the code; and 

• The resulting code is often difficult to understand, maintain, 
reuse, and tailor. 

Although these problems are perhaps tolerable when the system 
is developed and used by the same engineers or decision makers in 
a limited setting, problems such as these are magnified when the 
system has requirements and expectations that exist for the man
agement systems defined by the Intermodal Surface Transportation 
Efficiency Act of 1991 (ISTEA) (1). Specifically, ISTEA estab
lishes six management systems: pavements, bridges, congestion, 
highway safety, public facilities, and intermodal facilities. The re
quirements and expectations for these six systems include 

• A set of "procedures, within the State's organizations, for co
ordination of development, establishment, and implementation of 
the management systems"; 

Pareto Associates, Inc., 1290 Bay Dale Drive, Suite 141, Arnold, Md. 
21012. 

• The ability to tailor the systems to "meet State, regional, and 
local goals, policies, and resources, [while remaining] acceptable to 
the Federal agencies"; 

• The "use of data bases with a common or coordinated refer
ence system and methods for data sharing"; 

• The need for "documentation that describes each management 
system ... for the Federal agencies to determine if the systems ful
fill the [intended] purpose"; 

• "Outputs (e.g., policies, programs, and projects) [that can be] 
integrated into the metropolitan planning process"; and 

• A method to handle "interrelationships among systems to ad
dress outputs and issues related to the purposes of more than one 
management system." 

Although the nature of many of these factors is organizational as 
well as technical, the six ISTEA systems are intended to help agen
cies at all levels deal with each of these factors. To do this the man
agement systems must 

• Ease, not increase, the burden of analyzing and sharing data; 
• Provide a clear mapping to the decision models on which their 

designs are based; 
• Be expressed in a manner that is independent of any particular 

hardware, operating system, data base, or graphical user interface 
(GUI) platform; and 

• Provide clear, direct support for system evolution as state and 
federal policies evolve. 

In short ISTEA management systems must enable engineers and 
decision makers in all agencies at all levels to do their jobs effec
tively and efficiently. Moreover the cost of developing, implement
ing, maintaining, and using these systems must not outweigh the 
benefits to be gained from them. 

Note that although various sources define the following terms dif
ferently, for the purposes of this paper the terms information sys
tem, management system, and decision support system will be used 
interchangeably. 

SOLUTION APPROACH 

Application frameworks (2) offer an innovative yet reasonable ap
proach to solving the problems addressed above. Although the con
cept of application frameworks has only recently emerged as a soft
ware engineering discipline, application frameworks have been in 
existence for some time. In fact GUis such as those defined by MS
Windows and Apple Macintosh and Relational Data Base Manage-



32 

ment Systems (RDBMSs) are examples of application frameworks 
that have been well received and proven in their respective domains. 
They are now showing to be equally applicable to other domains, 
including the scheduling, planning, and decision support required 
by ISTEA management systems. 

Although the GUI and RDBMS examples stated in the preceding 
paragraph are known by the specific programming languages and 
"tool kit" libraries that support them, an application framework is 
fundamentally more than just a language or library bf routines. An 
application framework is a specific, tangible architecture designed 
to support a particular problem domain. Because they are intended 
to support entire domains, application frameworks are designed 
with the goals of tailorability and direct mapping to underlying en
gineering models. The discipline of application frameworks has 
evolved in part because of advances in object-oriented program
ming (OOP), but its concepts and approach can be understood in
dependently of OOP. However, readers are encouraged to learn 
more about object-oriented software development from the refer
ences provided (3-5). 

Perhaps the best method for describing the concept of application 
frameworks is via the analogy of a computer circuit board. The 
board itself provides a tangible, specific architecture designed to 
allow the computer chips that plug into it to interact in a controlled, 
predictable manner and to serve a useful purpose. Any particular 
socket on the circuit board can be occupied by chips from different 
vendors and with differing characteristics, provided that 

• The chip's pins will fit into the socket, 
• The chip can receive the full set of inputs sent by the circuit 

board, and 
• The chip will respond with outputs comprehensible by the rest 

of the circuit. 

An application framework is like a circuit board in that it provides 
the fixed, but generic, architecture for solving a given class of prob
lems. The framework's design provides "sockets" into which spe
cialized software components may be inserted. These specialized 
components provide the mechanism through which an application 
framework can be easily tailored while still conforming to the gen
eral architecture. The application framework defines the general so
lution approach to the associated domain of problems, whereas the 
specialized components tailor the framework to a specific purpose 
or platform. The specialized components provide an added benefit 
of encapsulating the low-level details of their implementation. 
Thus, the framework's representation of the domain model remains 
clear and separate from these implementation details, adding to the 
comprehensibility and maintainability of the code. 

As stated, constructs provided by OOP (and object-oriented 
languages, such as C+ +) directly support the definition and spe
cialization of tailorable components that can be plugged into an 
application framework. However, approaches exist for creating 
application frameworks that are independent of object-oriented pro
gramming languages (6,7). Applicationframeworks can be tailored 
for a particular platform (i.e., hardware, operating system, GUI, or 
data base) simply by creating or refining components to meet the re
quirements and protocols of the target platform. Likewise, the spe
cific focus and details of the underlying engineering model can be 
tailored through the same process of defining specialized software 
components and inserting them into the general framework. The 
pavement management system (PMS) example in the next section 
will further illustrate the nature and benefits of application frame-

TRANSPORTATION RESEARCH RECORD 1466 

works. The following are keys to a successful application frame
work: 

• It is based on sound engineering analysis and a well-defined 
domain model; 

• It should clearly define and portray the overall goals of the 
management system and the decision makers who will use it; 

• It should clearly define which parts of its structure are tai
lorable and which are immutable (i.e., which parts of the frame
work's code are analogous to the replaceable chips and which cor
respond to the fixed circuit board); and 

• It should be developed at an appropriate level of abstraction. 

This last point requires further explanation. The level of abstrac
tion of a framework is basically its degree of generality. A highly ab
stract framework can be applied to a broad range of applications but 
provides less direct support to any specific application. Conversely 
a less abstract framework provides more direct support to a specific 
subset of applications, and is thus easier to implement and tailor for 
that subset. However, that subset covers a narrow range of applica
tions in comparison with a more abstract framework. The proper 
level of abstraction is important for two reasons. First, an attempt to 
instantiate an excessively abstract framework often results in fre
quent hacking (i.e., opportunistic coding in the absence of design) 
because of the lack of support from the framework. Second, an at
tempt to instantiate a framework with an inappropriately low level 
of abstraction also invites hacking to subvert or circumvent the parts 
of the framework that do not apply to the application. To address 
this abstraction issue, application frameworks are designed as a 
hierarchy of abstractions in which each level in the hierarchy con
tains frameworks that are specializations of those at the next higher 
level. For example, an !STEA-applicable framework might be a spe
cialization of a constraint-based scheduling framework, which in 
tum is a specialization of a generic constraint-based framework. 

The concept of application framework tailorability desires spe
cial note. The traditional notion of tailoring involves the end user's 
ability to define specific values of parameters used in a system's al
gorithm. For example, the tailoring of existing PMSs is typically a 
matter of setting break points in a decision tree. Although this type 
of tailoring is no doubt important, application frameworks offer an 
additional and more powerful means of tailoring a system via the 
specialization of components. As shown in the following PMS ex
ample, these components can be much more than simple break 
points. Components can be pavement or bridge classifications, traf
fic categories, environmental characterizations, and decision algo
rithms, among others. Each component can define its own special
ized features and behavior within the general constructs of the 
component type. Each pavement type, for instance, can define its 
own performance curve that will automatically be invoked by the 
framework at the appropriate time. Thus, new pavement types (with 
their own performance curves) can be added to an existing pave
ment management framework without the need to restructure or re
design the rest of the framework. This is true only if the original 
framework has been appropriately designed to isolate pavement 
type as a tailorable component (i.e., the framework's circuit board 
provides a socket for pavement type, instead of hardwiring it). 

PAVEMENT MANAGEMENT EXAMPLE 

Although application frameworks are more than merely a simple 
flow chart, the algorithm embodied in a flow chart can be an im-



Halbach 

portant distinguishing feature of a framework. Thus, the pavement 
management example of application frameworks provided in this 
section begins with the following algorithm: 

1. For each time period (e.g., year or season) of the analysis or pro
jection period: 
2. For each pavement section in the inventory: 

3. Determine any changes to traffic or environment (i.e., soil, 
climate, etc.). 

4. Determine pavement performance during that period (i.e., 
change in condition). 

5. Recommend treatment based on condition, structure, func
tional class, traffic, and so on. 

6. Prioritize the recommendations based on condition, structure, 
functional class, and so on. 

7. Apply treatments as the budget allows. 
8. Summarize and report. 

From this algorithm the need for the following classes of compo
nents can be inferred: 

• A time line: an overall analysis period divided into discrete 
steps (Step 1); 

• An inventory of items (e.g., pavements) to be maintained (Step 
2); 

• Factors (e.g., traffic) that affect the condition of inventory item 
over time (Step 3); 

• Performance prediction functions or algorithms (Step 4); 
• Treatments for maintaining and rehabilitating inventory items 

(Step 5); 
• Mechanisms for recommending treatments for inventory items 

(Step 5); 
• Mechanisms for prioritizing the importance of recommenda

tions across the entire inventory (Step 6); 
• A means of expressing the costs of treatments, presumably in 

dollars (Step 7); 
• Budget constraints that limit the number and types of treat

ments applied in a given period (Step 7); 
• Relationships between treatments, their applicability to each 

type of inventory item, and the improvement they make to condi
tion (Step 7); and 

• A format for defining and expressing the degree to which the 
projected treatments achieve the desired goal of the system (Step 8). 

_Each of the component classes should have a well-defined protocol 
(i.e., set of functions to perform or responsibilities to carry out). 
These protocols provide the structure within which a framework can 
be tailored. As with plugging chips into a circuit board, any com
ponent that conforms to the protocol of its generic class (i.e., the 
socket) can be inserted into the framework. Thus, the protocol de
fines 

• The syntax (name, type, and parameters) of the attributes and 
functions that apply to the component (i.e., how the chip fits into the 
socket); 

• The context and purpose of each of those attributes and func
tions (i.e., the inputs the chip is expected to receive from the circuit 
board); and 

• The format, content, and range of the attributes and function 
return values (i.e., chip outputs that will be comprehensible by the 
rest of the circuit) 

33 

It should be noted that the original algorithm given in this exam
ple should also be a tailorable part of the overall framework. This is 
important for two reasons. First, the algorithm addresses the over
all goal of the management system, which should also be tailorable. 
For example, the original goal-achieving the best network condi
tion given the budget constraints-could be inverted into determin
ing the budget required to achieve a desired average network con
dition. Second, alternative algorithms could be used to address the 
same goal. For example, in the algorithm given earlier, Steps 1 and 
2 could be reversed, making the primary loop address sections in
stead of years. Thus, instead of making recommendations across the 
entire network on an annual basis, the algorithm would, at each step, 
define an entire life cycle of an individual pavement section (in 
order of section priority and based on remaining budget). Note that 
even when the algorithm is changed the definition of the other com
ponents (and their protocols) remains the same. 

RELATED WORK 

Evidence of the validity of the claims made in this paper for the ben
efits of application frameworks technology has been provided by a 
6-year program to provide management systems to the U.S. De
partment of Defense (DOD) logistics management community (8). 
In the description of this DOD program that follows, the reader will 
note a remarkable similarity between this domain and the trans
portation management domain addressed by !STEA. 

The DOD logistics management community encompasses a 
broad range of subdomains, including funds management, contracts 
management, personnel planning, inventory and supply tracking, 
maintenance and modification scheduling, and reliability analysis. 
Users of these subsystems (i.e., the logistics planners) can be char
acterized as follows: 

• Approximately 1,000 users are spread across 20 sites that 
operate semi-independently. 

• Each site must adhere to common policies established by a 
central command. 

• Information systems are tailorable for each site within these 
general constraints. 

• The systems are used to manage scarce or shared resources (es
pecially time and funding). 

• Data must be shared between the multiple applications as well 
as between sites. 

• Each site must provide standardized reporting to the central
ized command. 

• Coordinated decision making is required for resources man
aged jointly by multiple sites or multiple applications. 

• System requirements are constantly evolving to support a 
changing environment. 

The technical characteristics of the management systems them
selves include the following: 

• "Legacy" systems must be supported and integrated into the 
overall system environment. 

• All systems must have a GUI to facilitate ease of training and 
use. 

• Data bases may reside across multiple, distributed data base 
servers. 

• Both DOS-based and UNIX-based workstations are supported. 



34 

Despite these seemingly overwhelming challenges, the applica
tion framework approach described herein has consistently pro
vided low-risk, cost-effective solutions for the DOD logistics man
agement community. On average systems originally budgeted to 
take 1 year or more to develop are now being delivered in 3 months 
at a significantly reduced cost (9). The generalized logistics appli
cations have been ported and tailored for the various sites with only 
a fraction of the time and funding typically spent on similarly sized 
DOD software projects. Specific examples of the efficiencies that 
applications frameworks have provided for DOD logistics manage
ment include the following: 

• An automated scheduling system that plans all future modifi
cations to the Air Force fleet of C-130 cargo aircraft was delivered 
in 5 months, including a graphical editor running in X Window on 
a UNIX workstation. 

• An Army inventory and supply management system that also 
automates all associated DOD forms was developed and delivered 
in 3 months. 

• A funds management system that plans and tracks sources, 
commitments, and expenditures of six categories of Air Force main
tenance, labor, and materials funding was produced and delivered 
in 5 months. 

• An Army aircraft reliability analysis system that analyzes per
formance and failure data to predict future maintenance and support 
requirements was produced in 3 months. 

The requirements for each of these systems to have distributed 
data bases, multiple site coordination, and graphical reporting re
sulted in original development schedules that were as much as five 
times as long as what was actually achieved via the help of frame
works. The successful implementation of application frameworks in 
the DOD logistics management domain is evidence of their applica
bility to transportation information management system develop
ment because of the nearly one-to-one mapping between the aspects 
of the two domains. In fact the only significant conceptual differ
ence between the domains is that one deals with aircraft, military 
bases, on so forth, whereas the other one deals with pavement sec
tions, bridges, and so forth. 

GENERAL RECOMMENDATIONS FOR 
ISTEA INFORMATION SYSTEMS 

Perhaps the most promising characteristic of application frame
works is that they provide a clear representation of the underlying 
engineering model free from the extraneous implementation details 
that are encapsulated within the components. This takes the em
phasis of system development off programming and puts it back on 
engineering and decision modeling where it belongs. As a result ap
plication frameworks can actually clarify models rather than ob
scure them. Experiences gained in the creation of inforrriation sys
tems for logistics management, enhanced by this clarifying nature 
of application frameworks, are the basis for the recommendations 
provided in this section. 

Decision support is more than just data base management with 
the ability to provide summary reports. Decision support systems 
must also predict future conditions to aid planning and scheduling. 
For this planning portion of the management system, the system 
inputs comprise six general categories: 

• Resources and supplies. These represent expendable com
modities that are used as part of maintenance and rehabilitation ac-

TRANSPORTATION RESEARCH RECORD 1466 

tivities. They are typically associated with a simple unit price for the 
purposes of budgeting. Examples include labor and materials. Units 
of time required to perform activities may also be treated as a 
resource, depending on the nature of the decision model. 

• Fixed assets. These are· relatively permanent entities, such as 
maintenance equipment or facilities, that represent long-term, cap
ital investments. Although depreciation of these assets may be con
sidered, routine maintenance costs for these assets are usually not a 
direct concern of the decision models. 

• Inventories. These are collections of entities, such as bridges or 
pavement sections, that share properties of both fixed assets and ex
pendable resources. Like assets, they have some fixed properties, 
such as the geometry and initial capital costs of pavement sections, 
while also having resourcelike expendable attributes, such as deteri
orating serviceability. Thus, unlike fixed assets the maintenance cost 
of the inventory is precisely the concern of the management system. 

• Environmental factors. These factors define external inputs 
that are not under the direct control of decision makers, including 
political, economic, climate, and traffic considerations. 

• Goal definitions. Multiple goals may be addressed during the 
planning process. Examples include determining the budget re
quired to bring the inventory to a desired level of serviceability and 
determining the highest achievable level of condition across the 
inventory within a given budget constraint. 

• Decision models. These are the procedures or algorithms that 
transform inputs into outputs. 

These decision models can take on several forms, but in general 
they share the following common features: 

• A cyclic, iterative simulation engine to support such things as 
state-transition models, life-cycle models, or Markov chains; 

• Optimization criteria (e.g., objective functions, heuristics, or 
decision trees) that prioritize activities and determine which of two 
candidate solutions or alternatives is preferable; and 

• A set of constraints or boundary conditions that define feasible 
solutions, including budgetary constraints, sequencing and prece
dence of activities, and the appropriate pairing of treatments to 
inventory item structures and conditions. 

The planning and scheduling process provides the following 
three general categories of outputs: 

• Activity schedule. This is the calendar of activities or treat
ments to be performed when, by whom, and at what expected cost. 

• Constraint summary. This. is a listing of each occurrence of a 
constraint that either imposes an active limit on the schedule or has 
been violated in the case in which two or more constraints are in 
conflict. 

• Condition summary. This provides a summary of expected in
ventory condition by category (e.g., functional class, region, and 
structure and year. 

These general categories of inputs, outputs, and decision models 
can and should be represented in an application framework as tai
lorable components to provide the consistent, maintainable, com
prehensible, and tailorable systems necessary for cost-effective de
cision support. Experience has shown that the issues that affect the 
viability of application frameworks for management systems fall 
into three categories: suitability, certainty, and quality. Each of 
these is individually addressed below. 



Halbach 

Suitability 

Suitability refers to issues concerning both the models and their in
puts that involve the notion of granularity and interdependence. 
Granularity, also referred to as scale or resolution, is primarily con
cerned with the required frequency, accuracy, precision, and volume 
of input data. The data required to drive the models must be feasi
bly collectable; otherwise, the models will lose their utility. This is 
the "garbage in/garbage out" principle. More than any other single 
cause, modeling efforts fail because of the lack of adequate data. 

Model interdependence becomes a significant issue when mod
els share triggers, or thresholds, or jointly affect the condition of the 
inventory. For example, a pavement section should not receive a 
seal coat and an overlay in the same time period. Likewise a model 
that addresses faulting in a jointed pavement should also affect the 
pavement's serviceability index in a consistent fashion. These ex
ample problems may appear obvious, but they have been observed 
in existing, fielded PMSs. These types of interdependency problems 
are often hard to detect when models are run across large data bases 
and produce only summary outputs. 

Interdependency issues have been successfully handled in prac
tice through the use of matrix interpolation and event-driven mod
eling. For example, pavement performance models that are based 
on traffic loading, not time, can be synchronized with time-based 
models by producing a matrix of outputs at regular time intervals 
for assumed levels of traffic. The matrix is then used instead of the 
original model in the subsequent time-based simulation. Event
driven systems can be used to allow asynchronous models to run 
concurrently by maintaining a single calendar of events (or triggers) 
that is used to coordinate the models. It is also frequently necessary 
to prioritize constraints across models, since situations often arise 
in which competing constraints conflict in a given decision and one 
must win out. It is useful to provide common units of cost and ben
efit across models to facilitate the arbitration of conflicting con
straints. In any case constraints should be defined as explicitly as 
possible, even when they are inherently embedded in a decision 
algorithm. 

Certainty 

Issues of certainty in models are introduced primarily in the form of 
stochastic processes and accuracy/precision trade-offs. The sto
chastic, or probabilistic, nature of physical and economic systems 
is often ignored in practice with potentially disastrous results. When 
mean time between failure (MTBF) metrics and interest rates are 
treated as absolutes, significant risk factors are completely over
looked. Accuracy/precision trade-offs become problems when 
modelers assume that data provided with several digits of precision 
are actually accurate to the last decimal place. Both types of cer
tainty issues have been successfully handled in practice via Monte 
Carlo simulation whereby what-if scenarios are run in batches, 
spanning likely input ranges. 

Quality 

Issues of quality are usually characterized by a number of trade
offs, including efficiency versus effectiveness, risk versus return, 
and constraints versus penalties. Efficiency is usually defined in 
terms of resource utilization, whereas effectiveness is measured in 

35 

terms of goal attainment. Management systems for which the ef
fectiveness goals have not been clearly defined frequently overem
phasize the locally efficient use of a particular resource at the ex
pense of a more globally effective solution. As mentioned 
previously risk reduction (i.e., uncertainty management) is fre
quently ignored as an overall system goal. As a result a solution that 
provides a high expected return may be chosen, even though risks 
inherent in the solution may diminish its feasibility, whereas a more 
robust solution with a slightly lower expected value may be prefer
able. Reductions in data collection costs and system response time 
are examples of other goals that are often slighted in the model 
design. 

The notion of system quality must also include user considera
tions, such as ease of use and comprehensibility. In an effort to cre
ate academically or theoretically sophisticated models, model de
velopers have shown a tendency to ignore these user considerations. 
User support includes the use of GUis, but it goes beyond that. For 
example, a highly optimized model that produces drastic changes in 
the output for a relatively minor change to the input data is inade
quate as a decision support tool, despite its optimization, because it 
cannot be easily comprehended. 

Similarly models that rigidly enforce constraints, although they 
are theoretically sound, can be difficult to use in real environments. 
For example, because of political or other external factors, decision 
makers are often faced with situations in which a particular mainte
nance activity or rehabilitation project must be dropped into the 
final plan or schedule, even though the decision model has not cho
sen the activity for the particular time slot. If the system does not 
allow these unexpected drop-ins because they are theoretically in
feasible, the system will be oflittle direct use to the decision maker. 
The system must model the real environment, not the ideal one, 
which means that budgets may overrun and schedules niay be re
arranged. In practice rigid constraints can be replaced by "soft" con
straints that include a cost, or penalty, for violating the constraint. 
In this manner exceptions to constraints can exist, but at a cost. In 
the simplest case this cost may just be a warning issued to the user 
that an infeasible situation has occurred. As previously stated a 
means of prioritizing constraints and common units of cost and ben
efit are useful in these situations. 

General Useful Features 

Identifying the problems and designing the solutions presented in 
this section are examples of an "easier said than done" situation. To 
aid in problem identification and solution design, the following list 
describes the features that have been found to be useful in informa
tion systems in general: 

• An ad hoc querying capability to create specialized reports; 
• What-if scenario support (i.e., a baseline plan and variations on 

the baseline); 
• An ability to create a representative subset of the inventory 

data on which scenarios may be tested; 
• Assertions and exception handling to identify anomalies and 

debug constraints and algorithms; 
• Support for drop-in treatments, that is, user-specified activities 

that override the model's recommendations; 
• Graphical reports to aid in visualizing results; and 
• Graceful fault handling when one of a pair of conflicting con

straints must be violated. 



36 

CONCLUSIONS 

To readers who have survived the various software fads and "snake 
oil" salesmen over the past decades, application frameworks may 
sound like the next in a long line of would-be panaceas. In truth the 
benefits of frameworks have been proven in the DOD logistics man
agement domain and are based on sound software engineering prin
ciples that have held up in practice. No software development ap
proach will ever remove the need for thoughtful planning and 
design; in fact careful modeling is the foundation of application 
framework development. Frameworks can, however, make the 
modeling and decision-making processes more efficient and effec
tive by removing extraneous programming overhead. Application 
frameworks appropriately place the emphasis of software system 
development on the engineering and decision modeling rather than 
on coding, thereby empowering engineers and decision makers by 
relieving the constraints imposed by traditional software develop
ment practices. The benefits of increased portability, tailorability, 
and maintainability are more readily apparent, but they should not 
overshadow the less tangible benefits that frameworks have for 
supporting intuitive domain modeling. 

Although any popularity that application frameworks might gain 
in the transportation industry will no doubt result in a certain 
amount of marketing hype and snake oil salesmanship, the founda
tions for deriving real, sustainable benefits are already in place. Nu
merous commercial vendors already exist for the related object
oriented technology (e.g., C+ + compiler vendors), and other gov
ernment and commercial arenas have already embraced the con-

TRANSPORTATION RESEARCH RECORD 1466 

cepts. The approach is based on academically sound principles and 
is independent of any commercial product, platform, or program
ming environment. Thus, frameworks can prove to be a viable and 
well-received technology for transportation information manage
ment system development in the years to come. 

REFERENCES 

1. Title 23 CFR, The Intermodal Surface Transportation Efficiency Act of 
1991. Federal Register, Vol. 58, No. 39, Part 500, p. 12115, March 2, 
1993. 

2. Johnson, R. Documenting Frameworks with Patterns. Proc., OOPSLA 
1992, ACM SIGPLAN Notices, Vol. 27, No. 10, Oct. 1992, pp. 63-76. 

3. Booch, G. Object-Oriented Design with Applications. Benjamin/Cum
mings Publishing Co., New York, 1991. 

4. Coad, P., and E., Yourdon. Object-Oriented Analysis, 2nd ed. Yourdon 
Press, Englewood Cliffs, N.J., 1991. 

5. Rumbaugh, J., et al. Object-Oriented Modeling and Design. Prentice
Hall, New York, 1991. 

6. Common Object Request Broker Architecture (COREA) Interface Defin
ition Language (IDL). Object Management Group, Framingham, Mass., 
1993. 

7. Johnson, R., and J. Zweig. Delegation in C+ +. Journal of Object
Oriented Programming, Nov. 1991. 

8. Special Operations Logistics Automated Management System (SLAMS). 
Contract F09603-86-G-0054. ARINC Research Corporation. 

9. Systems Strategy: Object-Oriented Programming. Washington Technol
ogy, Vol. 8, No. 9, Aug. 12, 1993. 

Publication of this paper sponsored by Committee on Computer Technology. 


