TRANSPORTATION RESEARCH RECORD 1467

Time of Day Models of Motor Carrier

Accident Risk
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A time-dependent logistic regression model has been formulated to
assess the safety of motor carrier operations. The model estimates the
probability of having an accident at time interval ¢, subject to surviving
(i.e., not having an accident) until that time. Three logistic regression
models are estimated, which include time main effects (the driving
time), time-independent effects (experience), time-dependent effects
(time of day), and a series of time-related interactions. Driving time has
the strongest direct effect on accident risk. The first 4 hr consistently
have the lowest accident risk and are indistinguishable from each other.
Accident risk increases significantly after the 4th hr, by approximately
50 percent or more, until the 7th hr. The 8th and 9th hr show a further
increase, approximately 80 and 130 percent higher than the first 4 hr.
Drivers with more than 10 years of driving experience retain a consis-
tently low accident risk; all other categories of driving experience have
a significantly higher risk. Daytime driving, particularly at the noon
time (10:00 a.m. to 12:00 noon), results in a significantly lower risk of
an accident. Drivers at one time of day (4:00 to 6:00 p.m.) have an acci-
dent risk about 60 percent higher than those driving during the baseline;
drivers during the other three significant times of day also experience
accident risks about 40 percent higher than drivers during the baseline.
All three times of day involve night or dawn driving; two are associated
with circadian rhythms. Rest breaks, particularly those taken before the
6th or 7th hr of driving, appear to lower accident risk significantly for
many times of day.

Motor carrier safety has been an area of active study throughout the
1980s and the early 1990s. Of the factors generally considered in
safety studies (i.e., driver, vehicle, roadway, and environment), par-
ticular attention has been paid to driver-related factors. One major
study concluded that 65 percent of accidents may be attributable to
human errors (7).

Driving fatigue is believed to have a particularly powerful effect
on commercial vehicle drivers, representing one of the primary
human factors. Fatigue significantly increases driving errors and
decreases driver alertness. Two additional studies using restricted
data bases have found more than 30 percent of heavy truck crashes
may result from driving fatigue (2,3). Nevertheless, fatigue is a suf-
ficiently vague concept in that it has not been precisely defined and
measured (4), a fact that presents difficulties in applying fatigue
concepts in accident models. Several studies have described factors
associated with either physiological or psychological components
of fatigue (4-7). :

Driving hours, for one origin-to-destination trip or over several
trips and multiple days, is often an important element of fatigue.
Several studies have considered the appropriateness of government-
regulated limits on driving hours. These studies seek to identify
hours that pose higher accident risk and policy changes that could
result in reduced accident risk (8-14). Although it may seem
straightforward to account for the influence of driving hours on
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fatigue, there are many subtleties to be considered. Among those
already studied in the literature are the effects of the-following: off-
duty hours immediately before a trip and multiday driving (13,14);
heat, noise, and vibration (/5); cargo loading and unloading (16);
patterns of rest in sleeper berths (17); and alcohol and drugs (3,18).

This research attempts to contribute to this literature by identify-
ing the effects of time of day on accident occurrence. Circadian
rhythms, which are changes in body function following an approx-
imate 24-hr cycle, are of particular importance. Although circadian
rhythms vary somewhat from person to person, the most common
pattern is one with a physiological low around 4:00 to 6:00 a.m.,
representing a time of particular risk to drivers. This represents a
substantial societal risk as a significant amount of truck travel
occurs at night.

Several relevant studies have focused on the relationship between
motor carrier accidents and time of day. Harris and Mackie (8) con-
cluded that the lowest levels of alertness occur for most drivers
between midnight and 8:00 a.m. Several additional studies also
have found elevated involvement or accident risk in this same time
interval, suggesting a circadian effect (9,17,19,20). Interestingly,
Hamelin (/0) indicated that accident involvement rates generally
increase throughout the day from a low point around 4:00 to 6:00
a.m. to a high point from midnight to 2:00 a.m. There is also a sharp
peak in risk around noon. Another study of automobile drivers
found that an additional period of decreased alertness occurs in the
mid-afternoon (217). This research aims at a more explicit quantifi-
cation of the effect of time of day on motor carrier accident risk.

OBJECTIVES

There is a need to develop quantitative methods to analyze the effect
of time of day on accident risk. In particular, it is important to
consider whether the circadian effect plays a major role in motor
carrier accident risk. One objective of this study is to use time-
dependent logistic regression to formulate a quantitative model that
explicitly includes time of day along with other covariates. The sec-
ond objective is to test the model using data from actual trucking
company operations and to compare the results with those in the
extant literature.

LOGISTIC REGRESSION MODEL

A general formulation for the time-dependent logistic regression
model is as follows: :
exp [g(Xn ts B)]

Pi: = P(Y", = 1 | Yt'i = Q for t’ < t‘, Xi)= 1+ exp [g(X t B)] (1)




in which Y,; is a response variable representing the occurrence
(Y;; = 1) or nonoccurrence (¥,; = 0) of the event for individual i dur-
ing the time interval ¢. X; is an univariate or multivariate attribute
vector for this individual, and g(X;, ¢, B) denotes some arbitrary
function of X; and a parameter vector B that will be estimated
(22-25). In accident analysis, the conditional probability expressed
in Equation 1 is the probability of an accident at time interval ¢,
given survival (i.e., no accident) until that time; in other words, the
model accounts for the survival effect (14). In this case, driving
time is divided into equal-width intervals. It is not necessary to
know the exact time of the accident; accuracy to the level of a spe-
cific interval (e.g., 30 min or 1 hr) is sufficient. The time interval in
which the accident occurs or the time interval of successful com-
pletion of the trip is recorded.

The comparable conditional probability of surviving is defined as

Quw=1-P; @

A convenient and simple functional form for g(X;, ¢, B) is a linear
combination of the covariates

8X,t,B) = Z‘b B Xji ©))
j=

The X;; (j = 0, .. ., r) are the values of the r covariates for the driver
i. The value of X; = 1 so that 3, represents an intercept parameter
in the regression model.

The full likelihood for the n drivers can be represented by the
following:
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where Z; = 1 for accident driver , and Z; = 0 otherwise, and ¢
represents the number of time intervals for which driver i is exposed
to the accident risk.

Equation 3 can be broken down into the following components:

T—1 s—1

8X,, 1, B) = Z B; X + Z BreiXii + Z Brea—n+nXni (&) )
j=0 k=1 n=1

The first term of the right-hand side of Equation 5 represents time-
independent covariates, the effects of which are assumed to be inde-
pendent of time. The second term represents the time main effect (in
this application, driving time), and X;; represents the kth time inter-
val for driving time. A trip with a length of k time intervals would
be represented by a series of indicator variables with X;; = 1. The
last term represents the time-dependent covariate (in this applica-
tion, time of day). The parameters B,. -+, are a series of co-
efficients associated with the s intervals used as categories for the
time-dependent covariate (in this case, 11 categories of time of day).
A similar model formulation was used elsewhere (/4); Equation 5
represents an extension of the earlier model in that it includes time-
dependent covariates.

_To include the survival effect in the time-dependent logistic
regression model correctly, several methods to treat time dependent
covariates have been proposed. One approach (26) specifies a series
of covariates to represent each time-dependent risk factor for each
time interval. A nice feature of this method is that it suggests
approaches to incorporate change in the underlying risk of an event
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over time and the prior history of an individual. However, the model
in this general form could contain so many parameters to be
estimated that it might be difficult to interpret.

Another approach (27) uses a parsimonious model to reduce the
dimensionality of the model and to improve its interpretability. A
duplication method is developed to overcome the assumption of
standard logistic regression that restricts each individual to only one
ultimate outcome. As an example of the method, consider a driver
with an accident in the third time interval. Three records will be
generated for this case. For the first two records, the values of the
response variable are both 0 (non-accident); the value of the
response variable will be 1 for the third record. For a driver who
successfully completes a trip through the third interval, three
records will also be generated; the values of the response variable
for all three records are 0. The values of the vector of time-
independent covariates for this individual will be the same in each
of the three records, whereas the values of time varying covariates
will depend on the related time interval. This approach is based on
the following three important assumptions:

1. The underlying risk of the events in each time interval is
assumed the same in this model (e.g., the risk in the first driving
hour is the same as that in the 9th hr).

2. Closely related to the first assumption is that risk factors and
outcome of interest are independent of time; that is, for a particular
time of day (e.g., 8:00 to 10:00 a.m.) the accident risk for the 1st hr
of driving is the same as that during the 9th hr of driving.

3. Only the current status of the risk factor is associated with the
outcome of the event, prior history is considered unimportant.

In this research, the approach (27) to treat the repeated measure-
ments will be followed, but time will be treated as categorical in the
model to reflect underlying risk. This relaxes the first assumption of
Cupples’s model. The second assumption is relaxed by including in
the model interaction terms to address the potential association
between driving hours and time of day.

DATA AND VARIABLE DESCRIPTION

All data are obtained from a national less-than-truckload firm. The
company operates “pony express” operations from coast to coast,
with no sleeper berths. The findings are thus not intended to typify
the trucking industry as a whole. As the carrier takes reasonable
steps to adhere to Department of Transportation service hour regu-
lations, most drivers in the study can be considered to comply with
existing limits. The data include accidents and non-accidents from
the company’s national over-the-road operations.

An accident is defined as “any reported event that results in dam-
age to the truck, personal injury, or property damage.” Excluded are
alleged incidents (i.e., those in which someone alleges being struck
by a truck, but no report was filed or verified by the carrier). The
severity ranges from minor fender benders to accidents with fatali-
ties. A non-accident is defined as “the case in which a driver suc-
cessfully completes the designed trip.” This is generally called
“censoring” data because the accident cannot happen after the
designed trip is finished.

The time-dependent logistic regression is developed using vari-
ables that include the experience of the driver with the firm, the con-
secutive hours of driving on the trip in question, and the time of day.
The consecutive hours of driving are the actual driving time based
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on the designed trip of interest that restricts the maximum driving
hours limits until the accident occurs or the trip is completed. The
off-duty time (short breaks) and the time on-duty without driving
(intermediate terminal) during this trip are then excluded.

It is possible for a driver to make several short stops either
because of feeling tired or because of an intermediate terminal.
These stops do not end the trip in terms of the measured time dura-
tion ¢; in Equation 4; time will accumulate after the stops until an
accident or completion of the trip at the destination terminal. The
driver is not given the option to terminate a trip and simply stop to
sleep. The truck must reach a destination at a particular time. There-
fore, the driving time is either the time to an accident or the time to
censoring, each of which is independent.

A problem arises because of the need to code time of day as a
series of dummy variables to account for possible non-linearities.
To keep the estimated number of parameters to a reasonable scale,
2-hr time periods were chosen for time of day. In this case, the first
interval is midnight to 2:00 a.m.; the twelfth is 10:00 p.m. to
midnight. Given that driving time data are recorded at the level of
15 min, raw data on driving time must be converted to a series of
more aggregate categorical variables of 2-hr duration. Difficulties
arise because drivers take rest breaks and are off duty for some time
during a typical day. When these rest breaks and off-duty times

occur within a 2-hr time category, it is necessary to assign the

driver as either driving or not driving for that unit of time.
The rules that determine the coding of the time of day variable
are as follows

o If the driver is driving for an entire time of day represented by
the variable, then the driver is coded as driving during that time of
day.

o If a driver’s driving time crosses more than one time of day
period (for example, driving from 1:45 a.m. to 2:45 a.m.), then the
most proportional time of day will be coded (in this example from
2:00 a.m. to 4:00 a.m. as driving; from midnight to 2:00 a.m. as not
driving).

o If a particular driving time bisects two time-of-day periods
exactly, the latter time of day is coded as driving.

In this research the total number of observations used for model-
ing is 1924 cases, of which 694 are accidents and 1230 are non-
accidents. Accidents are deliberately oversampled relative to their
actual occurrence to handle the data more efficiently. Although the
sampling is a type of case-control method typically used in a retro-
spective study, the likelihood function in Equation 4 developed
for prospective studies can still be applied because the logistic
regression is adopted in this research (28).

EMPIRICAL RESULTS
Overview of Modeling

An overview of the time-dependent logistic regression models
developed in this research is shown in Figure 1. Model 1 is devel-
oped to assess the underlying hazard of driving time only. A time-
independent covariate, driving experience, and a time-varying
covariate, time of day, are added and estimated in Model 2. A series
of models is developed to study interactions between time of day
and driving time. A separate model is developed with Model 2 and
interaction terms with each time of day separately with all nine cat-

BASIC MODEL

Driving Hours as Only Covariate

MODEL 1

v

Driving Hours,

Time Independent Covariates,
and
Time dependent Covariates

MODEL 2

y

Time Related Interactions with Time of Day

MODEL 3

FIGURE 1 Modeling structure.

egories of driving hours. The significant variables are entered
into one model and a stepwise deletion procedure used to arrive at
the model shown as Model 3 (1/4). The statistical software BMDP
is used to estimate coefficients and derive appropriate statistics
concerning model fit.

Several tests are conducted to assess the significance of variables
and models. First, a likelihood ratio test for inclusion or exclusion
of a variable as a whole is used as an exploratory test of variable
significance (e.g., inclusion of all categories of experience). Second,
t-statistics are reported for each category of each variable.

The goodness of fit of a time-dependent logistic regression model
to the data can be qualitatively assessed by plotting model values as
a function of driving time against the product limit estimator (PLE)
of the data (23,24). The survival function for the logistic regression
is denoted as follows:

s =11 o ©)

and the survival function for the product limit estimator is

s@ = [T &, = DyIN; )
=g

where N, is the number of drivers at risk at the beginning of the time
interval ¢', and D, is the number of drivers having an accident dur-
ing that time interval ¢'. This goodness-of-fit measure has been used
elsewhere (14). :



Basic Models

A basic model that includes only driving hours is shown as Model
1 in Table 1. The model implicitly assumes that the probability of
an accident is entirely determined by the driving time and is unaf-
fected by other driver attributes. Model 1 is constructed so that there
is a constant hazard within each hour and varying hazards between
hours. The positive parameter in each covariate represents an
increase in the log of the odds ratio or, more simply, an increase in
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the probability of accidents among the drivers in the specific cate-
gory of the variable compared with the drivers in the corresponding
baseline catégory. The value of the estimated coefficients represent
the change in the magnitude of the chance of an accident. Accident
risk is insignificantly different in the first 4 hr but rises steadily
thereafter to a maximum in the 10th hr.

Model 2 shows the resulis of combining Model 1 with driving
experience and time of day. The likelihood ratio test between Model
2 and Model 1 is significant beyond o = 0.05, which leads to a

TABLE 1 Model Estimates and Statistics

MODEL 3

NO COVARIATES MODEL 1 MODEL 2
1 CONSTANT -3.2780 * -3.9603 * -5.3635 *
EXPERIENCE (year)
2 <=1 0.5658 * 0.5553 *
3 1-5 0.8210 * 0.8087 *
4 5-10 0.5929 * 0.5852 *
5 > 10** !
TIME OF DAY
6 0:00 - 2:00 0.3318 # 1.7938 *
7 2:00 - 4:00 0.0407 1.3996
8 4:00 - 6:00 0.2798 1.7563 *
9 6:00 - 8:00 0.3669 # 1.7277 *
10 8:00 - 10:00 0.2452 1.7509 *
11 10:00 - 12:00** .
12 12:00 - 14:00 0.1369 1.7179 *
13 14:00 - 16:00 0.0958 1.4638
14 16:00 - 18:00 0.4920 * 2.0918 *
15 18:00 - 20:00 0.2356 1.7032 "
16 20:00 - 22:00 0.3399 # 1.7293 *
17 22:00 - 24:00 0.0444 1.5051
DRIVING HOURS
18 I1st HOUR (<1) 0.1404 0.1325 1.5128
19 2nd HOUR (1 - 2 )**
20 3rd HOUR (2 -3 ) 0.1835 0.1903 . 1.5759
21 4th HOUR (3 -4) 0.0040 0.0143 1.4655
22 5th HOUR (4 -5) 0.4481 * 0.4673 * 1.8532 "
23 6th HOUR (5 -6 ) 0.4628 * 0.4872 * 2.1375 *
24 7th HOUR (6 -7) 0.5133 * 0.5290 * 2.1183 *
25 8th HOUR (7 -8) 0.5392 * 0.5670 * 1.9501 *
26 9th HOUR (8 -9) 0.8625 * 0.9119 * 2.3669 *
27 10th HOUR (> =9) 1.8377 * 1.8200 * 3.4343 *
INTERACTIONS
28 (6) & (23) -2.2060 *
29 8) & (24) -2.7526 *
30 (10) & (21) -3.0946 *
31 (10) & (27) -2.6086 *
32 (12) & (23) -2.4369 *
33 (12) & (24) -2.4721 *
34 (14) & (23) -2.8250 °*
35 (14) & (26) -2.9784 *
36 (14) & (27) -2.7428 *
37 (15) & (23) -2.4132 *
38 (17 & (28) -3.1159 *
39 OTHERS -1.4307
LOG-LIKELIHOOD VALUE -2698.74121 -2663.0332 -2641.15161
LIKELIHOOD RATIO TEST 71.41602 43.76318
(v.s. MODEL 1) (v.s. MODEL 2)
DEGREE OF FREEDOM 14 12
CHI-SQUARE (0.95) 23.685 21.026

# t STATISTICS SIGNIFICANT @ o=0.10
* ¢ STATISTICS SIGNIFICANT @ o=0.05
** REFERENCED CATEGORY
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rejection of the hypothesis of driving time as the only covariate.
Time of day alone, without experience, failed to reject the null
hypothesis of no effect as a whole.

Parameter values for driving hours in Model 2 are virtually iden-
tical to Model 1. The baseline hazard fluctuates from the 1st hr to
the 4th hr with no significant difference then increases significantly
until the last hr.

Drivers with experience of more than 10 years have the lowest
accident risk (baseline category). The accident risk of other experi-
ence levels are all significantly different from the baseline. The
highest accident risk occurs when the driving experience is between
1 and 5 years (about 2.2 times higher than for the baseline). The esti-
mated risk increase for drivers with less than or equal to 1 year
experience and those with 5 to 10 years of experience is nearly equal
(about 1.7 times higher than for the baseline category).

Concerning time of day, drivers in the time between 10:00 a.m.
and noon had the lowest risk, so it was defined as the baseline. The
accident risk of driving during 4:00 to 6:00 p.m. is significantly
higher than that of the baseline, beyond a = 0.05. This highest
accident risk may result from a combination of two effects: 4:00 to
6:00 p.m. is the evening rush hour in most major cities, increasing
accident risk because of the likelihood of a collision with another
vehicle; a second effect could be an association with reduced alert-
ness because of a low circadian period for some drivers (21). The
accident risks from midnight to 2:00 a.m., 6:00 to 8:00 a.m., and
8:00 to 10:00 p.m. are also significantly higher than during the base-
line (but at & = 0.10). Two of them involve night driving; the other
involves part of the dawn period.

Inclusion of Interaction Terms

The modeling of interaction terms between time of day and driving
hours is summarized as Model 3 in Table 1. The objective of test-
ing this set of variables is to determine whether certain times of day
are particularly risky (or safe) for driving hours of a particular dura-
tion. This is an examination of the effect of two time-related covari-
ates. The addition of time-related interactions results in Model 3
having a significantly improved goodness-of-fit compared to Model
2. Figure 2 indicates little difference between the two models in a
comparison of their fit to the product limit estimator of Equation 7.
The fit appears good.

Consistent with the previous model, the three categories of
driving experience in Model 3 have significant positive parameters,
and they are of virtually the same magnitude as in Model 2. The
parameters for driving hours are similar to Model 2, but the magni-
tudes change because of the time-related interactions.

All the significant interactions result in the reduction of accident
risk for a specific time of day over time. When interaction terms are
added, four of the times of day that were indifferentiable from the
baseline became significantly higher in risk from the baseline. This
also happened for all three of the marginally significant times of
day. On the basis of these results, there is no question that time of
day and driver hours interact. The interactions thus allow differen-
tiation of times of day of constant elevated risk from those whose
risk varies with driving time.

Nevertheless, some times of day have risks no different from the
baseline, specifically 2:00 to 4:00 a.m. and 2:00 to 4:00 p.m. The
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FIGURE 2 Survival curve for model goodness of fit.



TABLE 2 Survival Model Estimates and Statistics
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NO COVARIATES COEFFICIENT | T VALUE EXP (COEFFICIENT)
AGE
1 <= 39 0.1714 1.5897 1.1869
2 39 - 46**
3 46 - 53 0.0477 0.4369 1.0488
4 > 53 0.1133 1.0273 1.1199
" |EXPERIENCE (year)
5 <=2 0.5873 5.0676 1.7992
6 2-6 0.6428 5.4792 1.9018
7 6-10 0.5988 5.5288 1.8200
8 > 10**
DRIVING PATTERN
9 1 0.1221 0.7881 1.1299
10 2 -0.1995 -1.1266 0.8192
11 3 0.1673 1.0869 1.1821
12 4 -0.0516 -0.3078 0.9497
13 Skx
14 6 0.0511 0.3067 1.0525
15 7 0.1418 0.9021 1.1524
16 8 0.0539 0.3421 1.0554
17 9 0.1068 0.6531 1.1127
OFF-DUTY HOURS
18 <= 10.5%*
19 10.5 - 13.75 -0.1311 -1.2004 0.8772
20 13.75° - 25.75 -0.1411 -1.3239 0.8684
21 > 25.75 -0.2072 -1.8946 0.8129
TIME OF REST (hour)
22 no rest break**
23 <=2 -0.0574 -0.5760 0.9442
24 2-4 -0.2015 -2.0307 0.8175
25 4-6 -0.3747 -3.1971 0.6875
26 6-8 -0.0383 -0.2343 0.9624
27 > 8 -0.9327 -1.2870 0.3935
LOG-LIKELIHOOD VALUE -5066.3731
GLOBAL CHI-SQUARE 81.36
DEGREE OF FREEDOM 22
P-VALUE 0

* t STATISTICS SIGNIFICANT @ o=0.05
** REFERENCED CATEGORY

time period from 10:00 p.m. to midnight also has indistinguishable
risk from the baseline except for a significant and negative interac-
tion with the seventh driving hr. These times of day represent
periods of particularly low risk, and they are, with one exception,
independent of driving time. Other time periods with significant
interactions may have lower risk for some driving times.

The prevalence among the interaction terms of significant inter-
actions with the sixth and seventh driving hours is surprising. On
the basis of the literature, there is no a priori expectation for the
observation of this systematic risk reduction. Additional modeling
of this data set using survival models (29) helps to interpret this
result further.

Table 2 is the output of a survival model estimation. The model
coefficients can be interpreted similarly to a linear regression model.
In this case, positive coefficients imply increased risk of an accident,
negative coefficients a reduced risk. Age, experience, and off-duty
hours before the trip of interest are all listed as categorical variables.

The time of day of multiday driving is characterized by a driving pat-
tern number that is the output of a cluster analysis (/3). Of particu-
lar importance to this discussion is the set of “time of rest” categor-
ical variables, which are used to depict the taking of a rest break
during a particular driving hour. Notice that rest breaks during driv-
ing hours 2 to 4 and 4 to 6 significantly lower accident risk. It appears
that the interaction terms in our logistic regression model are pick-
ing up this rest break effect. The survival model is presented here
strictly to clarify the interpretation of the logistic regression inter-
action terms. The theory of the survival model is thus not important
in this context. The consistency of the effects observed is important.

SUMMARY AND RECOMMENDATIONS

A time-dependent logistic regression model has been formulated
to assess the safety of motor carrier operations. The model is flexi-
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ble, allowing the inclusion of time main effects, time-independent
covariates, time-dependent covariates, and interaction terms. The
model examines accident risk using a data set from a national
less-than-truckload carrier. The model estimates the probability of
having an accident at time interval ¢, subject to surviving (i.e., not
having an accident) until that time interval. Individual accidents
are statistically compared with a random sample of individual
non-accident trips by estimating a logistic regression model with
two outcomes: an accident or non-accident. Covariates tested in
the model include consecutive driving time, driver experience, and
time of day.

Three logistic regression models are estimated, which include
main time effects (driving time), time-independent effects (driving
experience), time-dependent effects (time of day), and a series of
time-related interactions. Driving time has the strongest direct
effect on accident risk. The first 4 hr consistently have the lowest
accident risk and are indistinguishable from each other. Accident
risk increases significantly after the 4th hr, by approximately 50 per-
cent or more, until the 7th hr. The 8th and 9th hr show a further
increase, approximately 80 and 130 percent higher than the first
4 hr. These results are generally consistent with those of Harris and
Mackie (8). ‘

Drivers with more than 10 years driving experience retain a con-
sistently low accident risk; all other categories of driving experience
have a significantly higher risk than this group.

Time of day had an effect on subsequent accident risk, but the
effect was not as strong as for driving experience or driving hours.
Daytime driving, particularly at noon (10:00 a.m. to 12:00 p.m.),
results in a significantly lower risk of an accident. Driving from
4:00 to 6:00 p.m. has an accident risk about 60 percent higher than
the baseline; drivers during the other three significant times of day
also have accident risks about 40 percent higher than those during
the baseline. These three involve night or dawn driving; two of them
are associated with circadian rhythms.

When interactions were included, the accident risk for some
times of day decrease. Particularly, most of the significant interac-
tions fall in the sixth and seventh driving hours. Rest breaks appear
to be associated generally with these risk reductions.

Time-dependent covariates play a key role in accident analysis.
However, the shortage of time-varying data makes it difficult for
a researcher to consider further accident analysis and solutions.
As mentioned earlier, high traffic volume could be one of the
reasons for the highest accident risk occurring between 4:00 and
6:00 p.m. The inclusion of road class (e.g., rural Interstate, urban
local), which is a kind of time-varying risk factor, could greatly
improve understanding of time-related effects. The collection of
this additional time-dependent data becomes an important task in
future research.

The joint study of time of day and driving time is complicated
because driving time intervals could cross more than one time of
day. Although some rules have been provided in this research, the
approach is still rough and could result in some loss of information
and bias in estimation. A more advanced approach is needed to treat
the coding of time of day precisely and completely.

In this research, there is an important assumption that the prior
history of an individual does not influence the outcome. Cupples
et al. (27) used the slope of a risk factor over time to represent the
effect of past history on an outcome. Time of day cannot be treated
in this way because it is a categorical variable. The inclusion of
prior history as a time-dependent covariate, while keeping the
model parsimonious, is an important topic of future research.
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