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Highway Accident Data Analysis: 
Alternative Econometric Methods 

PATRICK S. MCCARTHY AND SAMER MADANAT 

The past decade has seen significant advances in econometric modeling 
including the analysis of disaggregate data, the structure of discrete 
response models, the treatment of simultaneity in linear models, the 
specification of models based on pooled time series-cross sectional 
data, and the estimation of models in truncated and censored samples. 
Furthermore, the data sets available in the field of highway safety 
include significant amounts of detailed information. However, to date, 
highway safety analyses using these data sets have not fully exploited 
state-of-the-art econometric methodologies. The applicability of 
recently developed econometric methods to the field of highway safety 
analysis is illustrated. It is anticipated that such applications will 
improve the accuracy of traffic accident models and lead to more effec
tive policies and investment decisions in the area of highway safety. 

Highway safety is an area of research characterized by a disparity 
between data collection and data analysis. At the state and federal 
level, significant amounts of detailed information are routinely col
lected on highway traffic accidents. The amounts and types of data 
collected are of particular interest to the research community 
because they enable the researcher to investigate aspects of 
highway safety using state-of-the-art statistical and econometric 
methodologies. However, despite significant econometric advances 
during the past decade that potentially have important implications 
for improving understanding of factors that affect highway safety, 
there has been relatively little research identifying and evaluating 
the potential gain from these new methodologies. This paper con
stitutes a small step in this direction. 

In the following sections, several areas, including policy en
dogeneity, cross sectional heterogeneity, and small numbers 
problems, are identified that illustrate problems with existing 
methodologies and offer alternative econometric techniques to cor
rect the problem. In addition, other econometric issues including 
sample truncation and ordinality of accident severity data are dis
cussed to illuminate often implicit assumptions associated with 
existing methodologies. 

POLICY ENDOGENEITY AND IDGHW A Y SAFETY 

Consider the following equation: 

t = 1, ... , T (1) 

where 

y, = highway safety outcome (e.g., fatality rate), 
x, = vector of k explanatory (exogenous) variables, 
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e, = error with mean 0 and constant variance 
a = parameter, and 
~ = parameter vector with k elements. 

Assuming away problems of heteroscedasticity and autocorrelation, 
ordinary least squares (OLS) estimates of the unknown parameters 
will be best linear unbiased estimates (BLUE). Assume that the kth 
explanatory variable reflects a policy that was enacted to enhance 
highway safety (e.g., speed limits laws, mandatory seat belt use 
laws, minimum drinking age laws, etc.). If the policy was truly 
exogenous (the original reduction of speed limits in 1975 was a 
response to the oil crisis instead of to highway safety concerns), 
then the resulting parameter estimates will be BLUE. Alternatively, 
however, suppose that the policy was a reaction to concerns about 
highway safety. Then xk, is itself a function of a set of explanatory 
variables including v,. For example, reluctance in the United States 
to increase speeds after the oil crisis ended was a response to the 
life-saving effects of the lower speed limit. In this case, Equation 1 
is actually a system of two equations that can be expressed as 

t = 1, ... , T 

t = 1, ... , T 

where 

xk, = kth explanatory variable in x,, 
z, = vector of k' explanatory variables, 
u, = error term with mean 0 and constant variance, 
'Y = constant term, 
8 = vector of k' parameters, and 

<1> = parameter of the endogenous variable y,. 

(2a) 

(2b) 

If the estimation sample is a time series data set, then one could 
apply Granger causality tests to check for endogeneity between y, 
and xki· Granger (2) and Sims (3) developed tests to evaluate the 
direction of causality. To test the hypothesis that "xk, does not cause 
y1," regress y, on lagged values of y, and lagged values of xk,; run a 
second regression of y, on lagged values of y, only. An F-test based 
upon the error sum of squares in the unrestricted and restricted 
regressions, respectively, can be used to test the null hypothesis. A 
similar set of regressions is run with xk, as the dependent variable 
and lagged values of xk, and y, as the explanatory variables. In this 
case, the null hypothesis is "y, does not cause xk1." To conclude that 
"xk, causes y,," it is necessary that the null hypothesis is rejected in 
the first set of regressions and accepted in the second set of regres
sions. 

If the true state of the world is Equation 2 but the structural rela
tionship between xk, and y, is ignored, then the OLS estimates of 
Equation 1 will produce biased and inconsistent parameter esti
mates (J). To avoid the endogeneity bias, the analyst typically 
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implements either of two strategies, depending upon the objective. 
First, the analyst wants to capture the influence of Yr on xkr but the 
structural relationship between Xkr and Yr is not important. In this 
case, Xkr in Equation 2b is simply substituted in Equation 2a and the 
resulting reduced form equation is estimated. It is important to rec
ognize, however, that in this case the parameter estimates are not 
capturing the structural impacts of the explanatory variables on 
highway safety but instead the combined effects of these variables 
from the system of equations. Second, if one is concerned with the 
structural effect that a particular (endogenous) policy has on high
way safety policy, then the simultaneous structure must be esti
mated and the structural parameters recovered. 

To illustrate, consider the effect that recent relaxation of rural 
Interstate highway speed limits has on highway safety. Although 
enacting higher speed limits reflects a state's underlying demand for 
higher limits, it is also likely that a state's demand for higher speeds 
depends on the extent to which the affected roads are currently safe. 
Define speed law to be a variable that reflects the relaxation of rural 
interstate speed limits. If this variable is entered in an estimating 
equation for highway safety as a dummy variable that equals 0 in 
the 55 mph environment and 1 in a 65 mph post-law environment, 
the resulting estimates could be biased if enactment of relaxed speed 
limits were, at least in part, a response to changes in highway safety 
on the 55 mph roads. If so, the relaxed speed limit on rural Inter
states is endogenous and the coefficient estimate on a speed limit 
dummy variable is biased. 

To account for endogenous effects of highway safety on speed 
limit legislation, consider the following system of three equa
tions (4): 

y = J3 1x1 + a(speed law) + 'YA + e1 

A*= A+ K(y*) (3) 

where 

y = measure of highway safety, 
y* =yin the absence of the relaxed speed limit, 
A = latent variable reflecting attitudes towards relaxed 

speed limits 
A* = latent variable that reflects the demand for speed 

limit relaxation, 
speed limit = dummy variable that equals 1 when the speed limit 

was relaxed and 0 otherwise, 
x 1 = vector of explanatory variables for highway safety, 
Xi = vector of explanatory variables for A, and 

e; (i = 1,2) = error term. The relationship between A* and speed 
law is given by the following: 

A*= A+ K(y*) > 0 = >speed law= 1 

A* =A + K(y*) < 0 = >speed law = 0 

Thus, the hypothesis is that highway safety depends upon a set of 
explanatory variables, Xi. the speed limit, and the state's preferences 
for higher speeds, which depend upon a set of explanatory variables, 
xi. The state's demand for higher speeds, in tum, reflects its atti
tudes toward higher speeds and the incidence of accidents, y*, in the 
lower speed environment. This produces two estimating equations 

(4) 

and 

A* = J3~xi + K[Jj;x1 + 'Y(J3~xi)] + ui 

= K(J3ix1) + (1 + q) J3~xi + ui 
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(5) 

where u1 = e1 + aei and ui = ei + Ke1• Estimation is a two-step 
process. First, Equation 5 is estimated where A* is replaced with 
speed law. The predicted value of the dependent variable in Equa
tion 5, speed law, gives the demand for relaxing the speed limit and 
replaces speed law in the estimating Equation 4. Note that the full 
set of structural parameters can be recovered. From Equation 4, 
estimates of J3i and a are obtained; dividing the coefficient of x 1 in 
Equation 5 by the coefficient of x 1 in Equation 4 gives K; dividing 
the coefficient of xi in Equation 4 by that in Equation 5, and know
ing K, enables one to solve for 'Y; from Equation 4, knowledge of 'Y 
produces J3~. 

In the estimations, the components of x 1 would include standard 
determinants of highway safety (e.g., young drivers per capita, alco
hol consumption, per capita income, and time trend). xi reflects a 
state's attitudes towards raising the speed limit and could be mea
sured by two variables: excess speed, defined as the extent to which 
observed average speeds on 55-mph roads exceed the 55 mph limit, 
and speed variance, the variance of speed on 55-mph roads. Since 
the primary benefit of an increased speed limit is travel time sav
ings, observed average speeds that are above the mandated 55-mph 
limit are tantamount to the driving population revealing its demand 
for higher speeds. This suggests that excess speed is positively cor
related with drivers' sentiments toward raising the speed limit. On 
the other hand, authorities have a responsibility for providing safe 
driving environments and will not be inclined to raise the speed 
limit if it is believed to compromise highway safety. Thus, the net 
effect of excess speed on the demand for raising the speed limit is 
ambiguous and depends upon the magnitudes of these two effects. 

Lave (5) has shown that increases in speed variance, all else con
stant, reduce highway safety. Consistent with this, the demand for 
raising the speed limit would be expected to be negatively related 
to speed variance. 

Using this methodology, Saffer and Grossman (6) estimate a 
model in which highway safety and a state's drinking age policy are 
endogenous. McCarthy and Ziliak (7) use a similar framework to 
analyze the simultaneity between highway safety and the formation 
of Mothers Against Drunk Driving chapters. 

TRUNCATION 

Most analyses of the policy effects on highway safety base these 
results upon an OLS model (simple or reduced form) in which the 
dependent variable is some measure of highway safety. Because 
highway safety policy strives to reduce the incidence of the most 
serious accidents, namely, those involving a fatality, a frequently 
used measure of highway safety is some function of highway fatal
ities (fatal accidents, fatality rate, fatalities per capita.) By limiting 
the analysis to accidents involving a fatality, the sample is truncated 
from below because it excludes observations on all individuals who 
have experienced nonfatal accidents in the sample period. Thus, the 
estimates of the effect of a policy on highway safety are likely to be 
biased. Figure 1 illustrates this graphically. By excluding those 
accidents below severity level SC, the effect of increasing speed on 
highway safety is seen in the figure to bias the slope parameter 
downward and the intercept upward. 
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FIGURE 1 Potential bias from truncation. 

Speed 

To quantify the potential bias, consider a problem in which the 
dependent variable y is highway safety, xis a vector of K indepen
dent variables and 13 is a vector of parameters to be estimated. The 
underlying sample is a cross· section of states or counties. Often
times, an OLS model of the following form is estimated 

Yi= 13'xi + ui i = 1, ... , N 

where ui is a normally distributed error term with 0 mean and con
stant variance. Let y; be measured as the number of fatalities or 
the fatality rate for Cross Section i. Define SC to be the level of trun
cation (e.g., AIS severity level) such that all accidents for which 
Yi :5 SC (e.g., AIS :5 4) are eliminated. The density function for the 
truncated variable Yi is 

(1/cr )<j>[ (yi - 13' xi)/ a] 
g(yi) = 1 - <I> [(SC -13'x;la)] 

=O otherwise 

yi>SC 

(6) 

where cp( ·) and <I>(·) are the density function and the distribution 
function of the standard normal, respectively ( 4). The log
likelihood for this function is given as 

which can be shown to be globally concave. Standard Newton
Raphson techniques can be used to obtain the maximum likelihood 
parameter estimates for 13 and er. Once estimated, the parameter esti
mates are used to obtain the conditional mean and variance of Yi· In 
particular, 

E(y;lyi >SC)= 13'xi + crA.(ti) 

V(yilYi > SC) = cr2[1 - 8(ti)] (7) 
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where A.(t;) = cp(ti)/1 - <l>(t;) and 8(ti) = A.(ti)(A.(t;) - ti) [which lies 
in the open unit interval (J)] and ti= SC - 13' x;la. Thus, the bias is 
crA. (t;), which can be shown to be increasing in SC. By excluding 
accidents with severity levels below SC, the effect of explanatory 
variables, including policy variables, on highway safety will be 
biased. To determine the marginal effect of an increase in xki ( i = 1, 
. . . , I; k = 1, . . . , K), differentiate the conditional mean with 
respect to xki· This gives 

marginal effect of xki = IMl - 8(ti)] (8) 

which is less than 13k since 8(ti) lies between 0 and 1. In the sub
population, the marginal effect of each of the k explanatory vari
ables on Yi is less than the coefficient 13k· 

To illustrate the potential importance of this bias, return to the 
graph showing the effect of increasing speeds on highway safety. If 
the analyst is concerned only with the subpopulation of accidents 
above severity level SC, then the marginal effect identified in Equa
tion 8 is the relevant effect; alternatively, if the objective is to iden
tify the effect for the entire population, then 13k is the relevant effect. 
Thus, an inference on the highway safety effects of higher speeds 
drawn from an analysis based upon a subpopulation of fatal acci
dents will understate the effect if applied to the entire population. 

In the literature, criteria for truncation include accident severity 
(8-10), age of driver (11-14), alcohol involvement (15-17), num
ber of vehicles involved (18), and vehicle size (19-22). 

ENDOGENOUS STRATIFICATION 

A related problem is endogenous stratification. As indicated, most 
models identify fatalities (or fatality rate, fatal accident rate) as a 
measure of highway safety to the general exclusion of other acci
dents (serious injury, minor injury, and property damage accidents). 
In this case, the sample is stratified according to accident severity. 
Lower severity accidents are often undersampled or completely 
absent. A generalization of the truncated sample is to analyze a 
model that identifies various severity strata and their sampled pro
portions. This may be an important stratagem for reducing costs 
because of the size of accident data files (statewide as well as 
nationally). In California, for example, there are more than 500,000 
accidents annually. 

To illustrate, suppose that a researcher uses the regression model 
y; = 13 'xi + u; (i = 1, ... , N) to identify the determinants of 
statewide highway safety. ui is normally distributed with mean 0 
and variance cr2• Instead of obtaining the complete set of accident 
records, the analyst takes a p1 and p2 percent sample of fatal 
(Yi > SC) and nonfatal accidents (yi :5 SC) respectively. Note that 
for the truncated model in the previous section, p 1 percent = 1 and 
P2 percent= 0. 

The density function for Yi is now given as (4) 

yi> SC 

Yi :5 SC (9) 
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where f(y;) is the density of y; in the population. Substituting for f(y;) 
and t; (defined as in the previous section) gives 

p 1 (y; - 13'x;) 
g(y;) = p + (1 - p )<l>(t;) -;; 4> (j 

y;>SC 

_ 1 _!_ cf> (y; - 13' X;) 
p + (1 - p )<l>(t;) (j (j 

Y;::; SC (10) 

where p = (ptlp2). These expressions can be used to form the log
likelihood function, which is then maximized with respect to ~ and 
cr (if p is not known, the log-likelihood function can be maximized 
with respect top as well). The conditional means for this model are 

E(y;lx;, y; >SC)= 13'x; + E(u;IY; >SC) 

QI <f>(t;) 
= t-' X; + <I 1 - <l>(t;) (1 la) 

E(y;lx;, y;::; S) = 13'x; + E(u;ly;::; S) 

Q' <f>(t;) 
= t-' X; - <I <l>(t;) (1 lb) 

and the unconditional mean is a weighted average of the conditional 
means 

I Pt<f>(t;) - P24>(t;) 
E(y;lx;) = ~ X; + cr Pt [1 - <l>(t;)] + pz<l>(t;) 

= 13' X; + <I -y(t;) (12) 

Similar to the comments made in the previous section, depending 
on whether the analyst is concerned about the marginal effect of xk; 

on the estimation subpopulation or its effect on the entire popula
tion, the appropriate marginal effect is obtained by differentiating 
Equations 11 and 12, respectively, with respect to xki· It can be 
shown that the marginal effect of the unconditional mean with 
respect to xk; is ~k [1 - B'(t;)] where B'(t;) equals -y(t;) ['Y(t;) - t;], 
which is similar to the expression for B(t;) given below Equation 7. 
Also note that if Pt = 1 and p2 = 0, then the marginal effect obtained 
from Equation 12, ~k [1 - B'(t;)] is identical to the conditional mar
ginal effect (Equation 8) for the truncated model in the previous sec
tion. That is, B'(t;) = B(t;). 

Although this would appear to be a useful procedure for obtain
ing meaningful highway safety results while reducing the effort and 
computational burden associated with analyzing statewide or 
national accident records, the authors are not aware of any studies 
in the highway safety literature that use this methodology. 

CROSS SECTION-TIME SERIES 

Continuous Dependent Variable 

State and national highway agencies routinely collect highway 
safety data that are organized into monthly and annual reports. In 
that these reports often discriminate by state, by county within state, 
by type of road, by various socioeconomic characteristics, and 
along numerous other dimensions, the information represents a 
panel of data-a time series of data across a set of cross section 
units. 
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When a time series of cross sections is available, ordinary least 
is generally not appropriate because it ignores the heterogeneity in 
the cross-sectional units. There are generally two methodologies 
for estimating panel data. First, a fixed-effects approach includes 
dummy variables for each of the cross-sectional units. This model 
assumes that differences between cross-sectional units can be cap
tured by a parametric shift in the regression line. If all cross
sectional units are represented in the sample (e.g., all states in the 
nation, all vehicle types, all times of day), then a fixed-effects 
approach may be appropriate because it embodies all the differ
ences among the cross-sectional units. However, if the cross sec
tions represent a sample from a larger population (e.g., a subset of 
states), then it may be more appropriate to assume that the cross
sectional heterogeneity is randomly distributed across cross
sectional units. This latter approach represents a random effects 
specification. 

In general, a cross section-time series model can be expressed as 

k 

Yit = O'. + I ~j X;1,j + Eil + 'Tl; 
j=t 

where 

(13) 

y;, (i = 1, ... , N; t = 1, ... , T) =highway safety outcome for 
cross section i and time period t, 

x;t,j (i = 1, ... , N; t = 1, ... , T;j = 1, ... , k) = jth explanatory 
variable for cross section i and time period t, 

a = constant term and ~/j = 1, ... , k) is a parameter that 
reflects the marginal effect of the jth explanatory variable on 
the highway safety outcome, 

E;i = error term associated with cross section i and time period t 
with mean 0 and constant variance, and 

'Tl; = term specific to cross section i. 

In the absence of any cross-sectional heterogeneity, 'Tl; is equal to 
0, and OLS is used to estimate the model. For a fixed-effects spec
ification, 'Tl; is a parameter that is estimated along with ~j' where 'Tl; 
represents a parallel shift in the regression line for cross-section unit 
i. In a random effects model, 'Tl; is assumed to be a random term with 
mean 0 and constant variance that is specific to cross section unit i. 
Notice that cross-sectional heterogeneity is confined to the error 
term in the random effects model, whereas in the fixed effects model 
it is explicitly represented as a parametric shift in the regres
sion line. 

In general, there are advantages and disadvantages to either 
approach. A fixed-effects specification entails a potentially large 
decrease in degrees of freedom if there are a high number of cross 
sections in the sample. In addition, fixed effects models cannot be 
estimated if any of the explanatory variables is constant throughout 
the sample period. On the other hand, if the fixed effects parameters 
are correlated with the included variables but omitted from the 
model, then a random effects specification leads to biased parame
ter estimates (23). Hausman (24) developed a specification test, 
based on a chi-squared statistic, to test the null hypothesis that the 
cross section-specific parameters in a fixed effects model are inde
pendent of the included explanatory variables. Accepting the null 
hypothesis would be consistent with a random effects specification, 
whereas rejecting the null hypothesis would argue for a fixed effects 
specification. 

There have been a number of recent examples in the literature 
(14, 16, 17) of panel data analyses using accident data. 
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Discrete Dependent Variable 

An interesting variation of that problem occurs when the dependent 
variable takes on very small integer values. For example, suppose a 
researcher is interested in modeling the incidence of countywide 
alcohol-related fatal accidents or countywide fatal accidents among 
teenagers. If this study were undertaken by state transportation 
departments, it is likely that in many states there would be a large 
number of counties in which very few or no fatal accidents 
occurred. As an example, consider Indiana, which has 92 counties. 
In 1989, there were 99 alcohol-related fatal accidents and 2923 
alcohol-related injury accidents statewide, which represents an 
average of just over 1 and 31 alcohol-related fatal accidents and 
injury accidents, respectively. 

One methodology for modeling these accidents is to estimate a 
logit model that defines the dependent variable y;1 to be one if an 
accident in cross section i and time period t involved a fatality and 
0 otherwise. In particular, the probability of a fatal accident is given 
by 

ef3'xit 
P(fatal accident)= P(y;1 = 1) = -~'--

1 + ef3'xit 

i = 1, ... , N; t = 1, ... , T (14) 

Similar to the continuous case discussed, if the cross-section units 
are heterogeneous and the heterogeneity is ignored, then estimating 
Equation 14 will lead to inconsistent parameter estimates. 

Consider an alternative model that incorporates cross-sectional 
parameters, a; (i = 1, ... , N) to reflect the underlying heterogene
ity. Then Equation 14 becomes 

i = 1, ... , N; t = 1, ... , T (15) 

For large N and small T ( ~5) Chamberlain (25) devised a method 
for estimating this model that is based on conditional maximum 
likelihood functions that do not depend on the heterogeneity pa
rameters. Moreover, on the basis of a Hausman test of the null 
hypothesis that the cross-section units are homogeneous, it is pos
sible to test a standard logit specification in Equation 14 against the 
alternative specification given by Equation 15. 

To date, the authors are aware of no studies in highway safety 
using a panel lo git methodology. 

MODELS WITH ORDINAL DEPENDENT 
VARIABLES 

Accident data generally obtained from police records are disaggre
gate data. However, when such data are used to analyze the effect 
of various factors on accident severity, they are usually aggregated 
and analyzed by using classical statistical methods such as multi
variate regression. These methods are limited to the analysis of con
tinuous variables, such as the total number of accidents, or the total 
number of fatalities and hence require that the data on individual 
accidents be aggregated before analysis. This is especially the case 
when accident data are recorded on an ordinal instead of a continu-
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ous scale. For example, the National Safety Council (26) devised a 
scheme for injury classification-no injury, possible injury, non 
incapacitating injury, incapacitating injury, and fatal injury. 

With such a scale, an order is established between different cat
egories of injury, but the distance between any two numbers on the 
scale is of unknown size. As such, these data cannot be analyzed by 
using traditional statistical methods, except by aggregation and sub
sequent loss of information. 

In a recent paper, Nassar et al. (27) proposed using a sequential 
logit approach for modeling accident severity using disaggregate 
accident data. Such a model structure implies that an accident 
moves up the scale of severity, starting from the least severe. After 
each move, the accident either moves up one more notch or stays at 
its current level of severity. By assuming independence across error 
terms of the different lo git models, the authors end with a model that 
is a product of binary logits. Each logit model is of the form 

P(SmlS@m-1) = ---""-------
1 + exp(L ~1mX1m) 

(16) 

P(Sm I S@m- 1) = probability of experiencing injury severity level m 
given that the impact is sufficient to produce at 
least an injury of severity level m - 1. 

X1m = impact of factor j on severity level m. 
~Jm = coefficient associated with factor j on severity 

level m. 

With such a modeling approach, the richness of information 
available at the disaggregate level is exploited. Sequential choice 
models, however, are restrictive in the sense that they assume inde
pendence of the error terms across moves, for each accident, which 
may be an unrealistic assumption. 

To relax the assumption of independence that the sequential logit 
approach imposes on the error terms, models with ordinal depen
dent variables such as the ordered logit should be used. Such an 
approach was specifically developed for models in which the 
dependent variable is ordinal, such as the accident severity ratings 
described (28). These models do not assume that the observed rat
ing is the result of a sequence of move-ups; instead, the assumption 
is that the ratings represent a discretization of an underlying latent 
severity scale that is continuous. By using such an approach, it is 
possible to estimate jointly the parameters of the different severity 
factors and the thresholds that separate the successive severity rat
ings on the underlying latent scale. Mathematically, let the contin
uous underlying accident severity be denoted by y*. Then, we have 
that 

where 

J0 = impact factor j, 
~1 = coefficient associated with factor j, and 
E = random disturbance. 

The process giving rise to the observed severity levels Sm 
(m = 1, ... , M) may be viewed in terms of y* crossing some of the 
M - 1 threshold values. Specifically, we have that 
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m = 1 if -00 < I ~jxj + E < ti 

• 
• 
• 

m = M if tZ- 1 <I BjXj + E < +oo 

Thus, the probability of observing an injury severity Sm is 

P(Sm) = P(t':.- 1 <I ~jXj + E < t'(:.) 
= P(E < t:i; ~ I ~jXj) - P(E < t':.-1 - I ~jXj) 

If the error terms E's are independently and identically distributed 
logistically, then the probabilities of various severity are given by 
an ordered logit model (28). 

CONCLUSION 

An overview has been presented of the potential application of 
some recent developments in econometric methodology to the field 
of highway safety analysis. Although no empirical work was pre
sented, the data required to perform the analyses discussed are read
ily available to highway safety researchers. 

In addition to the presented methodologies, there have been other 
modeling techniques, including empirical Bayesian analysis and 
Poisson methodologies (and variants thereof), which have been suc
cessfully although not frequently used to study the effect of traffic 
improvements at highway intersections (29-32). However, because 
these techniques are more familiar to traffic safety analysts than 
those identified here, they have been omitted from the overview. 

Because major policy and investment decisions are often made 
by state and federal agencies on the basis of the results of highway 
safety analyses, the importance of accuracy in such analyses can 
hardly be overemphasized. By using state-of-the-art econometric 
methods such as those described herein, researchers can improve 
the level of accuracy in highway safety analysis. 
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