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A time-dependent logistic regression model has been formulated to 
assess the safety of motor carrier operations. The model estimates the 
probability of having an accident at time interval t, subject to surviving 
(i.e., not having an accident) until that time. Three logistic regression 
models are estimated, which include time main effects (the driving 
time), time-independent effects (experience), time-dependent effects 
(time of day), and a series of time-related interactions. Driving time has 
the strongest direct effect on accident risk. The first 4 hr consistently 
have the lowest accident risk and are indistinguishable from each other. 
Accident risk increases significantly after the 4th hr, by approximately 
50 percent or more, until the 7th hr. The 8th and 9th hr show a further 
increase, approximately 80 and 130 percent higher than the first 4 hr. 
Drivers with more than 10 years of driving experience retain a consis
tently low accident risk; all other categories of driving experience have 
a significantly higher risk. Daytime driving, particularly at the noon 
time (10:00 a.m. to 12:00 noon), results in a significantly lower risk of 
an accident. Drivers at one time of day (4:00 to 6:00 p.m.) have an acci
dent risk about 60 percent higher than those driving during the baseline; 
drivers during the other three significant times of day also experience 
accident risks about 40 percent higher than drivers during the baseline. 
All three times of day involve night or dawn driving; two are associated 
with circadian rhythms. Rest breaks, particularly those taken before the 
6th or 7th hr of driving, appear to lower accident risk significantly for 
many times of day. 

Motor carrier safety has been an area of active study throughout the 
1980s and the early 1990s. Of the factors generally considered in 
safety studies (i.e., driver, vehicle, roadway, and environment), par
ticular attention has been paid to driver-related factors. One major 
study concluded that 65 percent of accidents may be attributable to 
human errors (1). 

Driving fatigue is believed to have a particularly powerful effect 
on commercial vehicle drivers, representing one of the primary 
human factors. Fatigue significantly increases driving errors and 
decreases driver alertness. Two additional studies using restricted 
data bases have found more than 30 percent of heavy truck crashes 
may result from driving fatigue (2,3). Nevertheless, fatigue is a suf
ficiently vague concept in that it has not been precisely defined and 
measured ( 4), a fact that presents difficulties in applying fatigue 
concepts in accident models. Several studies have described factors 
associated with either physiological or psychological components 
of fatigue ( 4-7). 

Driving hours, for one origin-to-destination trip or over several 
trips and multiple days, is often an important element of fatigue. 
Several studies have considered the appropriateness of government
regulated limits on driving hours. These studies seek to identify 
hours that pose higher accident risk and policy changes that could 
result in reduced accident risk (8-14). Although it may seem 
straightforward to account for the influence of driving hours on 
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fatigue, there are many subtleties to be considered. Among those 
already studied in the literature are the effects of the.following: off
duty hours immediately before a trip and multiday driving (13,14); 
heat, noise, and vibration (15); cargo loading and unloading (16); 
patterns of rest in sleeper berths (17); and alcohol and drugs (3, 18). 

This research attempts to contribute to this literature by identify
ing the effects of time of day on accident occurrence. Circadian 
rhythms, which are changes in body function following an approx
imate 24-hr cycle, are of particular importance. Although circadian 
rhythms vary somewhat from person to person, the most common 
pattern is one with a physiological low around 4:00 to 6:00 a.m., 
representing a time of particular risk to drivers. This represents a 
substantial societal risk as a significant amount of truck travel 
occurs at night. 

Several relevant studies have focused on the relationship between 
motor carrier accidents and time of day. Harris and Mackie ( 8) con
cluded that the lowest levels of alertness occur for most drivers 
between midnight and 8:00 a.m. Several additional studies also 
have found elevated involvement or accident risk in this same time 
interval, suggesting a circadian effect (9,17,19,20). Interestingly, 
Hamelin (10) indicated that accident involvement rates generally 
increase throughout the day from a low point around 4:00 to 6:00 
a.m. to a high point from midnight to 2:00 a.m. There is also a sharp 
peak in risk around noon. Another study of automobile drivers 
found that an additional period of decreased alertness occurs in the 
mid-afternoon (21). This research aims at a more explicit quantifi
cation of the effect of time of day on motor carrier accident risk. 

OBJECTIVES 

There is a need to develop quantitative methods to analyze the effect 
of time of day on accident risk. In particular, it is important to 
consider whether the circadian effect plays a major role in motor 
carrier accident risk. One objective of this study is to use time
dependent logistic regression to formulate a quantitative model that 
explicitly includes time of day along with other covariates. The sec
ond objective is to test the model using data from actual trucking 
company operations and to compare the results with those in the 
extant literature. 

LOGISTIC REGRESSION MODEL 

A general formulation for the time-dependent logistic regression 
model is as follows: 

exp [g(X;, t, 13)] 
P;1 = P(Y1; = 11 Y/; = 0 fort' < t, X;)= (1) 

1 + exp [g(X;, t, 13)] 
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in which Y,; is a response variable representing the occurrence 
(Y1; = 1) or nonoccurrence (Y1; = 0) of the event for individual i dur
ing the time interval t. X; is an univariate or multivariate attribute 
vector for this individual, and g(X;, t, ~) denotes some arbitrary 
function of X; and a parameter vector ~ that will be estimated 
(22-25). In accident analysis, the conditional probability expressed 
in Equation 1 is the probability of an accident at time interval t, 
given survival (i.e., no accident) until that time; in other words, the 
model accounts for the survival effect (14). In this case, driving 
time is divided into equal-width intervals. It is not necessary to 
know the exact time of the accident; accuracy to the level of a spe
cific interval (e.g., 30 min or 1 hr) is sufficient. The time interval in 
which the accident occurs or the time interval of successful com
pletion of the trip is recorded. 

The comparable conditional probability of surviving is defined as 

(2) 

A convenient and simple functional form for g(X;, t, ~) is a linear 
combination of the covariates 

r 

g(X;, t, ~)=I ~1X1; 
j=O 

(3) 

The X1; (j = 0, ... , r) are the values of the r covariates for the driv1er 
i. The value of X0; = 1 so that ~o represents an intercept parameter 
in the regression model. 

The full likelihood for the n drivers can be represented by the 
following: 

L = fI( Pit; )Zi II Q;1'; 
i=I Qit; t';sr; 

(4) 

where Z; = 1 for accident driver i, and Z; = 0 otherwise, and t; 

represents the number of time intervals for which driver i is exposed 
to the accident risk. 

Equation 3 can be broken down into the following components: 

r T-1 s-l 

g(X;, t, ~) = L ~JXJi + L ~r+kXki + L ~r+(T-l)+nXni (t;) (5) 
j=O k=l n=l 

The first term of the right-hand side of Equation 5 represents time
independent covariates, the effects of which are assumed to be inde
pendent of time. The second term represents the time main effect (in 
this application, driving time), and x;; represents the kth time inter
val for driving time. A trip with a length of k time intervals would 
be represented by a series of indicator variables with X;; = 1. The 
last term represents the time-dependent covariate (in this applica
tion, time of day). The parameters ~r+<T-l)+n are a series of co
efficients associated with the s intervals used as categories for the 
time-dependent covariate (in this case, 11 categories of time of day). 
A similar model formulation was used elsewhere (14); Equation 5 
represents an extension of the earlier model in that it includes time
dependent covariates. 
. To include the survival effect in the time-dependent logistic 

regression model correctly, several methods to treat time dependent 
covariates have been proposed. One approach (26) specifies a series 
of covariates to represent each time-dependent risk factor for each 
time interval. A nice feature of this method is that it .suggests 
approaches to incorporate change in the underlying risk of an event 
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over time and the prior history of an individual. However, the model 
in this general form could contain so many parameters to be 
estimated that it might be difficult to interpret. 

Another approach (27) uses a parsimonious model to reduce the 
dimensionality of the model and to improve its interpretability. A 
duplication method is developed to overcome the assumption of 
standard logistic regression that restricts each individual to only one 
ultimate outcome. As an example of the method, consider a driver 
with an accident in the third time interval. Three records will be 
generated for this case. For the first two records, the values of the 
response variable are both 0 (non-accident); the value of the 
response variable will be 1 for the third record. For a driver who 
successfully completes a trip through the third interval, three 
records will also be generated; the values of the response variable 
for all three records are 0. The values of the vector of time
independent covariates for this individual will be the same in each 
of the three records, whereas the values of time varying covariates 
will depend on the related time interval. This approach is based on 
the following three important assumptions: 

1. The underlying risk of the events in each time interval is 
assumed the same in this model (e.g., the risk in the first driving 
hour is the same as that in the 9th hr). 

2. Closely related to the first assumption is that risk factors and 
outcome of interest are independent of time; that is, for a particular 
time of day (e.g., 8:00 to 10:00 a.m.) the accident risk for the 1st hr 
of driving is the same as that during the 9th hr of driving. 

3. Only the current status of the risk factor is associated with the 
outcome of the event, prior history is considered unimportant. 

In this research, the approach (27) to treat the repeated measure
ments will be followed, but time will be treated as categorical in the 
model to reflect underlying risk. This relaxes the first assumption of 
Cupples' s model. The second assumption is relaxed by including in 
the model interaction terms to address the potential association 
between driving hours and time of day. 

DATA AND VARIABLE DESCRIPTION 

All data are obtained from a national less-than-truckload firm. The 
company operates "pony express" operations from coast to coast, 
with no sleeper berths. The findings are thus not intended to typify 
the trucking industry as a whole. As the carrier takes reasonable 
steps to adhere to Department of Transportation service hour regu
lations, most drivers in the study can be considered to comply with 
existing limits. The data include accidents and non-accidents from 
the company's national over-the-road operations. 

An accident is defined as "any reported event that results in dam
age to the truck, personal injury, or property damage." Excluded are 
alleged incidents (i.e., those in which someone alleges being struck 
by a truck, but no report was filed or verified by the carrier). The 
severity ranges from minor fender benders to accidents with fatali
ties. A non-accident is defined as "the case in which a driver suc
cessfully completes the designed trip." This is generally called 
"censoring" data because the accident cannot happen after the 
designed trip is finished. 

The time-dependent logistic regression is developed using vari
ables that include the experience of the driver with the firm, the con
secutive hours of driving on the trip in question, and the time of day. 
The consecutive hours of driving are the actual driving time based 
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on the designed trip of interest that restricts the maximum driving 
hours limits until the accident occurs or the trip is completed. The 
off-duty time (short breaks) and the time on-duty without driving 
(intermediate terminal) during this trip are then excluded. 

It is possible for a driver to make several short stops either 
because of feeling tired or because of an intermediate terininal. 
These stops do not end the trip in terms of the measured time dura
tion t; in Equation 4; time will accumulate after the stops until an 
accident or completion of the trip at the destination terminal. The 
driver is not given the option to terminate a trip and simply stop to 
sleep. The truck must reach a destination at a particular time. There
fore, the driving time is either the time to an accident or the time to 
censoring, each of which is independent. 

A problem arises because of the need to code time of day as a 
series of dummy variables to account for possible non-linearities. 
To keep the estimated number of parameters to a reasonable scale, 
2-hr time periods were chosen for time of day. In this case, the first 
interval is midnight to 2:00 a.m.; the twelfth is 10:00 p.m. to 
midnight. Given that driving time data are recorded at the level of 
15 min, raw data on driving time must be converted to a series of 
more aggregate categorical variables of 2-hr duration. Difficulties 
arise because drivers take rest breaks and are off duty for some time 
during a typical day. When these rest breaks and off-duty times 
occur within a 2-hr time category, it is necessary to assign the 
driver as either driving or not driving for that unit of time. 

The rules that determine the coding of the time of day variable 
are as follows 

• If the driver is driving for an entire time of day represented by 
the variable, then the driver is coded as driving during that time of 
day. 

• If a driver's driving time crosses more than one time of day 
period (for example, driving from 1 :45 a.m. to 2:45 a.m.), then the 
most proportional time of day will be coded (in this example from 
2:00 a.m. to 4:00 a.m. as driving; from midnight to 2:00 a.m. as not 
driving). 

• If a particular driving time bisects two time-of-day periods 
exactly, the latter time of day is coded as driving. 

In this research the total number of observations used for model
ing is 1924 cases, of which 694 are accidents and 1230 are non
accidents. Accidents are deliberately oversampled relative to their 
actual occurrence to handle the data more efficiently. Although the 
sampling is a type of case-control method typically used in a retro
spective study, the likelihood function in Equation 4 developed 
for prospective studies can still be applied because the logistic 
regression is adopted in this research (28). 

EMPIRICAL RESULTS 

Overview of Modeling 

An overview of the time-dependent logistic regression models 
developed in this research is shown in Figure 1. Model 1 is devel
oped to assess the underlying hazard of driving time only. A time
independent covariate, driving experience, and a time-varying 
covariate, time of day, are added and estimated in Model 2. A series 
of models is developed to study interactions between time of day 
and driving time. A separate model is developed with Model 2 and 
interaction terms with each time of day separately with all nine cat-
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BASIC MODEL 

Driving Hours as Only Covariate 

MODEL 1 

Driving Hours, 

Time Independent Covariates, 

and 

Time dependent Covariates 

MODEL 2 

1 ~ 

Time Related Interactions with Time of Day 

MODEL3 

FIGURE 1 Modeling structure. 

egories of driving hours. The significant variables are entered 
into one model and a stepwise deletionprocedure used to arrive at 
the model shown as Model 3 (14). The statistical software BMDP 
is used to estimate coefficients and derive appropriate statistics 
concerning model fit. 

Several tests are conducted to assess the significance of variables 
and models. First, a likelihood ratio test for inclusion or exclusion 
of a variable as a whole is used as an exploratory test of variable 
significance (e.g., inclusion of all categories of experience). Second, 
t-statistics are reported for each category of each variable. 

The goodness of fit of a time-dependent logistic regression model 
to the data can be qualitatively assessed by plotting model values as 
a function of driving time against the product limit estimator (PLE) 
of the data (23,24). The survival function for the logistic regression 
is denoted as follows: 

S(t) = II Q;1' (6) 
t'::5t 

and the survival function for the product limit estimator is 

S(t) = II (N11 - D1·)IN11 (7) 
t'::5t 

where N1• is the number of drivers at risk at the beginning of the time 
interval t', and D 1• is the number of drivers having an accident dur
ing that time interval t'. This goodness-of-fit measure has been used 
elsewhere (14). 
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Basic Models 

A basic model that includes only driving hours is shown as Model 
1 in Table 1. The model implicitly assumes that the probability of 
an accident is entirely determined by the driving time and is unaf
fected by other driver attributes. Model 1 is constructed so that there 
is a constant hazard within each hour and varying hazards between 
hours. The positive parameter in each covariate represents an 
increase in the log of the odds ratio or, more simply, an increase in 

TABLE 1 Model Estimates and Statistics 
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the probability of accidents among the drivers in the specific cate
gory of the variable compared with the drivers in the corresponding 
baseline category. The value of the estimated coefficients represent 
the change in the magnitude of the chance of an accident. Accident 
risk is insignificantly different in the first 4 hr but rises steadily 
thereafter to a maximum in the 10th hr. 

Model 2 shows the results of combining Model 1 with driving 
experience and time of day. The likelihood ratio test between Model 
2 and Model 1 is significant beyond a = 0.05, which leads to a 

NO COVARIATES MODEL 1 MODEL 2 MODEL 3 
1 CONSTANT -3.2780 • 

EXPERIENCE (year) 

2 <= 1 
3 1 - 5 
4 5 - 10 
5 > 10•• 

TIME OF DAY 
6 0:00 - 2:00 
7 2:00 - 4:00 
8 4:00 - 6:00 
9 6:00 - 8:00 
10 8:00 - 10:00 
11 10:00 - 12:00•• 
12 12:00 - 14:00 
13 14:00 - 16:00 
14 16:00 - 18:00 
15 18:00 - 20:00 
1 6 20:00 - 22:00 
17 22:00 - 24:00 

DRNING HOURS 
18 1st HOUR ( <1 ) 0.1404 
19 2nd HOUR ( 1 - 2 )** 

20 3rd HOUR ( 2 - 3 ) . 0.1835 
21 4th HOUR ( 3 - 4 ) 0.0040 
22 5th HOUR ( 4 - 5 ) 0.4481 • 
23 6th HOUR ( 5 - 6 ) 0.4628 • 
24 7th HOUR ( 6 - 7 ) 0.5133. 
25 8th HOUR ( 7 - 8 ) 0.5392 • 
26 9th HOUR ( 8 - 9 ) 0.8625 • 

·21 10th HOUR ( > = 9 ) 1 .8377 • 
INTERACTIONS 

28 (6) & (23) 
29 (8) & (24) 
30 (10) & (21) 
3 1 (10) & (27) 
32 (12) & (23) 
33 (12) & (24) 
34 (14) & (23) 
35 (14) & (26) 
36 (14) & (27) 
37 (15) & (23) 
38 (17) & (24) 
39 OTHERS 

LOG-LIKELIHOOD VALUE -2698.74121 
LIKELIHOOD RA TIO TEST 

DEGREE OF FREEDOM 
CHI-SQUARE (0.95) 

# t STATISTICS SIGNIFICANT @ cx.=-0.10 
* t STATISTICS SIGNIFICANT @ a=0.05 
** REFERENCED CATEGORY 

-3.9603 • -5.3635 • 

0.5658 • 0.5553 • 
0.8210 • 0.8087 • 
0.5929 • 0.5852 • 

0.3318 # 1.7938. 
0-.0407 1.3996 
0.2798 1.7563 • 
0.3669 # 1.7277. 
0.2452 1.7509. 

0.1369 1.7179. 
0.0958 1.4638 
0.4920 .. 2.0918 • 
0.2356 1.7032 • 
0.3399 # 1.7293. 
0.0444 1.5051 

0.1325 1.5128 

0.1903 1.5759 
0.0143 1.4655 
0.4673 • 1.8532 .. 
0.4872 • 2.1375* 
0.5290 • 2.1183 .. 
0.5670. 1 .9501 .. 
0.9119. 2.3669 • 
1 .8200 • 3.4343. 

-2.2060 • 
-2.7526 • 
-3.0946 • 
-2.6086 • 
-2.4369. 
-2.4721 • 
-2.8250 .. 
-2.9784 • 
-2.7428 • 
-2.4132 • 
-3. 1159 • 
-1.4307 

-2663.0332 -2641.15161 
71.41602 43.76318 

(v.s. MODEL 1) (v.s. MODEL 2) 
14 12 

23.685 21.026 
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rejection of the hypothesis of driving time as the only covariate. 
Time of day alone, without experience, failed to reject the null 
hypothesis of no effect as a whole. 

Parameter values for driving hours in Model 2 are virtually iden
tical to Model 1. The baseline hazard fluctuates from the 1st hr to 
the 4th hr with no significant difference then increases significantly 
until the last hr. 

Drivers with experience of more than 10 years have the lowest 
accident risk (baseline category). The accident risk of other experi
ence levels are all significantly different from the baseline. The 
highest accident risk occurs when the driving experience is between 
1 and 5 years (about 2.2 times higher than for the baseline). The esti
mated risk increase for drivers with less than or equal to 1 year 
experience and those with 5 to 10 years of experience is nearly equal 
(about 1.7 times higher than for the baseline category). 

Concerning time of day, drivers in the time between 10:00 a.m. 
and noon had the lowest risk, so it was defined as the baseline. The 
accident risk of driving during 4:00 to 6:00 p.m. is significantly 
higher than that of the baseline, beyond ex = 0.05. This highest 
accident risk may result from a combination of two effects: 4:00 to 
6:00 p.m. is the evening rush hour in most major cities, increasing 
accident risk because of the likelihood of a collision with another 
vehicle; a second effect could be an association with reduced alert
ness because of a low circadian period for some drivers (21). The 
accident risks from midnight to 2:00 a.m., 6:00 to 8:00 a.m., and 
8:00 to 10:00 p.m. are also significantly higher than during the base
line (but at ex = 0.10). Two of them involve night driving; the other 
involves part of the dawn period. 

1.0 

0.9 

>-
t:: 

0.8 = ~ 
< 
~ 
0 
~ 

0.7 c.. 

~ 
~ 
> 0.6 ~ 
:::> en 

0.5 
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Inclusion of Interaction Terms 

The modeling of interaction terms between time of day and driving 
hours is summarized as Model 3 in Table 1. The objective of test
ing this set of variables is to determine whether certain times of day 
are particularly risky (or safe) for driving hours of a particular dura
tion. This is an examination of the effect of two time-related covari
ates. The addition of time-related interactions results in Model 3 
having a significantly improved goodness-of-fit compared to Model 
2. Figure 2 indicates little difference between the two models in a 
comparison of their fit to the product limit estimator of Equation 7. 
The fit appears good. 

Consistent with the previous model, ·the three categories of 
driving experience in Model 3 have significant positive parameters, 
and they are of virtually the same magnitude as in Model 2. The 
parameters for driving hours are similar to Model 2, but the magni
tudes change because of the time-related interactions. 

All the significant interactions result in the reduction of accident 
risk for a specific time of day over time. When interaction terms are 
added, four of the times of day that were indifferentiable from the 
baseline became significantly higher in risk from the baseline. This 
also happened for all three of the marginally significant times of 
day. On the basis of these results, there is no question that time of 
day and driver hours interact. The interactions thus allow differen
tiation of times of day of constant elevated risk from those whose 
risk varies with driving time. 

Nevertheless, some times of day have risks no different from the 
baseline, specifically 2:00 to 4:00 a.m. and 2:00 to 4:00 p.m. The 

7 8 9 1 0 

- -PLE 

· ·A· · MODEL2 

--MODEL3 

DRIVING TIME (HOURS) 

FIGURE 2 Survival curve for model goodness of fit. 
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TABLE 2 Survival Model Estimates and Statistics 

NO COVARIATES COEFFICIENT T VALUE EXP (COEFFICIENT) 
AGE 

1 <= 39 0.1714 1.5897 1.1869 
2 39 - 46** 
3 46 - 53 0.0477 0.4369 1.0488 
4 > 53 0.1133 1.0273 1.1199 

EXPERIENCE (year) 
5 <= 2 0.5873 5.0676 * 1. 7992 
6 2 - 6 0.6428 5.4792 * 1.9018 
7 6 - 10 0.5988 5.5288 * 1.8200 
8 > 10** 

DRIVING PATTERN 
9 1 0.1221 0.7881 1.1299 
10 2 -0.1995 -1 .1266 0.8192 
11 3 0.1673 1.0869 1.1821 
12 4 -0.0516 -0.3078 0.9497 
1 3 5** 
14 6 0.0511 0.3067 1.0525 
15 7 0.1418 0.9021 1.1524 
16 8 0.0539 0.3421 1.0554 
17 9 0.1068 0.6531 1.1127 

OFF-DUTY HOURS 
18 <= 10.5** 
19 10.5 - 13.75 -0.1311 -1.2004 0.8772 
20 13.75' - 25.75 -0.1411 -1.3239 0.8684 
2 1 > 25.75 -0.2072 -1.8946 0.8129 

TIME OF REST (hour) 
22 no rest break** 
23 <= 2 -0.0574 -0.5760 0.9442 
24 2 - 4 -0.2015 -2.0307. 0.8175 
25 4 - 6 -0.3747 -3.1971 * 0.6875 
26 6 - 8 -0.0383 -0.2343 0.9624 
27 >8 -0.9327 -1.2870 0.3935 

LOG-LIKELIHOOD VALUE -5066.3731 
GLOBAL CHI-SQUARE 
DEGREE OF FREEDOM 
P-VALUE 

* t STATISTICS SIGNIFICANT @ a.==0.05 

** REFERENCED CATEGORY 

time period from 10:00 p.m. to midnight also has indistinguishable 
risk from the baseline except for a significant and negative interac
tion with the seventh driving hr. These times of day represent 
periods of particularly low risk, and they are, with one exception, 
independent of driving time. Other time periods with significant 
interactions may have lower risk for some driving times. 

The prevalence among the interaction terms of significant inter
actions with the sixth and seventh driving hours is surprising. On 
the basis of the literature, there is no a priori expectation for the 
observation of this systematic risk reduction. Additional modeling 
of this data set using survival models (29) helps to interpret this 
result further. 

Table 2 is the output of a survival model estimation. The model 
coefficients can be interpreted similarly to a linear regression model. 
In this case, positive coefficients imply increased risk of an accident, 
negative coefficients a reduced risk. Age, experience, and off-duty 
hours before the trip of interest are all listed as categorical variables. 

81.36 
22 

0 

The time of day of multiday driving is characterized by a driving pat
tern number that is the output of a cluster analysis (13). Of particu
lar importance to this discussion is the set of "time of rest" categor
ical variables, which are used to depict the taking of a rest break 
during a particular driving hour. Notice that rest breaks during driv
ing hours 2 to 4 and 4 to 6 significantly lower accident risk. It appears 
that the interaction terms in our logistic regression model are pick
ing up this rest break effect. The survival model is presented here 
strictly to clarify the interpretation of the logistic regression inter
action terms. The theory of the survival model is thus not important 
in this context. The consistency of the effects observed is important. 

SUMMARY AND RECOMMENDATIONS 

A time-dependent logistic regression model has been formulated 
to assess the safety of motor carrier operations. The model is ftexi-
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ble, allowing the inclusion of time main effects, time-independent 
covariates, time-dependent covariates, and interaction terms. The 
model examines accident risk using a data set from a national 
less-than-truckload carrier. The model estimates the probability of 
having an accident at time interval t, subject to surviving (i.e., not 
having an accident) until that time interval. Individual accidents 
are statistically compared with a random sample of individual 
non-accident trips by estimating a logistic regression model with 
two outcomes: an accident or non-accident. Covariates tested in 
the model include consecutive driving time, driver experience, and 
time of day. 

Three logistic regression models are estimated, which include 
main time effects (driving time), time-independent effects (driving 
experience), time-dependent effects (time of day), and a series of 
time-related interactions. Driving time has the strongest direct 
effect on accident risk. The first 4 hr consistently have the lowest 
accident risk and are indistinguishable from each other. Accident 
risk increases significantly after the 4th hr, by approximately 50 per
cent or more, until the 7th hr. The 8th and 9th hr show a further 
increase, approximately 80 and 130 percent higher than the first 
4 hr. These results are generally consistent with those of Harris and 
Mackie (8). 

Drivers with more than 10 years driving experience retain a con
sistently low accident risk; all other categories of driving experience 
have a significantly higher risk than this group. 

Time of day had an effect on subsequent accident risk, but the 
effect was not as strong as for driving experience or driving hours. 
Daytime driving, particularly at noon (10:00 a.m. to 12:00 p.m.), 
results in a significantly lower risk of an accident. Driving from 
4:00 to 6:00 p.m. has an accident risk about 60 percent higher than 
the baseline; drivers during the other three significant times of day 
also have accident risks about 40 percent higher than those during 
the baseline. These three involve night or dawn driving; two of them 
are associated with circadian rhythms. 

When interactions were included, the accident risk for some 
times of day decrease. Particularly, most of the significant interac
tions fall in the sixth and seventh driving hours. Rest breaks appear 
to be associated generally with these risk reductions. 

Time-dependent covariates play a key role in accident analysis. 
However, the shortage of time-varying data makes it difficult for 
a researcher to consider further accident analysis and solutions. 
As mentioned earlier, high traffic volume could be one of the 
reasons for the highest accident risk occurring between 4:00 and 
6:00 p.m. The inclusion of road class (e.g., rural Interstate, urban 
local), which is a kind of time-varying risk factor, could greatly 
improve understanding of time-related effects. The collection of 
this additional time-dependent data becomes an important task in 
future research. 

The joint study of time of day and driving time is complicated 
because driving time intervals could cross more than one time of 
day. Although some rules have been provided in this research, the 
approach is still rough and could result in some loss of information 
and bias in estimation. A more advanced approach is needed to treat 
the coding oftime of day precisely and completely. 

In this research, there is an important assumption that the prior 
history of an individual does not influence the outcome. Cupples 
et al. (27) used the slope of a risk factor over time to represent the 
effect of past history on an outcome. Time of day cannot be treated 
in this way because it is a categorical variable. The inclusion of 
prior history as a time-dependent covariate, while keeping the 
model parsimonious, is an important topic of future research. 
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