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Application of Adaptive and 
Neural Network Computational 
Techniques to Traffic Volume and 
Classification Monitoring 

w. C. MEAD, H. N. FISHER, R. D. JONES, K. R. BISSET, AND LA. LEE 

A traffic volume and classification monitoring (TVCM) system based 
on adaptive and neural network computational techniques is being de
veloped. The value of neural networks in this application lies in their 
ability to learn from data and to form a mapping of arbitrary topology. 
The piezoelectric strip and magnetic loop sensors typically used for 
TVCM provide signals that are complicated and variable and that cor
respond in indirect ways with the desired FHW A 13-class classification 
system. Furthermore, the wide variety of vehicle configurations adds to 
the complexity of the classification task. The goal is to provide a TVCM 
system featuring high accuracy, adaptability to wide sensor and envi
ronmental variations, and continuous fault detection. The authors have 
instrumented an experimental TVCM site, developed personal com
puter-based on-line data acquisition software, collected a large data 
base of vehicles' signals together with accurate ground truth determi
nation, and analyzed the data off-line with a neural net classification 
system that can distinguish between class 2 (automobiles) and class 3 
(utility vehicles) vehicles with better than 90 percent accuracy. The 
neural network used, called the connectionist hyperprism classification 
network, features simple basis functions; rapid, linear training algo
rithms for basis function amplitudes and widths; and basis function 
elimination that enhances network speed and accuracy. Work is in 
progress to extend the system to other classes, to quantify the system's 
adaptability, and to develop automatic fault detection techniques. 

The FHW A 13-class classification scheme (1) divides vehicles 
largely according to application or axle configuration. Standard traf
fic volume and classification monitoring (TVCM) practice typically 
combines one or more piezoelectric strip sensors with one or more 
magnetic loop sensors in a road-embedded sensor group that pro
vides signals to a commercial electronics package. Although these 
systems appear to be quite simple, they are in reality quite compli
cated and possess performance characteristics that can significantly 
degrade the reliability of the vehicle-monitoring information pro
vided. For example, piezoelectric strip sensors vary greatly in out
put pulse characteristics from one sensor to another and also from 
one event to another, even for interactions with similar vehicles, 
making the process of "simply" counting axles an error-prone task. 
Furthermore, the sensor installations and electronics typically drift 
with changes in environmental conditions and with installation 
aging. These characteristics can lead to unacceptable classification 
inaccuracies. 

Nonlinear adaptive network computing has progressed greatly in 
the past decade and has demonstrated capabilities and opened new 
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applications to high-speed digital computers. Many traditional com
puter applications are preprogrammed; that is, algorithms are 
specifically designed to implement a known numerical solution for 
an application. Adaptive algorithms, however, offer somewhat 
greater generality: the adaptive algorithm "learns" by adjusting 
modeling coefficients to optimize a fit to the available data or to 
maximize some performance criteria. Artificial neural networks 
combine many simple, individual processing units interconnected 
to perform prediction, control, and classification tasks via machine 
learning. The "neurons" or "nodes" are usually simple nonlinear 
transfer functions. The training consists of adjusting weights (basis 
function parameters or interconnection strengths) to best match a 
training set or to minimize an energy function. Artificial neural 
networks and adaptive cellular automata show interesting and 
useful behaviors. Capabilities already demonstrated by existing 
adaptive computing systems include machine learning (2-4), self
organization (2-4) bidirectional associative memories (3,4), feature 
detection and pattern recognition and classification (2-4), signal 
processing and noise reduction (3,4), processing of speech, hand
writing, and natural language (2-4), modeling of multidimensional 
nonlinear and chaotic functions (5-9), prediction of physical dy
namical processes (7-9), and providing new solutions to control 
(7-11) and classification (12) problems. 

Our goal in the project described here is to harness the capabili
ties of adaptive and neural network computational techniques to the 
TVCM application to obtain high classification accuracy, adaptabil
ity to a fairly wide range of sensor and environmental conditions, 
and automatic detection of faults when the adaptive range is ex
ceeded. In addition to these beneficial performance objectives, 
neural networks have certain other advantages for various applica
tions, including TVCM. They learn inductively from data and can 
be quite versatile and robust. Using on-line learning, neural net
works can predict, control, or classify in drifting systems. Their 
implementation in software permits low-cost development, whereas 
implementation in special-purpose large-scale integration (LSI) 
hardware provides low-cost replication with high-speed perfor
mance. 

CLASSIFICATION SCHEME 

A slight extension of the FHW A 13-class system (Table 1) is used 
here. The major class boundaries agree with the FHW A scheme; 
subclasses have been added that are expected to be distinguishable, 
for example, to separate vehicles that are towing trailers from those 
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TABLE 1 FHW A 13-Class Vehicle Classification Scheme Extended To Specify Distinguishable 
Subclasses 

Class# Subclass Confiouration Sub-Confiouration 
1 motorcycle 

a w/o trailer 
e w/ trailer 

2 passenger car 
a subcompact 
b compact 
c full-sized 
d jumbo 
e w/ trailer 

3 2 axle, 4 tire single unit.utility 
a small 
b medium 
c large 
d jumbo 
e w/ trailer 

4 bus 
a 2 axle.short wheelbase 
b 2 axle.long wheelbase 
c 3+axle 
e w/ trailer 

5 2 axle, 4-6 tire large single unit 
a 4-tire w/o trailer 
b 6-tire w/o trailer 
e 4- or 6-tire w/ trailer 

6 3 axle single unit 
a w/o trailer 
e w/ trailer 

7 4-5+ axle single unit 
a 4 axle 
b 5+ axle 

8 3-4 axle single trailer 
a 3 axle 
b 4 axle 

9 5 axle single trailer 
a long-tongue· trailer 
b standard semi 

10 6-7 + axle single trailer 
a 6 axle 
b 7+ axle 

11 5 axle multiple trailer 
12 6 axle multiple trailer 
13 7 + axle multiple trailer 
14 other 

that are not. In some cases the class is subdivided according to ve
hicle size. Work to date and the present paper deal exclusively with 
classes 2a to 2d and 3a to 3d (cars without trailers and utility vehi
cles without trailers) but neglect subclass information. These 
classes were initially focused on for two reasons: (a) they cover 
about 98 percent of the vehicles at our first sensor test site (STS 1 ), 
and (b) this is a fairly subtle class boundary, which serves well to 
test the adaptive/neural network approach. 

EXPERIMENTAL SENSOR TEST SITE 

STSl was designed to provide a conveniently accessible experi
mental site with good traffic flow. It is located on the State Route 4 
Truck Route about 15 min from Los Alamos National Laboratory. 
The sensor layout, shown in Figure 1, was designed to offer redun
dant measurements to permit internal cross-validation and multiple 
sensor subgroupings that can simulate several different monitoring 
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FIGURE 1 Schematic layout of STSl. 

configurations. Both lanes of traffic are monitored with on-track 
sensors only. The data presented here were obtained at STS 1 over 
the period from November 1992 through June 1993. 

DATA ACQUISITION SYSTEM 

A key design criterion for the data acquisition system was hardware 
flexibility combined with off-the-shelf availability. Thus, a personal 
computer (PC)-based acquisition system was chosen and a 16-
channel analog-to-digital conversion (ADC) board for input and a 
20-channel counter-timer-board for output were used. This hard
ware is expected to be readily adaptable to any current TVCM or 
weigh-in-motion (WIM) sensors and to most future sensor types. 

A loop readout scheme was chosen that, although unconven
tional, is simple, direct, and fast. The scheme is illustrated in Figure 
2. A square-wave drive signal is applied to a resistive-inductive 
(R-L) circuit containing the loop. The voltage across the load resis
tor is read at four times per square-wave cycle: twice near the max-
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FIGURE 2 Loop readout scheme that is simple, direct, and 
fast and that uses versatile hardware. 

imum current and twice when the current is in the exponential decay 
following the square wave' s voltage transitions. The difference be
tween the peak and decaying readings is related simply to the in
ductance of the loop, which in turn varies according to the charac
teristics of a proximate vehicle. 

A schematic of the loop data acquisition system is shown in Fig
ure 3. The 5 to 10-kHz square waves for driving up to six loop sen
sors (about 1 ohm of impedance) are generated by the counter-timer 
board with sequentially delayed phases. The timer outputs are indi
vidually cleaned up and amplified and are then applied to the R-L 
circuits containing the six respective loop sensors.'Most data have 
been acquired using high-quality audio amplifiers as loop drivers, 
although a custom-designed seven-channel instrumentation ampli
fier has been used as well. The loop circuits were typically driven 
with a 0.4-V p-p square wave and the loop current signal amplified 
by a gain-of-10 amplifier on the ADC bo~d. 

The data acquisition system for the piezoelectric strips is illus
trated in Figure 4. Since the piezoelectric strips are active sensors, 
no drive signal is needed, and the acquisition system is simpler. A 
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FIGURE 3 Schematic of inductive loop sensor data acquisition system. 
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FIGURE 4 Schematic of piezoelectric strip sensor data 
acquisition system. 

seven-channel instrumentation amplifier is generally used with high 
input impedance at voltage gains of 1 to 10 to match the piezoelec
tric outputs to the ADC input requirements. 

Data from up to six loops and up to six piezoelectric strips are 
acquired cyclically. The total data rate is about 50 to 100 kilo
samples/sec, providing ample time for resolution of individual 
sensors' outputs. Amplitude resolution is about 1 part in 4,096. 

Phase I data were collected in one of two modes: first a "spool
ing" mode was used: the data stream was directly recorded on 90-
MB high-speed, removable disks for later analysis. Later the capa
bility of collecting event mode data was developed and employed: 
PC-based, on-line analysis reduced the incoming data stream to a 
list of sensor-activation events, thus obviating the need to record 
large amounts of quiescent data. 
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GROUND TRUTH DETERMINATION 

A two-channel video system, illustrated in Figure 5, was used to ac
quire the data needed to determine ground truth. The two cameras 
viewed the test site from widely differing angles on opposite sides 
of the roadway. The primary camera view was perpendicular to the 
road at an angle of about 40 degrees above the horizontal. Data were 
recorded on videotapes, together with a signal light that indicated 
the timing of the PC sensor-data acquisition runs. 

Analysis of the video data was largely done by playing the tape 
into a workstation-based image digitizer, using a software image 
comparator to select only frames taken during a run and with ave
hicle present. Digitized frames were classified by a human analyst. 
Use of the workstation to preselect the relevant images increased the 
classification rate from about 1/10 real time to about 1/3 real time. Gen
erally, one camera's digitized image was adequate for classification 
and lane determination. This process was expensive, but not pro
hibitively so. The cost of ground truth determination was mitigated 
by reusing the data for multiple sensor groupings and by repeatedly 
analyzing the sensor signals as adaptive algorithms were developed. 

Formal quality control procedures were observed to evaluate and 
maintain the accuracy of ground truth determination. At least 10 
percent (randomly selected) of the data runs were reclassified and 
the accuracy of the ground truth determination was found to be bet
ter than 99 percent in vehicle volume, major class determination, 
and lane determination (to the nearest lane). This accuracy is more 
than adequate for training and testing the sensor-based classification 
system. The ground truth data base from STS 1 currently contains 
2,216 vehicles, mostly of classes 2a to 2d and 3a to 3d. 

SIGNAL PREPROCESSING 

Given the complex character of the sensor signals, signal prepro
cessing plays a crucial role in preparing the data for input to the 
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FIGURE 5 Schematic of video data acquisition system. 
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neural networks. Signal preprocessing steps are discussed in two 
subgroups here: adaptive signal conditioning steps and data repre
sentation steps. 

Adaptive Signal Conditioning and Pulse Extraction 

The importance of adaptive signal conditioning can be seen by con
sidering the properties of loop and piezoelectric sensor signals. The 
most difficult aspects of loop signal processing are poor signal-to
noise ratio, significant systematic errors (e.g., asymmetric results of 
measurements on the up- and down-transition signals), and high 
ratio of drift to signal. The piezoelectric strips, on the other hand, 
give processing challenges from three different characteristics: 
large dynamic range ( -1,000: 1 ), large sensor-to-sensor variations 
( -10: 1 ), and large variations in resp'onse due to particular interac
tion details (-10: 1). 

By using a sequence of signal conditioning steps, reliable detec
tion and data reduction of the sensor signals are achieved: (a) even
odd. correction removes sampling asymmetries of the loop signals; 
(b) low-pass filtering improves the signal-to-noise ratio, particularly 
for loops; finally, adaptive adjustments to signal (c) amplitude and 
(d) noise levels compensate for sensor-to-sensor and event-to-event 
signal variations. To remain within PC processing capabilities, 
adaptive (but non-neural-network) signal processing techniques are 
used in these initial signal-conditioning steps. 

The extraction of active signal pulses is performed by an adap
tive triggering algorithm. The algorithm distinguishes between 
baseline (quiescent) and active signal behavior by using a pulse 
height spectrum for each data channel. The trigger's sensitivity is 
varied adaptively, using moving averages that account for recent 
average noise and signal levels. The trigger also incorporates a 
slope-sensitive term and logic that helps to prevent multiple trig
gering during a single piezoelectric event. 

Data Representation 

One additional group of tasks must be accomplished before pre
senting the data to the neural net for solution: choosing a represen
tation for the data. The representation determines what information 
the neural network must process. If too much extraneous informa
tion is presented to the network, the neural net can be overwhelmed. 
This is analogous to a signal-to-noise problem. On the other hand, 
if the representation chosen does not include the information to be 
processed, the neural net can be underinformed, that is, the network 
can be reduced to the status of fortune teller. 

For the TVCM application representation requires signal reduc
tion, screening, parsing, and subselecting the signal data. The sig
nals are reduced by extracting simple signal statistics from the de
tailed signal profiles, for example, peak amplitude, full widths at 
half- and quarter-maximum, time of peak amplitude, and integral 
between the half-maximum points. The screening steps apply 
known physical constraints to remove extraneous pulses. Con
straints currently used include minimum and maximum sensor 
pulse widths and amplitudes, implied vehicle speed greater than 0, 
and implied axle separation distances greater than 0.6 m (2 ft). One 
constraint, although not absolutely physically defensible, appears to 
be helpful, namely, restricting the dynamic range of signals corre
sponding to one vehicle to a factor of 8: 1. Parsing associates sub
groupings of the signals into vehicle events. The vehicle parser is 
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built on a few observations that appear to be quite accurate, at least 
within the authors' current experience: that one vehicle usually gen
erates a single magnetic loop pulse, that an implied gap of more than 
24.4 m (80 ft) between axles always signifies a separate vehicle, and 
that piezoelectric signals usually belong to the vehicle with the 
nearest (in-time) magnetic loop signal. The signal parser is the most 
complex nonadaptive part of the classification system. Only time 
will tell whether it is fully adequate to all traffic and site conditions. 

Data subselection is the final task, and that is discussed separately 
in the next paragraph since subselection issues are expected to be 
different for different vehicle classes. Also the data subselection is
sues are closely interwoven with the definitions of the classification 
scheme and the overall architecture chosen for the classification 
system (Figure 6). The basic idea is to divide the classification pa
rameter space according to the number of axles detected for a vehi
cle and then to choose among the classes having constant numbers 
of axles by using neural networks trained to the task. There are not 
enough data on the universe of vehicle and installation types to de
termine whether the initial axle count determination can be per
formed accurately enough to support this classification system ar
chitecture or not. At present the architecture is serving well. 

Returning to the data subselection issue, specifically for classes 
2a to 2d and 3a to 3d, by a combination of observational, deductive, 
and statistical analyses, it was determined that the data containing 
most of the information for distinguishing the boundary between 
thde two classes is the peak amplitude of the magnetic loop data. 
The reason for this is believed to be that most class 2 vehicles have 
lower ground clearances than most class 3 vehicles. Therefore, most 
class 2 vehicles yield larger changes in loop inductance and greater 
peak loop signal amplitude. This analysis indicates that the practi
cal limit to the accuracy of the separation of these two classes is 
about 90 percent on a vehicle-by-vehicle basis. That is, given typi
cal measurement errors, traffic behavior, and vehicle configura
tions, about 10 percent of class 2 vehicles will appear to be class 3 
vehicles and about 10 percent of class 3 vehicles will appear to be 
class 2 vehicles. A large part of the crossover of class 2 vehicles into 
class 3 appears to be due to off-track events, which reduce the 
change in loop inductance because of the lateral offset of the vehi
cle over the loop. A large part of the crossover from class 2 into 
class 3 appears to be caused by the fact that some class 3 (utility) 
vehicles are actually built on car chassis and thus do not have larger 
ground clearances than most cars. To some extent these two 
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crossover effects largely cancel, and it is possible, in an average 
sense, to end up with greater than 90 percent overall accuracy for 
an ensemble of vehicles. 

One other important issue of adaptation arose in connection with 
using the loop peak amplitude to distinguish the class 2-3-class 
boundary. It was found that for unknown reasons the absolute scal
ing of the peak loop amplitude shifts from one data acquisition run 
to another; this shift has not been traced to a reparable cause. How
ever, the problem has apparently been solved by observing that 
there exists a relatively stable vehicle population that gives a_ fixed 
maximum signal, and this provides an on-line calibration factor. 

Having resolved the crucial issues of data conditioning and rep
resentation, the data are ready to be delivered to a classification 
neural net to obtain the completed classification solution. Note that 
by "completed," it is meant fully functioning for classes 2a to 2d 
and 3a to 3d rather than complete in the sense of having solved the 
entire classification problem. 

CONNECTIONIST HYPERPRISM 
CLASSIFICATION NEURAL NETWORK 

The classification network used in this work, the connectionist hy
perprism classification (CHC) network, is designed to recognize 
multidimensional patterns presented by the various vehicle signa
tures produced by the TVCM sensors and to produce corresponding 
classification outputs. The CHC network has architectural features 
(Figure 7) that are well matched to the needs of the intended TVCM 
applications. 

The CHC network operates on roughly the same principle as 
clustering algorithms (J 3), whereas it draws most of_ its numerical 
approach from typical neural network methods. Two data sets are 
imagined, one for training and another for testing, that each contains 
a number of anonymous samples (labeled 0) plus some number of 
tagged samples (labeled 1) that are representative of a single class 
(e.g., several signal sets that correspond to the same vehicle class). 
Each sample vector (p) consists of an N-dimensional set of inputs 
xP;' together with the desired output, oP, equal in this case to 0. or 1. 
It is assumed that there are M class 1 members of the training set, 
and initially a network was chosen that contains M nodes or basis 
functions, each centered at one of the unique training datum points. 

Basis Functions: 
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The CHC network uses N-dimensional hyperprism basis func
tions (Figure 8). Each basis function has a vector center, Xe. in the 
input parameter space, and produces nonzero output in a connected 
region about its center, having width ba above the center and bb 
below it. At the center the basis function's output value is equal to 
the weight fe· When, for dimension i, the datum point coordinates 
satisfy XeJi - bbJi < Xp; < XcJi + baJi• then the ith component of the jth 
basis function is 

(1) 

where bwJi is the appropriate width parameter, either baJi or bbJi· 

Within the active domain the basis function's value is the product 
of these N components. Outside its active domain the basis function 
is zero. The constant me is the same for all basis functions in the net
work, and in practice we often use me equal to 1., so the basis func
tion components are simply N-dimensional top-hat functions. The 
network output is 

g(x) = 'i!J(x) (2) 

The network training algorithm contains two main parts: one part 
adjusts the basis function central amplitudes fe based on only the 
class 1 data, whereas the other adjusts the widths ba and bb based on 
all of the training data. The Jc' s are adjusted to minimize the root 
mean square error in the network's calculation of the class 1 datum 
points. The widths are adjusted according to a self-organizing algo
rithm (J 4), adjusting the domain of each basis function to regulate 
the number of class 0 datum points that fall within the active region 
and resetting the width when basis function overlap occurs. The 
training algorithms are iterative and on-line in the sense that the 
basis function amplitudes and widths need not be static in time but 
can grow or shrink to reflect the currently appropriate training con
ditions. 

The training algorithm for the jth node's central amplitude feJ 
weights each datum point by a manually adjustable parameter, Wi. 

according to its target output value oP: 

(3) 
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FIGURE 7 Architecture of CHC neural network. 
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FIGURE 8 Basis function of CHC 
neural network. 

The iterative adjustment to the central amplitudes is then given by 

(4) 

where a is a learning rate parameter and n is the iteration count. For 
most of this work a equal to 0.1 and w 1 equal to 0. 7 were used. 

The training algorithm that adjusts the basis function widths is 
slightly more elaborate. It operates in two successive stages-one 
that adjusts widths on the basis of datum point inclusion and another 
that-revises the widths to remove basis function overlap. 

The datum point-based width adjustment increases the appropri
ate widths as class 1 points are encountered within the basis func
tion's active domain and decreases the widths as included class 0 
points are found. The choice of what widths to adjust is made by 
calculating the distance (dpji) of each point included within the ac
tive domain to each dimension's nearest basis function edge and 
choosing the smallest. The data-dependent width adjustment is 

where 13 is an overall width learning rate (0.01 - 1.0, for this work), 
and b, ( ~0.1) and b0( ~ -0.2) are the width adjustment factors as
sociated with class 1 and class 0 datum points, respectively. A max
imum basis function half-width is enforced (bmax = 0.2 here). 

The overlap-based width adjustment eliminates basis function 
overlap. This part of the training operates as a logical constraint that 
shifts basis function boundaries by the least amount that removes 
overlap. Basis functions are allowed to overlap only if removal of 
the overlap would reduce a basis function below a set minimum 
half-width (brnin = 0.005 he~e). 

Finally, the training algorithm includes a basis function elimina
tion scheme that removes basis functions whose widths in any di
mension have become less than an elimination threshold value (belim 
= 0.01, typically) and whose elimination would not permanently 
orphan any class 1 datum points. This algorithm is not useful for all 
classification problems, but if it is used it decreases the size of the 
network required and increases training and testing speeds. In the 
present application the basis function elimination works very well. 
Generally, the network size can be reduced from 30 to 40 nodes to 
5 to 10 nodes, whereas the performance of the classifier is either 
constant or actually improves slightly. 

CLASSIFICATION RESULTS 

A sample of the training data and the corresponding fit produced by 
a network trained to identify class 2a to 2d vehicles are shown in 
Figure 9. The CHC network solution shown uses very little basis 
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FIGURE 9 Training data (small+ is class 
0 datum point; large + is class 1 datum · 
point) and network fit (shown by boxes, 
scaled the same way as the datum point 
pluses) for sample class 2a to 2d 
classification task. 

function elimination, and thus has more nodes than the minimum 
required to obtain good performance. The results of applying this 
network to a test data set are illustrated in Figure 10. 

Four networks have been similarly trained to handle class 2 and 
class 3 identifications for six sensor groupings. One advantage of 
using one network per class is that an estimate can be obtained of 
the classification error by comparing the sum of the networks' out~ 
puts with the actual, known total vehicle count. Since the errors here 
are dominated by overlap of the two classes, the estimated error is 
given by the difference between the sum of the network's outputs 
and the actual vehicle count. Table 2 shows the results of classify
ing a data set consisting of STS 1 measurements for which ground 
truth is known. The results are summed over six independently 
processed sensor groupings. The CHC networks used here were 
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FIGURE 10 Sample test data and network 
prediction for same network shown in 
Figure 9. The four kinds of test prediction 
outcomes are labeled. 
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TABLE 2 Composite Results of Off-Line Classification 
Tests on All STSl Data Processed to Ground Truth Status 

NNPred. Ground Truth Act. Error 

Volume 6407· 6438 -31 

Class 2 3955 3828 127 

Class 3 2452 2562 -llO 

trained using about 10 percent of the STS 1 data set. The overall vol
ume accuracy obtained is better than 99 percent. The inferred mem
berships of classes 2 and 3 are accurate to better than 95 to 98 per
cent in net population count when the classification neural networks 
have been tuned to near-optimum performance. 

CONCLUSIONS AND FUTURE DIRECTIONS 

An end-to-end vehicle classification system, based on adaptive and 
neural network techniques, has been successfully developed and 
demonstrated that achieves quite good classification of vehicles in 
classes 2a to 2d and 3a to 3d. Current net volume accuracy is about 
99 percent, and classification accuracy is better than 95 percent for 
the two classes handled by the system when the neural networks are 
specifically trained for the installation being used to collect the clas
sification data. These accuracies significantly exceed those of an 
off-the-shelf commercial unit tested under the same circumstances. 

In the near future the authors intend to extend the classification 
system to other vehicle classes (which requires acquisition and 
analysis of additional data) and to implement some of the neural 
network-based fault detection ideas. 
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