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Estimation of Safety of Four-Legged 
U nsignalized Intersections 

CARL BELANGER 

In this study, empirical Bayesien methods were applied to the estima­
tion of the safety of four-legged unsignalized intersections. This appli­
cation can be described as a two-step process. First, multivariate mod­
els were developed to estimate the number of accidents from various 
flow functions at these intersections. The best model was obtained from 
the product of major and minor flows, raised to a power. Attempts were 
made to develop models for specific patterns of collisions and to incor­
porate variables other than traffic flow functions to these models. The 
modeling results were then combined with the accident count of a 
four-legged unsignalized intersection to estimate its safety. Results 
were used to identify blackspot locations and to evaluate the effects of 
interventions more accurately. 

In urban areas, more than half of all accidents occur at intersections, 
and the corresponding figure for rural environments is about one­
quarter (J). Given the importance of safety problems at these 
locations and the relatively small portion of the highway network 
they represent, interventions aimed at improving the safety of inter­
sections are desirable. To identify sites that have a potential for 
improvement, knowledge of their long-term mean number of acci­
dents is required. This mean is defined as the "safety" and is denoted 
by m; its estimate is denoted by m. Estimates of m are also needed 
to evaluate the effects of interventions adequately and to determine 
the success of such actions. 

Several methods that have been developed to estimate m are 
based on the number of accidents observed at the site of interest in 
a relatively short period. Because of the rarity of accidents and 
annual variations in the accident count, these estimates are often 
inaccurate. Also, given that sites are generally chosen for treatment 
because of a recent poor accident record, m is often overestimated. 
In these situations, the count of accidents in the period after identi­
fication will generally revert toward its expected value even if no 
treatment is applied to the site. This phenomenon, which is called 
regression to the mean (RTM), introduces significant bias to the 
conclusions of safety studies (2-4). Using longer periods of analy­
sis does not solve the problem because many factors that influence 
m change over time. Consequently, new methods of analysis were 
sought. In the past decade, an approach based on empirical 
Bayesian (EB) methods emerged as a better way of estimating 
safety. More recently, multivariate statistical analysis was proposed 
to enhance the benefits of EB methods. We were interested in using 
these techniques to estimate the safety of unsignalized intersections. 
To ensure a higher level of homogeneity, a subclass was chosen. 
Only four-legged intersections that are signed with two stops on 
minor approaches and have one lane in each direction were selected. 

Ministry of Transportation of Quebec, 700 Rene Levesque Blvd. East, 22nd 
floor, Quebec, Qc., Canada GlR 5Hl. 

DATA 

The detailed information about accidents, traffic fl.ow, and geomet­
ric characteristics needed for this project was only available for a 
few sites that had been the object of a safety analysis in recent years. 
Because these analyses are generally motivated by requests from 
elected officials to improve sites that are perceived as hazardous, 
RTM problems are likely to be present. To improve the accuracy of 
the models, accident data relating to events preceding each site's 
identification wer~ not used. Only the period following the demand 
(the number of accidents in the after period is not subject to RTM 
bias) was considered. With this decision, the establishment of a 
constant period of analysis became impossible because a sufficient 
number of accidents could not be gathered during any fixed period. 
Instead, specific period lengths were determined for each site; 
consequently, this analysis is based on the number of accidents per 
day. The sample for this project consists of 149 intersections located 
in eastern Quebec. 

Accidents were considered pertinent if they occurred within 
30 m of the intersection or were intersection related. A total of 1084 
accidents fulfilled these criteria. Of these, more than 85 percent 
involved two vehicles. The determination of each pattern of colli­
sion and each combination of flows that caused the accident was 
required, but this information, as coded in the accident file, is unre­
liable. The list of patterns provided in the accident report form is not 
exhaustive, and codes are often missing or inconsistent. However, 
by analyzing the microfilm of each accident report, several of these 
problems were corrected. Eighteen patterns of accidents were iden­
tified (Figure 1). Pattern "999" is a miscellaneous category that 
includes single-vehicle accidents, accidents with pedestrians, bicy­
clists, parked vehicles, and reversing vehicles. Right-angle collisions 
represent 42 percent of the accidents with two or more vehicles. 

For each site, a 12-hr count was available, which provided 
estimates of flows for each of the 12 possible maneuvers at a 
four-legged intersection: left turn, through, and right turn on each 
approach. On the basis of data collected from permanent traffic 
counters, these estimates were converted to daily fl.ow estimates that 
are representative of an average day, month, and year of the period 
of analysis. The distribution of flows is shown in Figure 2. It ranges 
from 388 to 15,942 vpd. 

METHODOLOGY 

To reduce the regression-to-the-mean bias, EB estimates use not 
only information from the intersection analyzed but also informa­
tion from a group of intersections having similar characteristics 
(called the reference population). The weight attributed to the ref­
erence population is a function of its homogeneity. A major diffi-
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FIGURE 1 Number of accidents, by pattern. 

culty associated with the use of EB methods consists of defining a 
reference population that is sufficiently homogeneous to be reliable 
and yet large enough to improve the estimation. To alleviate this 
problem, the multivariate approach, as recently proposed by Hauer 
(5) was used. Regression models were first developed to estimate 
the moments E(m) and V AR(m) that describe the distribution of ms 
in an imaginary group of intersections having the same characteris­
tics as the site under analysis. Once E(m) and V AR(m) become 
available, they are combined to the accident history (x) at the inter­
section of interest to obtain the updated estimate of safety [denoted 
E(mlx)] and its variance [denoted VAR(mlx)]. 

E(mlx) = aE(m) + (1 - a)x 

VAR(mlx) = a(l - a)E(m) + (1 - a)2x 

with a= E(m) 
E(m) + V AR(m) 

(1) 

Thus, the major task consisted of developing multivariate mod­
els to estimate E(m) and VAR(m). In this project, modeling was 
undertaken in three stages: (a) development of models relating the 
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FIGURE 2 Distribution of traffic flow per site. 
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total number of accidents to various flow functi<;ms, (b) develop­
ment of models relating accidents of a specific type to various flow 
functions, and ( c) evaluation of the effect of variables other than 
traffic flow. 

Most of the regression theory is based on the assumption that the 
error structure is normal with mean equal to 0 and a constant Vari-

. ance (cr2); however, this hypothesis is not valid in road safety 
analysis because residuals tend to increase with larger fitted values. 
A number of recent studies have concluded that a negative binomial 
type of error is more appropriate to describe the variations in the 
number of accidents at several sites. This choice is based on the 
assumptions that the variations in the number of accidents (x) at any 
particular location can be described by a Poisson process and that 
the variations in the levels of safety (m) in a group of similar inter­
sections can be fitted by a gamma distribution (6). The GLIM soft­
ware (7) was selected to estimate the coefficients of our models 
using a negative binomial error structure consistent with the data. 

The estimation of E(m) is straightforward because it is obtained 
directly from the models, but the estimation of VAR(m) from multi­
variate techniques is less common. It is only recently that a method 
has been proposed to estimate VAR(m) from the regression results, 
using the following empirical relationship (8): 

V AR(m) = E(m)2/k (2) 

The appropriateness of this relationship was confirmed with the 
data. As both V AR(m) and kneed to be estimated, the process must 
be iterative, as explained elsewhere (9). 

GOODNESS OF FIT 

In ordinary least-square regression, the coefficient of determination, 
R2, is frequently used to express the goodness of fit of a model. It 
represents the proportion of variation in the observation that is 
explained by the model and can be calculated in two ways 

R2 = 1 _ ( Unexplained_v~iation) or 
Total vanat10n 

R2 = (Explained variation) 
(Total variation) 

(3) 

However, when the variance is not constant (as with the negative 
binomial distribution), both forms of this equation do not yield 
identical results, and the R2 statistic does not constitute a precise 
estimator of the goodness of fit. Nevertheless, two values of 
"Pseudo R2" have been calculated from Equation 3; they constitute 
a possible range of R2 values. The difficulty arises in that no equiv­
alent measure of goodness of fit has yet been developed and widely 
accepted when the error structure is other than normal. 

McCullagh and Nelder (10) proposed to evaluate the discrepancy 
of a fit based on the deviance or on the generalized Pearson X2 sta­
tistic. Maycock and Hall ( 6) determined that the expected value of 
the scaled deviance for a good model having a negative binomial 
type of error follows a x2 distribution with (n - p) degrees of free­
dom as long as the fitted values are generally larger than 0.5; n is 
the number of observations, and p is the number of estimated 
parameters. Larger than expected values of scaled deviance indicate· 
model deficiencies. The appropriateness of adding parameters to a 
model can be evaluated by comparing decreases in scaled deviance 
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versus decreases in number of degrees of freedom between two 
models. A decrease in ·scaled deviance that exceeds the decrease in 
the number of degrees of freedom justifies the additional complex­
ity of a model. However, when many fitted values are smaller than 
0.5, the expected value of the scaled deviance is considerably less 
than 1 and the x2 comparison cannot be used to evaluate the good­
ness of fit of a model. The Pearson X2 statistic is calculated from 

[x; - E(m;)]2 
Pearson )(l = L; V AR(x;) (4) 

Miaou et al. (11), Bonneson and McCoy (12), and Persaud and 
Dzbik (13) evaluated their models on the basis of this statistic, 
which also follows a x2 distribution. McCullagh and Nelder (JO) 
mentioned that it may not provide adequate results for limited 
amounts of data. Hauer (5) based model evaluations on the maxi­
mum value of the k parameter of Equation 2. Given the relationship 
between E(m) and V AR(m), models with larger values of k provide 
a better overall fit because they have a smaller variance. In this 
research, the evaluation of the adequacy of our models was based 
on the average behavior of these four indicators: k, scaled deviance, 
Pearson X2, and pseudo R2• 

RESULTS 

Models for Total Intersection Accidents 

In the first stage of regression modeling, relationships between the 
total number of accidents and various traffic flow functions were 
explored. To choose functional forms that were coherent with the 
data, the appropriateness of the selected relationships was verified. 
The procedure is illustrated with the simple model of the sum of 
entering vehicles (Q 1 ). A graph of the number of accidents per day 
versus Ql was prepared (Figure 3). Sites were ordered in increas­
ing values of Ql and assembled into groups. Each square on the 
graph represents an average of 15 sites. The relationship between 
these two variables is evident: it is almost linear with a hint of 
downward bend. Regression has been evaluated with the more gen­
eral functional form of Ql raised to a power. The best model is 

Ace/Day = 3.65 x lQ-6 * Ql·s6 
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The fitted curve is also shown in Figure 3. A similar approach has 
been used to develop models that estimate the number of accidents 
from the product of major and minor flows (Fl, F2), the sum of 
products of conflicting flows (Q2), and the sum of weighted prod­
ucts of conflicting flows (Q3). Although various definitions have 
been proposed to describe the notion of conflicting flows, no agree­
ment has yet been reached as to its best representation (14,15). In 
the determination of a conflict index, the concern was to ensure that 
the proposed function provides an adequate representation of acci­
dent occurrence in the population of sites. Accordingly, the conflict 
index consists of the sum of the products of each combination of 
flows that is involved in ten accident patterns responsible for 95 
percent of all collisions involving at least two vehicles. Q2 is calcu­
lated from 

10 p [ ] 
Q2(l) = 6 ~ Fl(i, j, l) * F2(i, j, l) (6) 

where 

i =pattern number, 
j = approach number, 
l =intersection number, and 

p =number of occurrences of the same pattern at each inter­
section. 

Because different patterns of accidents have different probabili­
ties of occurrence, a model that takes into consideration the relative 
risk of a maneuver is likely to provide a better fit than a model allo­
cating the same weight to all products of conflicting flows. To test 
this hypothesis, weighting indexes (WI) have been calculated. 
These weighed indexes are obtained by dividing the total number of 
accidents of a given pattern by the corresponding sum of products 
of contributing flows 

p 149 

I I acc(i, j, l) 
j=l 1=1 

Wl(i) = -p--14-=-9-------- (7) 

L I Fl (i, j, l) * F2(i, j, l) 
j=I 1=1 

Values of the weighting indexes are shown in Table 1. They 
range from 0.08 for rear-end collisions to 4.19 for right-angle colli­
sions. The flow function Q3 becomes 

Q3(Z) = f f Wl(i) * [Fl(i, j, l) * F2(i, j, l)] 
i=I j=I p 

(8) 

Results of total intersection accident models are summarized in 
Table 2. Although ranking obtained from each goodness-of-fit indi­
cator is unique, the product of major and minor flows is generally 
identified as the best functional form. 

Modeling by Type of Accidents 

A logical approach to modeling consists of relating accidents to the 
traffic flows that cause the impact. In our population of sites, right­
angle collisions (Pattern 1) account for 42 percent of all collisions 
involving two or more vehicles, and a specific model has been 
developed for this accident pattern. The pattern second in impor­
tance is angle collisions between a through vehicle and a left-
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TABLE 1 Weighting Factors, by Patterns 

Pattern Number of Weighting 
accidents indexes 

Number Type 

I t-- 403 4.19 

2 ( 125 1.08 

3 f 83 0.08 

4 ~ 73 1.00 

5 f 71 0.91 

6 
Jt 

45 0.49 

7 
( 

31 0.25 

8 
t\t_ 

27 0.35 

9 
_) 

24 0.21 

10 f 21 0.46 

Total 903 

turning vehicle; 125 collisions of this type have been coded. As 
causes of these collisions differ depending upon whether the left­
turning vehicle is located on the minor or the major approach, these 
accidents were subdivided into two groups. The resulting subsets 
were too small to allow the determination of logical relationships 
based on observed trends of the data, and the goodness of fit was 
reduced. Instead of proposing several "intuitive models" that would 
present a poor fit for more than half the data, only right-angle colli­
sions were analyzed in detail, and all remaining collisions were 
grouped into one aggregate model. The resulting tool to evaluate the 
safety of an intersection consists of two models: a right-angle model 
and a remaining patterns model. 

Estimation of Contribution of Additional Features 

To assess whether variables other than traffic could make a signifi­
cant contribution to the explanation of accident occurrence, factors 
were added to the models; these are dummy variables that take 
distinct integer numbers for each specific value of a variable. For 
example, to evaluate the influence of flashing beacons on the 
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observed number of accidents, a two-level factor is created: 0 for 
intersections with flashers and 1 for intersections without flashers. 
If the coefficients of each value of the factor are different, it means 
that the factor has an influence on the total number of accidents. The 
following functional form was used to examine the effect of flash­
ing beacons, sight distance, turning lanes, and speed: 

Ace/day = ho * Fl bl * F2b2 * e(Factor) (9) 

For example, the value of the "flasher factor" for intersections 
that are equipped with this warning device is 0.17, which indicates 
that at the same flow these junctions are expected to have 19 per­
cent more accidents than intersections without such a device. How­
ever, given the magnitude of the standard error of this coefficient 
(0.15), the effect is uncertain. As shown in Table 3, similar results 
were obtained for sight distance, turning lanes, and speed. It should 
be remembered that regression equations provide relationships that 
are associative and not causative. That intersections with flashers 
have on average more accidents does not necessarily mean that bea­
cons reduce the safety. Instead, it could be that they are generally 
installed at intersections that have a poorer safety performance and 
that they do not succeed in making these junctions as safe as other 
similar sites. 

Whenever feasible, it is better to assess the effect of a variable by 
the development of distinct models for each level of a factor. With 
this data, it was possible to do so for the maximum posted speed at 
intersection approaches. Models were developed for the 50 and 90 
km/hr speed limits. Results are summarized in Table 4. 

TABLE 3 Effect of Causal Factors 

Characteristic Factor Value St .... ..1 ... ..1 ... 
error 

Flashing beacon 1: no 0.00 - 3.0 
2: yes 0.17 0.15 

Sight distance 1: <lOOm 0.00 -
2: 100-200m 0.41 0.24 3.3 
3: 200-300m 0.17 0.25 
4: >300m 0.45 0.23 

Turning lanes 1: 2 lanes 0.00 -
2: 2 +RT 0.10 0.16 
3: 2 +LT 0.25 0.20 3.1 
4: 2 +LT+ RT 0.21 0.22 

Speed limit 1: 50 Km/hr 0.00 - 3.6 
2: 90 Km/hr 0.17 0.15 

TABLE 2 Models for "Total Intersection Accidents" 

1 Functional form k Deviance xz Rz 
(d.f.) 

Ace/Day = 3.65*10~ * Q1·86 2.50 168.45 144.01 .42, .50 
(147) 

Ace/Day = 5.59* 10~ * FI-42 * F251 2.95 164.64 135.88 .47, .56 
(146) 

Ace/Day= 4.41*10-5 * Q2.36 2.05 164.75 146.32 .33, .53 
(147) 

Ace/Day = 3.14*10-5 * Q3·45 2.80 166.14 147.04 .50, .50 
(147) 
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TABLE 4 Summary of Results 

Total intersection models 

al) Acc/Day=bo * Qbl 

a2) Acc/Day=bo * Flbl * F2b2 

Pattern models 

b 1) Pattern 1 (Right Angle): 
Ace/Day= ho* EXP(b1 *Fl) * Ftb2 * F2b3 

(50 km/hr and "all speeds") 
Acc/Day=bo * Flbl * F2b2 

(90 km/hr) 

b2) Remaining Patterns: 
Acc/Day=b0 * Flbl * F2b2 

ESTIMATION OF E(m Ix) AND V AR(m Ix) 

With these models it is now possible to estimate the safety of a four­
legged unsignalized intersection when its traffic flow and accident 
history are known. This estimation consists of two steps 

1. Estimation of E(m) and VAR(m) with the multivariate 
models, and 

2. Estimation of E(mlx) and VAR(mlx) from Equation 1. 

The application of the method is shown with the following exam­
ple. Suppose that the traffic flows and accident count at a four­
legged unsignalized intersection are as indicated in Figure 4. 
Depending on the availability of the data, different models can be 
selected to estimate its safety. When· the number of collisions by 
pattern and traffic flow estimates per movement are available, 
Models b 1 and b2 of Table 4 can be used. If instead only the major 
and minor flows are known, Model a2 should be used. In this case, 
the calculation is as follows: 

Step 1: Estimation of E(m) and VAR(m) 

E(m) = (1.07 * 10-5 * 450034 * 2000.49) * 1095 

= 7.74 * 10-3 * 1095 

= 8.48 acc/3 years 

V AR(m) = [(7.74 * IQ-3)2/3.10] * 10952 

= 23 .17 ( acc/3 years )2 

Main road speed limit All 

SO km/hr 90 km/hr 
speeds limits 

b0 =4.59E-6 b0 =4.42E-6 b0 =3.65E-6 
bl=0.83 bl=0.83 bl=0.86 
k =2.70 k =2.70 k =2.50 

b0= 1.07E-5 b0 =3.37E-6 b0 =5.29E-6 
bl=0.34 bl=0.41 bl=0.42 
b2=0.49 b2=0.59 b2=0.51 
k =3.10 k =5.10 k =2.95 

b0 =2.05E-6 b0=6.14E-6 b0 =1.09E-5 
bl=-3.69E-4 bl=0.32 bl =-6.52E-5 
b2=0.57 b2=0.43 b2=0.26 
b3=0.46 b3=0.46 
k =1.95 k =1.40 k =1.50 

b0 =1.97E-6 b0 =1.57E-6 b0 =1.42E-6 
bl=0.59 bl=0.57 bl=0.65 
b2=0.36 b2=0.45 b2=0.35 
k =3.30 k =6.20 k =2.80 

Step 2: Estimation of E(m Ix) and V AR(m Ix) 

E(mlx) = aE(m) + (1 - a)x 

with a = E(m)/[E(m) + Var(m)] 

= 8.48/(8.48 + 23.17) 

= 0.27 

= (0.27 * 8.48) + [(1 - 0.27) * 15] 

= 13.24 acc/3 years 

VAR(mlx) = a(l - a)E(m) + (1 - a)2x 

= (0.27 * (1 - 0.27) * 8.48) + [(l - 0.27)2 * 15] 

= 9.67 (acc/3 years)2 

27 

In this example, the estimate of safety is reduced from 15 to 13.24 
acc/3 years, which corresponds to a RTM correction of 12 percent. 
The larger the difference between the number of accidents at the site 
and the expected value of the reference population, the larger the cor­
rection. Once these estimates are made available, two major tasks 
can be accomplished: identification of entities that require interven­
tion and evaluation of the effects of road safety interventions. 

IDENTIFICATION OF DEVIANT SITES 

A site is selected when the difference between its safety and 
the safety of sites having similar characteristics is unacceptable. 
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Fl= 4500 veh/day 

· F2= 2000 veh/day 

Number of right angle accidents : 7 
Number of accidents of remaining patterns: 8 

FIGURE 4 Numerical example. 

The determination of what is unacceptable should be a function of 
the resources allocated to the correction of deviant sites. The 
process is as follows: 

• Estimate E(m) and VAR(m) from the multivariate models and 
plot the probability density function (pdf) of the reference popula­
tion (gamma distribution). 

• On the basis of this pdf, determine the value of m to be used as 
a point of comparison; the use of the median of the· reference pop­
ulation (P50%) is recommended. 

• Estimate E(mlx) and VAR(mlx) from Equation 1 and plot the 
pdf of the intersection of interest (gamma distribution). 

• On the basis of this pdf, calculate the probability of the mix of 
this intersection being larger than the median of the reference pop­
ulation and decide whether the site is deviant. 

The previous example is continued to illustrate this method. It has 
been estimated that E(m) = 8.48 acc/3 years and V AR(m) = 23.17 
(acc/3 years)2• When the density function is plotted one finds that 
the median of the distribution of ms for an imaginary group of four­
legged unsignalized intersections having a major flow of 4500 vpd 
and a minor flow of 2000 vpd is 7.60 acc/3 years. It was also esti­
mated that intersections with this flow combination that had 15 acci­
dents in the last 3 years have E(mlx) = 13.24 acc/3 years and 
VAR(mlx) = 9.67 (acc/3 years)2• When the corresponding pdf is 
plotted one finds that there is only a 1.9 percent probability for this 
intersection to have m smaller than 7 .60 acc/3 years. In other words, 
there is a 98.1 percent chance that this intersection is less safe than 
50 percent of intersections having similar characteristics; con­
sequently, it is selected for treatment. The result is illustrated in 
Figure 5. 

To facilitate the use of the method, a computer program has been 
developed that estimates the safety of these intersections and iden­
tifies blackspots. Information on this program is available from the 
author. 
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FIGURE 5 Gamma distributions, prior and posterior 
estimates of safety. 

EVALUATION OF EFFECTS OF INTERVENTIONS 

35 

To estimate an intervention's effect on safety, an index of effec­
tiveness (IE) must be calculated. It corresponds to the following 
ratio: 

IE= ~~~~~-S_at_e~ty.___in_th~e_af_te_r~p~e_ri_o_d~~~~~ 
Safety that would have been after, without intervention 

(10) 

The numerator and denominator of this equation need to be esti­
mated adequately. When the number of accidents is large enough to 
minimize the effect of random variations, the count of accidents in 
the after period is a good estimate of the safety after treatment. The 
estimate of what would have been the safety of the entity in the after 
period if the intervention had not been implemented is more diffi­
cult to obtain because it corresponds to a quantity that cannot be 
observed directly. A commonly used estimator of the denominator 
of Equation 10 is the observed number of accidents in the period 
preceding the intervention, but it often leads to an overestimation of 
the benefits of our actions. To improve the accuracy of the denom­
inator, two questions must be answered. 

1. What was the safety of the entity before treatment? 
2. How would the estimate of safety in the before period have 

changed between the before and after period if the intervention had 
not been implemented? 

The safety before treatment at four-legged unsignalized intersec­
tions should be estimated from the multivariate models and the 
knowledge of the number of accidents at the site, as shown in the 
previous example. Between the before and the after period, several 
factors are likely to have changed and to have modified the level of 
safety at the site: traffic, weather, economy, and so forth. The influ­
ence of some factors is unknown and cannot be estimated, but it is 
important to calculate the effect of factors whose influence is 
known. For example, the impact of modifications in traffic flows 
can be estimated from the models. The previous example is contin­
ued to illustrate the method. 

At the same intersection, 11 accidents have been recorded in a 
3-year period following its treatment. In the same period, the average 
daily traffic increased from 4500 to 5000 vehicles/day on the major 
street and from 2000 to 2500 vehicles/day on the minor street. The 
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best estimate of safety in the after period is 11 acc/3 years. Earlier 
it was found that the estimate of the safety of the intersection before 
treatment is 13.24 acc/3 years. To correct for changes in traffic, use 
is made of the Model a2 (Table 4). With the after flows, one would 
expect 9.81 acc/3 years, which represents an increase of 16 percent 
compared with the original level of traffic. Assuming that only traf­
fic flow changes can be taken into consideration, the estimate of 
what would have been the safety of the entity in the after period 
without intervention is equal to (13.24 * 1.16) = 15.36 acc/3 years. 
Accordingly, the index of effectiveness is 

IE= 11/15.36 

= 0.72 

In other words, the treatment at this intersection is estimated to 
be associated with a 28 percent reduction in accidents. However, 
results of similar interventions at several intersections are required 
to increase the accuracy of this estimated effect. 

SUMMARY AND CONCLUSIONS 

In this study, multivariate models have been developed thatcan be 
used to estimate the safety of four-legged unsignalized intersections 
in an EB framework. Multivariate models are used to estimate the 
moments E(m) and V AR(m) of an "average" intersection; this infor­
mation is then combined with the count of accidents (x) at a specific 
intersection to calculate its updated estimate of safety, as expressed 
by E(mlx) and V AR(mlx). 

This study confirms the applicability of methodological elements 
proposed in recent research. The negative binomial error structure 
was shown to be consistent with the data. Also confirmed by the 
data is the useful empirical relationship between E(m) and V AR(m); 
that is VAR(m) = [E(m)]2/k. 

. Total intersection models and pattern models for three categories 
of speed were developed: 50 km/hr, 90 km/hr, and all speeds. The 
50 and 90 km/hr models are more precise than the all speeds mod­
els and should be used whenever possible. When only the total num­
ber of accidents and entering vehicles on each approach is known, 
total intersection models must be used. However, when accidents 
by pattern and traffic volumes by movements are available, the use 
of pattern models is preferred. They constitute a more powerful tool 
of analysis because they can provide a detailed identification of 
abnormal situations. For example, a site could have a total number 
of accidents not significantly higher than the average total for sim­
ilar sites but show an abnormal frequency of right-angle collisions. 

In practice, both the total intersection models and pattern models 
are of interest. Given that it is unlikely that accidents by pattern and 
detailed traffic flow estimates will be available on a large scale in 
the near future, total accident intersection models could be used as 
a first sieve. Data requirement is not as extensive as with pattern 
models and allows for a wider number of intersections to be con­
sidered initially. Detaile_d information could then be collected on the 
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reduced sample to make possible the use of more precise pattern 
models. 
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