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Foreword 

Crash data are a central source of information for a wide variety of roadway and traffic safety activi
ties, ranging from policy to planning and design to countermeasures to evaluation. The papers in this 
volume are equally far ranging in dealing with traffic records and accident analysis. Modeling of car
rier accident risk is done by Lin et al. Kim et al. explore crash type and injury in Hawaii. Zegeer et al. 
delve into a little-studied area: commercial bus accidents and the related roadway conditions. The next 
three papers deal with roadway hardware and safety. Belanger develops a method for estimating the 
safety of four-legged unsignalized intersections. Hauer et al. study the effects of two types of road 
resurfacing programs on subsequent crashes. In this study innovative statistical techniques that will be 
of use in other types of safety evaluations are used. The extensive data currently being collected with 
WIM devices are explored for uses in various safety related analyses (e.g., exposure data) by Hajek 
et al. McCarthy and Madanat illustrate the applicability of recently developed econometric methods 
in highway safety analysis. These applications can improve traffic accident model accuracy with posi
tive benefits on safety policy and investment decisions. In the final paper Kim and Nitz discuss the use 
of automated software for linking records in traffic records analysis. 

v 
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Time of Day Models of Motor Carrier 
Accident Risk 

Tzuoo-DING LIN, PAUL P. JOVANIS, AND CHUN-ZIN YANG 

A time-dependent logistic regression model has been formulated to 
assess the safety of motor carrier operations. The model estimates the 
probability of having an accident at time interval t, subject to surviving 
(i.e., not having an accident) until that time. Three logistic regression 
models are estimated, which include time main effects (the driving 
time), time-independent effects (experience), time-dependent effects 
(time of day), and a series of time-related interactions. Driving time has 
the strongest direct effect on accident risk. The first 4 hr consistently 
have the lowest accident risk and are indistinguishable from each other. 
Accident risk increases significantly after the 4th hr, by approximately 
50 percent or more, until the 7th hr. The 8th and 9th hr show a further 
increase, approximately 80 and 130 percent higher than the first 4 hr. 
Drivers with more than 10 years of driving experience retain a consis
tently low accident risk; all other categories of driving experience have 
a significantly higher risk. Daytime driving, particularly at the noon 
time (10:00 a.m. to 12:00 noon), results in a significantly lower risk of 
an accident. Drivers at one time of day (4:00 to 6:00 p.m.) have an acci
dent risk about 60 percent higher than those driving during the baseline; 
drivers during the other three significant times of day also experience 
accident risks about 40 percent higher than drivers during the baseline. 
All three times of day involve night or dawn driving; two are associated 
with circadian rhythms. Rest breaks, particularly those taken before the 
6th or 7th hr of driving, appear to lower accident risk significantly for 
many times of day. 

Motor carrier safety has been an area of active study throughout the 
1980s and the early 1990s. Of the factors generally considered in 
safety studies (i.e., driver, vehicle, roadway, and environment), par
ticular attention has been paid to driver-related factors. One major 
study concluded that 65 percent of accidents may be attributable to 
human errors (1). 

Driving fatigue is believed to have a particularly powerful effect 
on commercial vehicle drivers, representing one of the primary 
human factors. Fatigue significantly increases driving errors and 
decreases driver alertness. Two additional studies using restricted 
data bases have found more than 30 percent of heavy truck crashes 
may result from driving fatigue (2,3). Nevertheless, fatigue is a suf
ficiently vague concept in that it has not been precisely defined and 
measured ( 4), a fact that presents difficulties in applying fatigue 
concepts in accident models. Several studies have described factors 
associated with either physiological or psychological components 
of fatigue ( 4-7). 

Driving hours, for one origin-to-destination trip or over several 
trips and multiple days, is often an important element of fatigue. 
Several studies have considered the appropriateness of government
regulated limits on driving hours. These studies seek to identify 
hours that pose higher accident risk and policy changes that could 
result in reduced accident risk (8-14). Although it may seem 
straightforward to account for the influence of driving hours on 
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fatigue, there are many subtleties to be considered. Among those 
already studied in the literature are the effects of the.following: off
duty hours immediately before a trip and multiday driving (13,14); 
heat, noise, and vibration (15); cargo loading and unloading (16); 
patterns of rest in sleeper berths (17); and alcohol and drugs (3, 18). 

This research attempts to contribute to this literature by identify
ing the effects of time of day on accident occurrence. Circadian 
rhythms, which are changes in body function following an approx
imate 24-hr cycle, are of particular importance. Although circadian 
rhythms vary somewhat from person to person, the most common 
pattern is one with a physiological low around 4:00 to 6:00 a.m., 
representing a time of particular risk to drivers. This represents a 
substantial societal risk as a significant amount of truck travel 
occurs at night. 

Several relevant studies have focused on the relationship between 
motor carrier accidents and time of day. Harris and Mackie ( 8) con
cluded that the lowest levels of alertness occur for most drivers 
between midnight and 8:00 a.m. Several additional studies also 
have found elevated involvement or accident risk in this same time 
interval, suggesting a circadian effect (9,17,19,20). Interestingly, 
Hamelin (10) indicated that accident involvement rates generally 
increase throughout the day from a low point around 4:00 to 6:00 
a.m. to a high point from midnight to 2:00 a.m. There is also a sharp 
peak in risk around noon. Another study of automobile drivers 
found that an additional period of decreased alertness occurs in the 
mid-afternoon (21). This research aims at a more explicit quantifi
cation of the effect of time of day on motor carrier accident risk. 

OBJECTIVES 

There is a need to develop quantitative methods to analyze the effect 
of time of day on accident risk. In particular, it is important to 
consider whether the circadian effect plays a major role in motor 
carrier accident risk. One objective of this study is to use time
dependent logistic regression to formulate a quantitative model that 
explicitly includes time of day along with other covariates. The sec
ond objective is to test the model using data from actual trucking 
company operations and to compare the results with those in the 
extant literature. 

LOGISTIC REGRESSION MODEL 

A general formulation for the time-dependent logistic regression 
model is as follows: 

exp [g(X;, t, 13)] 
P;1 = P(Y1; = 11 Y/; = 0 fort' < t, X;)= (1) 

1 + exp [g(X;, t, 13)] 



2 

in which Y,; is a response variable representing the occurrence 
(Y1; = 1) or nonoccurrence (Y1; = 0) of the event for individual i dur
ing the time interval t. X; is an univariate or multivariate attribute 
vector for this individual, and g(X;, t, ~) denotes some arbitrary 
function of X; and a parameter vector ~ that will be estimated 
(22-25). In accident analysis, the conditional probability expressed 
in Equation 1 is the probability of an accident at time interval t, 
given survival (i.e., no accident) until that time; in other words, the 
model accounts for the survival effect (14). In this case, driving 
time is divided into equal-width intervals. It is not necessary to 
know the exact time of the accident; accuracy to the level of a spe
cific interval (e.g., 30 min or 1 hr) is sufficient. The time interval in 
which the accident occurs or the time interval of successful com
pletion of the trip is recorded. 

The comparable conditional probability of surviving is defined as 

(2) 

A convenient and simple functional form for g(X;, t, ~) is a linear 
combination of the covariates 

r 

g(X;, t, ~)=I ~1X1; 
j=O 

(3) 

The X1; (j = 0, ... , r) are the values of the r covariates for the driv1er 
i. The value of X0; = 1 so that ~o represents an intercept parameter 
in the regression model. 

The full likelihood for the n drivers can be represented by the 
following: 

L = fI( Pit; )Zi II Q;1'; 
i=I Qit; t';sr; 

(4) 

where Z; = 1 for accident driver i, and Z; = 0 otherwise, and t; 

represents the number of time intervals for which driver i is exposed 
to the accident risk. 

Equation 3 can be broken down into the following components: 

r T-1 s-l 

g(X;, t, ~) = L ~JXJi + L ~r+kXki + L ~r+(T-l)+nXni (t;) (5) 
j=O k=l n=l 

The first term of the right-hand side of Equation 5 represents time
independent covariates, the effects of which are assumed to be inde
pendent of time. The second term represents the time main effect (in 
this application, driving time), and x;; represents the kth time inter
val for driving time. A trip with a length of k time intervals would 
be represented by a series of indicator variables with X;; = 1. The 
last term represents the time-dependent covariate (in this applica
tion, time of day). The parameters ~r+<T-l)+n are a series of co
efficients associated with the s intervals used as categories for the 
time-dependent covariate (in this case, 11 categories of time of day). 
A similar model formulation was used elsewhere (14); Equation 5 
represents an extension of the earlier model in that it includes time
dependent covariates. 
. To include the survival effect in the time-dependent logistic 

regression model correctly, several methods to treat time dependent 
covariates have been proposed. One approach (26) specifies a series 
of covariates to represent each time-dependent risk factor for each 
time interval. A nice feature of this method is that it .suggests 
approaches to incorporate change in the underlying risk of an event 
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over time and the prior history of an individual. However, the model 
in this general form could contain so many parameters to be 
estimated that it might be difficult to interpret. 

Another approach (27) uses a parsimonious model to reduce the 
dimensionality of the model and to improve its interpretability. A 
duplication method is developed to overcome the assumption of 
standard logistic regression that restricts each individual to only one 
ultimate outcome. As an example of the method, consider a driver 
with an accident in the third time interval. Three records will be 
generated for this case. For the first two records, the values of the 
response variable are both 0 (non-accident); the value of the 
response variable will be 1 for the third record. For a driver who 
successfully completes a trip through the third interval, three 
records will also be generated; the values of the response variable 
for all three records are 0. The values of the vector of time
independent covariates for this individual will be the same in each 
of the three records, whereas the values of time varying covariates 
will depend on the related time interval. This approach is based on 
the following three important assumptions: 

1. The underlying risk of the events in each time interval is 
assumed the same in this model (e.g., the risk in the first driving 
hour is the same as that in the 9th hr). 

2. Closely related to the first assumption is that risk factors and 
outcome of interest are independent of time; that is, for a particular 
time of day (e.g., 8:00 to 10:00 a.m.) the accident risk for the 1st hr 
of driving is the same as that during the 9th hr of driving. 

3. Only the current status of the risk factor is associated with the 
outcome of the event, prior history is considered unimportant. 

In this research, the approach (27) to treat the repeated measure
ments will be followed, but time will be treated as categorical in the 
model to reflect underlying risk. This relaxes the first assumption of 
Cupples' s model. The second assumption is relaxed by including in 
the model interaction terms to address the potential association 
between driving hours and time of day. 

DATA AND VARIABLE DESCRIPTION 

All data are obtained from a national less-than-truckload firm. The 
company operates "pony express" operations from coast to coast, 
with no sleeper berths. The findings are thus not intended to typify 
the trucking industry as a whole. As the carrier takes reasonable 
steps to adhere to Department of Transportation service hour regu
lations, most drivers in the study can be considered to comply with 
existing limits. The data include accidents and non-accidents from 
the company's national over-the-road operations. 

An accident is defined as "any reported event that results in dam
age to the truck, personal injury, or property damage." Excluded are 
alleged incidents (i.e., those in which someone alleges being struck 
by a truck, but no report was filed or verified by the carrier). The 
severity ranges from minor fender benders to accidents with fatali
ties. A non-accident is defined as "the case in which a driver suc
cessfully completes the designed trip." This is generally called 
"censoring" data because the accident cannot happen after the 
designed trip is finished. 

The time-dependent logistic regression is developed using vari
ables that include the experience of the driver with the firm, the con
secutive hours of driving on the trip in question, and the time of day. 
The consecutive hours of driving are the actual driving time based 
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on the designed trip of interest that restricts the maximum driving 
hours limits until the accident occurs or the trip is completed. The 
off-duty time (short breaks) and the time on-duty without driving 
(intermediate terminal) during this trip are then excluded. 

It is possible for a driver to make several short stops either 
because of feeling tired or because of an intermediate terininal. 
These stops do not end the trip in terms of the measured time dura
tion t; in Equation 4; time will accumulate after the stops until an 
accident or completion of the trip at the destination terminal. The 
driver is not given the option to terminate a trip and simply stop to 
sleep. The truck must reach a destination at a particular time. There
fore, the driving time is either the time to an accident or the time to 
censoring, each of which is independent. 

A problem arises because of the need to code time of day as a 
series of dummy variables to account for possible non-linearities. 
To keep the estimated number of parameters to a reasonable scale, 
2-hr time periods were chosen for time of day. In this case, the first 
interval is midnight to 2:00 a.m.; the twelfth is 10:00 p.m. to 
midnight. Given that driving time data are recorded at the level of 
15 min, raw data on driving time must be converted to a series of 
more aggregate categorical variables of 2-hr duration. Difficulties 
arise because drivers take rest breaks and are off duty for some time 
during a typical day. When these rest breaks and off-duty times 
occur within a 2-hr time category, it is necessary to assign the 
driver as either driving or not driving for that unit of time. 

The rules that determine the coding of the time of day variable 
are as follows 

• If the driver is driving for an entire time of day represented by 
the variable, then the driver is coded as driving during that time of 
day. 

• If a driver's driving time crosses more than one time of day 
period (for example, driving from 1 :45 a.m. to 2:45 a.m.), then the 
most proportional time of day will be coded (in this example from 
2:00 a.m. to 4:00 a.m. as driving; from midnight to 2:00 a.m. as not 
driving). 

• If a particular driving time bisects two time-of-day periods 
exactly, the latter time of day is coded as driving. 

In this research the total number of observations used for model
ing is 1924 cases, of which 694 are accidents and 1230 are non
accidents. Accidents are deliberately oversampled relative to their 
actual occurrence to handle the data more efficiently. Although the 
sampling is a type of case-control method typically used in a retro
spective study, the likelihood function in Equation 4 developed 
for prospective studies can still be applied because the logistic 
regression is adopted in this research (28). 

EMPIRICAL RESULTS 

Overview of Modeling 

An overview of the time-dependent logistic regression models 
developed in this research is shown in Figure 1. Model 1 is devel
oped to assess the underlying hazard of driving time only. A time
independent covariate, driving experience, and a time-varying 
covariate, time of day, are added and estimated in Model 2. A series 
of models is developed to study interactions between time of day 
and driving time. A separate model is developed with Model 2 and 
interaction terms with each time of day separately with all nine cat-
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BASIC MODEL 

Driving Hours as Only Covariate 

MODEL 1 

Driving Hours, 

Time Independent Covariates, 

and 

Time dependent Covariates 

MODEL 2 

1 ~ 

Time Related Interactions with Time of Day 

MODEL3 

FIGURE 1 Modeling structure. 

egories of driving hours. The significant variables are entered 
into one model and a stepwise deletionprocedure used to arrive at 
the model shown as Model 3 (14). The statistical software BMDP 
is used to estimate coefficients and derive appropriate statistics 
concerning model fit. 

Several tests are conducted to assess the significance of variables 
and models. First, a likelihood ratio test for inclusion or exclusion 
of a variable as a whole is used as an exploratory test of variable 
significance (e.g., inclusion of all categories of experience). Second, 
t-statistics are reported for each category of each variable. 

The goodness of fit of a time-dependent logistic regression model 
to the data can be qualitatively assessed by plotting model values as 
a function of driving time against the product limit estimator (PLE) 
of the data (23,24). The survival function for the logistic regression 
is denoted as follows: 

S(t) = II Q;1' (6) 
t'::5t 

and the survival function for the product limit estimator is 

S(t) = II (N11 - D1·)IN11 (7) 
t'::5t 

where N1• is the number of drivers at risk at the beginning of the time 
interval t', and D 1• is the number of drivers having an accident dur
ing that time interval t'. This goodness-of-fit measure has been used 
elsewhere (14). 
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Basic Models 

A basic model that includes only driving hours is shown as Model 
1 in Table 1. The model implicitly assumes that the probability of 
an accident is entirely determined by the driving time and is unaf
fected by other driver attributes. Model 1 is constructed so that there 
is a constant hazard within each hour and varying hazards between 
hours. The positive parameter in each covariate represents an 
increase in the log of the odds ratio or, more simply, an increase in 

TABLE 1 Model Estimates and Statistics 
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the probability of accidents among the drivers in the specific cate
gory of the variable compared with the drivers in the corresponding 
baseline category. The value of the estimated coefficients represent 
the change in the magnitude of the chance of an accident. Accident 
risk is insignificantly different in the first 4 hr but rises steadily 
thereafter to a maximum in the 10th hr. 

Model 2 shows the results of combining Model 1 with driving 
experience and time of day. The likelihood ratio test between Model 
2 and Model 1 is significant beyond a = 0.05, which leads to a 

NO COVARIATES MODEL 1 MODEL 2 MODEL 3 
1 CONSTANT -3.2780 • 

EXPERIENCE (year) 

2 <= 1 
3 1 - 5 
4 5 - 10 
5 > 10•• 

TIME OF DAY 
6 0:00 - 2:00 
7 2:00 - 4:00 
8 4:00 - 6:00 
9 6:00 - 8:00 
10 8:00 - 10:00 
11 10:00 - 12:00•• 
12 12:00 - 14:00 
13 14:00 - 16:00 
14 16:00 - 18:00 
15 18:00 - 20:00 
1 6 20:00 - 22:00 
17 22:00 - 24:00 

DRNING HOURS 
18 1st HOUR ( <1 ) 0.1404 
19 2nd HOUR ( 1 - 2 )** 

20 3rd HOUR ( 2 - 3 ) . 0.1835 
21 4th HOUR ( 3 - 4 ) 0.0040 
22 5th HOUR ( 4 - 5 ) 0.4481 • 
23 6th HOUR ( 5 - 6 ) 0.4628 • 
24 7th HOUR ( 6 - 7 ) 0.5133. 
25 8th HOUR ( 7 - 8 ) 0.5392 • 
26 9th HOUR ( 8 - 9 ) 0.8625 • 

·21 10th HOUR ( > = 9 ) 1 .8377 • 
INTERACTIONS 

28 (6) & (23) 
29 (8) & (24) 
30 (10) & (21) 
3 1 (10) & (27) 
32 (12) & (23) 
33 (12) & (24) 
34 (14) & (23) 
35 (14) & (26) 
36 (14) & (27) 
37 (15) & (23) 
38 (17) & (24) 
39 OTHERS 

LOG-LIKELIHOOD VALUE -2698.74121 
LIKELIHOOD RA TIO TEST 

DEGREE OF FREEDOM 
CHI-SQUARE (0.95) 

# t STATISTICS SIGNIFICANT @ cx.=-0.10 
* t STATISTICS SIGNIFICANT @ a=0.05 
** REFERENCED CATEGORY 

-3.9603 • -5.3635 • 

0.5658 • 0.5553 • 
0.8210 • 0.8087 • 
0.5929 • 0.5852 • 

0.3318 # 1.7938. 
0-.0407 1.3996 
0.2798 1.7563 • 
0.3669 # 1.7277. 
0.2452 1.7509. 

0.1369 1.7179. 
0.0958 1.4638 
0.4920 .. 2.0918 • 
0.2356 1.7032 • 
0.3399 # 1.7293. 
0.0444 1.5051 

0.1325 1.5128 

0.1903 1.5759 
0.0143 1.4655 
0.4673 • 1.8532 .. 
0.4872 • 2.1375* 
0.5290 • 2.1183 .. 
0.5670. 1 .9501 .. 
0.9119. 2.3669 • 
1 .8200 • 3.4343. 

-2.2060 • 
-2.7526 • 
-3.0946 • 
-2.6086 • 
-2.4369. 
-2.4721 • 
-2.8250 .. 
-2.9784 • 
-2.7428 • 
-2.4132 • 
-3. 1159 • 
-1.4307 

-2663.0332 -2641.15161 
71.41602 43.76318 

(v.s. MODEL 1) (v.s. MODEL 2) 
14 12 

23.685 21.026 
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rejection of the hypothesis of driving time as the only covariate. 
Time of day alone, without experience, failed to reject the null 
hypothesis of no effect as a whole. 

Parameter values for driving hours in Model 2 are virtually iden
tical to Model 1. The baseline hazard fluctuates from the 1st hr to 
the 4th hr with no significant difference then increases significantly 
until the last hr. 

Drivers with experience of more than 10 years have the lowest 
accident risk (baseline category). The accident risk of other experi
ence levels are all significantly different from the baseline. The 
highest accident risk occurs when the driving experience is between 
1 and 5 years (about 2.2 times higher than for the baseline). The esti
mated risk increase for drivers with less than or equal to 1 year 
experience and those with 5 to 10 years of experience is nearly equal 
(about 1.7 times higher than for the baseline category). 

Concerning time of day, drivers in the time between 10:00 a.m. 
and noon had the lowest risk, so it was defined as the baseline. The 
accident risk of driving during 4:00 to 6:00 p.m. is significantly 
higher than that of the baseline, beyond ex = 0.05. This highest 
accident risk may result from a combination of two effects: 4:00 to 
6:00 p.m. is the evening rush hour in most major cities, increasing 
accident risk because of the likelihood of a collision with another 
vehicle; a second effect could be an association with reduced alert
ness because of a low circadian period for some drivers (21). The 
accident risks from midnight to 2:00 a.m., 6:00 to 8:00 a.m., and 
8:00 to 10:00 p.m. are also significantly higher than during the base
line (but at ex = 0.10). Two of them involve night driving; the other 
involves part of the dawn period. 

1.0 

0.9 

>-
t:: 

0.8 = ~ 
< 
~ 
0 
~ 

0.7 c.. 

~ 
~ 
> 0.6 ~ 
:::> en 

0.5 

1 2 3 4 5 6 

5 

Inclusion of Interaction Terms 

The modeling of interaction terms between time of day and driving 
hours is summarized as Model 3 in Table 1. The objective of test
ing this set of variables is to determine whether certain times of day 
are particularly risky (or safe) for driving hours of a particular dura
tion. This is an examination of the effect of two time-related covari
ates. The addition of time-related interactions results in Model 3 
having a significantly improved goodness-of-fit compared to Model 
2. Figure 2 indicates little difference between the two models in a 
comparison of their fit to the product limit estimator of Equation 7. 
The fit appears good. 

Consistent with the previous model, ·the three categories of 
driving experience in Model 3 have significant positive parameters, 
and they are of virtually the same magnitude as in Model 2. The 
parameters for driving hours are similar to Model 2, but the magni
tudes change because of the time-related interactions. 

All the significant interactions result in the reduction of accident 
risk for a specific time of day over time. When interaction terms are 
added, four of the times of day that were indifferentiable from the 
baseline became significantly higher in risk from the baseline. This 
also happened for all three of the marginally significant times of 
day. On the basis of these results, there is no question that time of 
day and driver hours interact. The interactions thus allow differen
tiation of times of day of constant elevated risk from those whose 
risk varies with driving time. 

Nevertheless, some times of day have risks no different from the 
baseline, specifically 2:00 to 4:00 a.m. and 2:00 to 4:00 p.m. The 

7 8 9 1 0 

- -PLE 

· ·A· · MODEL2 

--MODEL3 

DRIVING TIME (HOURS) 

FIGURE 2 Survival curve for model goodness of fit. 
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TABLE 2 Survival Model Estimates and Statistics 

NO COVARIATES COEFFICIENT T VALUE EXP (COEFFICIENT) 
AGE 

1 <= 39 0.1714 1.5897 1.1869 
2 39 - 46** 
3 46 - 53 0.0477 0.4369 1.0488 
4 > 53 0.1133 1.0273 1.1199 

EXPERIENCE (year) 
5 <= 2 0.5873 5.0676 * 1. 7992 
6 2 - 6 0.6428 5.4792 * 1.9018 
7 6 - 10 0.5988 5.5288 * 1.8200 
8 > 10** 

DRIVING PATTERN 
9 1 0.1221 0.7881 1.1299 
10 2 -0.1995 -1 .1266 0.8192 
11 3 0.1673 1.0869 1.1821 
12 4 -0.0516 -0.3078 0.9497 
1 3 5** 
14 6 0.0511 0.3067 1.0525 
15 7 0.1418 0.9021 1.1524 
16 8 0.0539 0.3421 1.0554 
17 9 0.1068 0.6531 1.1127 

OFF-DUTY HOURS 
18 <= 10.5** 
19 10.5 - 13.75 -0.1311 -1.2004 0.8772 
20 13.75' - 25.75 -0.1411 -1.3239 0.8684 
2 1 > 25.75 -0.2072 -1.8946 0.8129 

TIME OF REST (hour) 
22 no rest break** 
23 <= 2 -0.0574 -0.5760 0.9442 
24 2 - 4 -0.2015 -2.0307. 0.8175 
25 4 - 6 -0.3747 -3.1971 * 0.6875 
26 6 - 8 -0.0383 -0.2343 0.9624 
27 >8 -0.9327 -1.2870 0.3935 

LOG-LIKELIHOOD VALUE -5066.3731 
GLOBAL CHI-SQUARE 
DEGREE OF FREEDOM 
P-VALUE 

* t STATISTICS SIGNIFICANT @ a.==0.05 

** REFERENCED CATEGORY 

time period from 10:00 p.m. to midnight also has indistinguishable 
risk from the baseline except for a significant and negative interac
tion with the seventh driving hr. These times of day represent 
periods of particularly low risk, and they are, with one exception, 
independent of driving time. Other time periods with significant 
interactions may have lower risk for some driving times. 

The prevalence among the interaction terms of significant inter
actions with the sixth and seventh driving hours is surprising. On 
the basis of the literature, there is no a priori expectation for the 
observation of this systematic risk reduction. Additional modeling 
of this data set using survival models (29) helps to interpret this 
result further. 

Table 2 is the output of a survival model estimation. The model 
coefficients can be interpreted similarly to a linear regression model. 
In this case, positive coefficients imply increased risk of an accident, 
negative coefficients a reduced risk. Age, experience, and off-duty 
hours before the trip of interest are all listed as categorical variables. 

81.36 
22 

0 

The time of day of multiday driving is characterized by a driving pat
tern number that is the output of a cluster analysis (13). Of particu
lar importance to this discussion is the set of "time of rest" categor
ical variables, which are used to depict the taking of a rest break 
during a particular driving hour. Notice that rest breaks during driv
ing hours 2 to 4 and 4 to 6 significantly lower accident risk. It appears 
that the interaction terms in our logistic regression model are pick
ing up this rest break effect. The survival model is presented here 
strictly to clarify the interpretation of the logistic regression inter
action terms. The theory of the survival model is thus not important 
in this context. The consistency of the effects observed is important. 

SUMMARY AND RECOMMENDATIONS 

A time-dependent logistic regression model has been formulated 
to assess the safety of motor carrier operations. The model is ftexi-



Lin etal. 

ble, allowing the inclusion of time main effects, time-independent 
covariates, time-dependent covariates, and interaction terms. The 
model examines accident risk using a data set from a national 
less-than-truckload carrier. The model estimates the probability of 
having an accident at time interval t, subject to surviving (i.e., not 
having an accident) until that time interval. Individual accidents 
are statistically compared with a random sample of individual 
non-accident trips by estimating a logistic regression model with 
two outcomes: an accident or non-accident. Covariates tested in 
the model include consecutive driving time, driver experience, and 
time of day. 

Three logistic regression models are estimated, which include 
main time effects (driving time), time-independent effects (driving 
experience), time-dependent effects (time of day), and a series of 
time-related interactions. Driving time has the strongest direct 
effect on accident risk. The first 4 hr consistently have the lowest 
accident risk and are indistinguishable from each other. Accident 
risk increases significantly after the 4th hr, by approximately 50 per
cent or more, until the 7th hr. The 8th and 9th hr show a further 
increase, approximately 80 and 130 percent higher than the first 
4 hr. These results are generally consistent with those of Harris and 
Mackie (8). 

Drivers with more than 10 years driving experience retain a con
sistently low accident risk; all other categories of driving experience 
have a significantly higher risk than this group. 

Time of day had an effect on subsequent accident risk, but the 
effect was not as strong as for driving experience or driving hours. 
Daytime driving, particularly at noon (10:00 a.m. to 12:00 p.m.), 
results in a significantly lower risk of an accident. Driving from 
4:00 to 6:00 p.m. has an accident risk about 60 percent higher than 
the baseline; drivers during the other three significant times of day 
also have accident risks about 40 percent higher than those during 
the baseline. These three involve night or dawn driving; two of them 
are associated with circadian rhythms. 

When interactions were included, the accident risk for some 
times of day decrease. Particularly, most of the significant interac
tions fall in the sixth and seventh driving hours. Rest breaks appear 
to be associated generally with these risk reductions. 

Time-dependent covariates play a key role in accident analysis. 
However, the shortage of time-varying data makes it difficult for 
a researcher to consider further accident analysis and solutions. 
As mentioned earlier, high traffic volume could be one of the 
reasons for the highest accident risk occurring between 4:00 and 
6:00 p.m. The inclusion of road class (e.g., rural Interstate, urban 
local), which is a kind of time-varying risk factor, could greatly 
improve understanding of time-related effects. The collection of 
this additional time-dependent data becomes an important task in 
future research. 

The joint study of time of day and driving time is complicated 
because driving time intervals could cross more than one time of 
day. Although some rules have been provided in this research, the 
approach is still rough and could result in some loss of information 
and bias in estimation. A more advanced approach is needed to treat 
the coding oftime of day precisely and completely. 

In this research, there is an important assumption that the prior 
history of an individual does not influence the outcome. Cupples 
et al. (27) used the slope of a risk factor over time to represent the 
effect of past history on an outcome. Time of day cannot be treated 
in this way because it is a categorical variable. The inclusion of 
prior history as a time-dependent covariate, while keeping the 
model parsimonious, is an important topic of future research. 
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Analyzing the Relationship Between 
Crash Types and Injuries in Motor Vehicle 
Collisions in Hawaii 

KARL KIM,· LAWRENCE NITZ, JAMES RICHARDSON, AND LEI LI 

A statistical model was developed to explain the relationship between 
types of crashes and injuries sustained in motor vehicle accidents. By 
using techniques of categorical data analysis and comprehensive data 
on crashes in Hawaii during 1990, a model was built to relate the type 
of crash (e.g., rollover, head-on, sideswipe, rear-end, etc.) to a KABCO 
injury scale. An "odds multiplier" was developed that enabled compar
ison according to crash type of the odds of particular levels of injury rel
ative to noninjury. The effects of seat belt use on injury level also were 
examined, and interactions among belt use, crash type, and injury level 
were considered. Differences between crash types and the effectiveness 
of seat belts are discussed along with how log-linear analysis, logit 
modeling, and estimation of "odds multipliers" may contribute to traf
fic safety ~esearch. Some implications of the findings for appropriate 
interventions and future research are presented in a concluding section. 

Over the years, there have been concerted efforts directed at reduc
ing mortality and morbidity associated with traffic collisions. In 
spite of these efforts, automobile crashes still claim thousands of 
lives in America and cost billions of dollars in medical treatments 
and lost wages. The relationships between collisions and injuries 
are complicated by the presence of multiple factors--environmen
tal, behavioral, vehicular, and others. It is sometimes useful to con
sider a causal chain of factors relating background driver charac
teristics to risk-taking behaviors, then to interactions among the 
driver, vehicle, and environment, thereby producing explanations of 
how accidents occur and what are some of the related health or eco
nomic outcomes. This study focuses narrowly on the relationship 
between crash type and injury level as an initial step toward devel
oping a more complicated model of the structure of automobile 
crashes and injury outcomes. 

The relationship between crash type and injury is one that 
deserves further inspection for several reasons. Obviously, all col
lisions are not the same-at least not in terms of the chance of injury 
or fatality. Moreover, although some studies have focused on spe
cific types of crashes (e.g., rear-end collisions or rollovers), it is also 
important to categorize types of crashes, not only to better under
stand the different causes of injury but also to understand how dif
ferent crash types suggest different types of intervention. For exam
ple, although head-on collisions suggest the need for more physical 
improvements such as roadway barriers, rear-end collisions point to 
the need for vehicle warning systems or more driver education on 
safe following distances. Broadside collisions may indicate a need 

K. Kim, Department of Urban and Regional Planning; L. Nitz, Department 
of Political Science, University of Hawaii at Manoa, 2424 Maile Way, 
Honolulu, Hawaii 96822. J. Richardson, Department of Management and 
Industrial Relations, University of Hawaii at Manoa, 2404 Maile Way, Hon
olulu, Hawaii 96822. L. Li, School of Public Health, University of Hawaii 
at Manoa, EWC Box 1248, 1777 East West Rd., Honolulu, Hawaii 96848. 

for signalized intersections. Rollovers may suggest the need for 
stronger vehicle standards or environmental changes. Seat belt use 
is included in the model because whether someone is wearing a seat 
belt is part of the physical circumstances of the crash. In the attempt 
to predict injury severity, it is logical to include seatbelt use as, in 
effect, part of the crash type. Seat belt use is expected to have a 
differential effect across crash types, (e.g., greater for rollovers than 
for sideswipes.) 

The present study is part of a larger effort funded by NHTSA, 
U.S. Department of Transportation, known as the Crash Outcome 
Data Evaluation System (CODES) project. Seven sites were 
selected, including the University of Hawaii, to build data bases 
linking crash reports, emergency medical records, medical claims 
data, and other health-related information. Grantees were also 
required to conduct various analyses of the effectiveness of seat belt 
and motorcycle helmet use. 

There are several reasons Hawaii provides an excellent site for 
the analysis described in this study. Hawaii is an island, isolated 
from the U.S. mainland, with a centralized system of government 
made up of four county governments and the state government. The 
state maintains computerized records of all major traffic crashes. 
With year-round favorable weather, a variety of different urban, 
rural, and suburban roadway and highway conditions, and a resident 
population of more than one million, conditions are good for con
ducting traffic safety research. Following a brief discussion of data 
and methodology the results of the modeling efforts, the estimation 
of model effects, and some concluding remarks are presented. 

SOURCES OF DATA AND METHODOLOGY 

In this section the Motor Vehicle Accident (MV A) file and the 
methodology for modeling the relationship between crash type and 
injury levels are described. The log-linear modeling approach is 
described as well as a method of computing an odds multiplier, 
which is a useful means both of summarizing the results of the 
categorical data analysis and of comparing crash type and injury 
categories. The relationship between seat belt use and injury and an 
estimation procedure for examining that interaction with the other 
two variables in our model are specified. 

The data used are collected by police officers dispatched to the 
scene of a collision. The data are collected under less than ideal con
ditions but represent the best and most comprehensive data avail
able on crashes in Hawaii. The information is entered by hand on to 
forms that are then sent to the Department of Transportation, State 
of Hawaii. Data from the forms are keypunched into a computer 
system, edited, and used for various analyses. This analysis is based 
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on all available data for 1990. It focuses attention on three variables: 
(a) crash type, (b) injury level, and (c) seat belt use. 

The crash-type variable was derived by examining each collision 
and the maneuvers of every involved vehicle. It is important to note 
that a distinction was made between vehicles that struck other 
vehicles (e.g., "rear-enders" or "broadsiders") and those vehicles 
that were struck (e.g. "rear-ended" or "broadsided"). 

The injury variable is based on a standard KABCO scale in 
which the major categories are "killed," "incapacitating injury," 
"nonincapacitating injury," "possible injury," and "uninjured." One 
question that remains unanswered is the reliability of police report
ing of injuries. This question is one that the CODES project will 
address, because the linked data will facilitate the comparison of 
police, hospital, and insurance company reporting of injuries. 

Seat belt use is a dichotomous response variable. It is a particu
larly interesting variable because Hawaii has one of the highest 
reported rates of seat belt use in the U.S. (J). Even so, the reported 
use rate of 97 percent in the MV A data exceeds the observed rate of 
85 percent. For many accidents, seat belt use is self-reported, 
because the driver has gotten out of the car by the time the police 
officer arrives. Hawaii's mandatory seat belt law gives such drivers 
a clear incentive to claim they were using a seat belt. The use rate 
drops considerably in the more severely injured categories, to below 
50 percent for killed. The reported use rates for severely injured or 
killed drivers are likely to be more accurate, either because the per
son is still in the car when the officer arrives or because the injuries 
and damage make it apparent that seat belts were not used. Even 
though greater overreporting of seat belt use in the less injured 
categories will increase the apparent effectiveness of seat belts, the 
effect is small compared with the total differences in use rates 
across the injury categories. 

The analysis was restricted to drivers of automobiles to ensure 
that exposure to injury was comparable, because there are differ
ences between front and rear seat, driver and passenger environ
ments. Single and multiple vehicle crashes are included. Frequen
cies and percentage distributions for the three variables are shown 
in Table 1. 

As seen in Table 1, the data used are categorical; that is, they rep
resent various categories of crash type or injury. There is a variety 
of different approaches for handling categorical data analysis, 
including log-linear models, additive models, and partitioning of 
chi square. For further discussion of the differences between these 
approaches, see the work by Feinberg (2). Only one variable, injury 
scale, can be construed as ordinal, thereby greatly limiting the use 
of ordinary regression or ANOVA-type procedures. Of the differ
ent approaches, the log-linear approach was selected because of the 
added convenience of being able to investigate the underlying inter
related causal structure, work with odds ratios, and estimate the 
odds of being in a particular injury category given crash type or belt 
use. At the same time, the log-linear approach allowed estimation 
of parameters and corresponding tests of significance to discern the 
size and relative nature of effects in the model. Although 
SAS/STAT CATMOD and BMDP were used to derive these 
results, there are other packages that provide adequate support of 
log-linear modeling procedures. 

There are different strategies for categorical data analysis and 
model building. First the relationships between different variables 
and injury level were examined. Characteristics of drivers, vehicles, 
and environments were examined, with the conclusion that crash 
type was a significant factor in determining injury. A model pre
serving categories of crash type was developed to see the differen-
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TABLE 1 Frequency Distribution of Variables 

Variable 
Frequency Percent 

Crash Type 
Head-on 927 3.1 
Rear-ended 5,961 20 
Rear-ender 7,287 24.4 
Broadsided 3,130 10.5 
Broadsider 3,134 10.5 
Sideswipe 8,945 30 
Roll-over 445 1.5 

Seatbelt Use 
Nonbelted 768 2.6 
Belted 29,061 97.4 

Severity of Injury 
K Fatal 29 0.1 
A Incapacitating 234 0.8 
B Nonincapacitating 2,364 7.9 
C Possible 3,086 10.3 
0 No Injury 24,116 80.8 

Source: Motor Vehicle Accident File, State of Hawaii 

tial injury outcomes. The objective was to build the simplest model 
that would adequately fit the data. Golub and Recker (3) use the 
method of log-linear modeling to analyze truck-involved freeway 
accidents. They consider the relationship between crash types and 
each of different variables, including collision factors, crash loca
tions, weather, and others. The log-linear approach strives to fit cell 
frequencies with an additive model, incorporating main effects and 
interactions between variables. This is a three variable model with 
variables C (crash type), S (seat belt use), and I (injury level). Typ
ically, an X2 or G2, log-likelihood ratio, goodness-of-fit statistic is 
used to determine the acceptance or rejection of the model. The 
best-fitting model includes all three main effects and all three pos
sible two-way interactions 

loge (m;Jk) = u + U1(i) + Uc(}) + Us(k) + U1q;J) + U1s(ik) + Ucs(Jk) (1) 

where m;1k is the expected cell frequency and u is the parameter to 
be estimated. The overall grand mean of the cell frequencies is u. 
Each of the subscripted u parameters represents a deviation from the 
grand mean due to that effect. For example, uc(J) is the crash type 
effect, with a separate parameter estimate for each crash-type cate
gory. In standard hierarchical notation, this model is denoted by 
[IC] [IS] [CS], where all of the lower order terms are implicitly 
included [see Feinberg (2)]. From the best-fitting log-linear model, 
the parameter estimates, u, are obtained as well as their statistical 
significance. 

Next, a log-linear modeling approach was selected in which the 
response variable (I) is expressed as a log odds (logit) because it 
allows, for example, the comparison of the odds of fatality among 
those involved in head-on crashes to the odds of fatality among 
those involved in other types of crashes. With the logit model, the 
parameters provide a measure of the magnitude and direction of 
effects of the independent variables on the response variable. From 
the log-linear model (1), using injury category 0, no injury, as the 
baseline, the logit model for injury level is 
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log,(m;iklmojk) = [u + U1(i) + uccn + Us(k) + U1cw> + U1s(ik) + Ucsuk>] 

- [u + U1(0) + Uqj) + Us(k) + U1C(01) + U1s(Ok) + Ucs(jk)] 

= [u1u> - uHo>l + [u1cw> - U1cconl + [u1s(ik) - U1sc0k>l 

= W; + Wc(j) + Ws(k) (2) 

where thew is the parameter to be estimated. Note that w is calcu
lated from the u estimated for the log-linear model (2). For more 
discussion of the relationship between log-linear and logit models, 
see work published elsewhere (2,4-7). 

FINDINGS 

The parameter estimates and the standard errors scores are given in 
Table 2. The fitted model produced a G2 (log-likelihood ratio esti
mate) of 32.4, with 24 df, and a probability of .12, signifying model 
acceptance. There are a number of different results shown in the 
table. The row of main effects shows the relative distribution of 
injury type. The effects of crash type and seat belt use are also listed. 
The table includes standard errors for each of the effects. Most of 
the effects are statistically significant (indicated by *) at the .05 
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level. The estimates provide a measure of the magnitude and direc
tion of the effects. For example, being involved in a head-on or 
rollover crash (positive values) increases the likelihood of being 
fatally injured, and being rear-ended (negative values) reduces the 
chance of being a traffic fatality. 

To better interpret the findings, Table 3 was prepared. This table 
enables comparison of the odds of injury against no injury (base
line) according to different crash types and the use or non use of seat 
belts. The presentation of the odds multiplier is a useful way of 
examining these data. To compute the odds multipliers, exponen
tiate both sides of the logit model, 

(3) 

The first factor is the baseline odds of being in injury category i rel
ative to no injury. The next two factors are the odds multipliers for 
crash type and seatbelt use. 

The baseline odds (the first row in Table 3) represent the odds of 
injury to no injury across injury type. The first column represents 
the odds of no injury to no injury, which is obviously equal to one. 
It is interesting to note that the odds are greatest for nonincapaci-

TABLE2 Parameter Estimates of Log-Linear Model of Crash Types, Seat Belt Use, 
and Severity of Injury (Model: [IC] [IS] [CS], G2 = 32.4, df = 24, p = .12) 

Severity No Possible Non- Incapacit. Fatal 
of Injury Injury Injury Incapacit. Injury 

[OJ [CJ [BJ [AJ [K] 

Injury Main Effect: u 2.281 0.56* 0.9• -0.99* -2.752* 
s.e .. 0.055 0.069 0.06 0.088 0.178 

Seatbelt x Injury 
Nonbelted: u -0.68* -0.54* -0.131 * 0.287* 1.063* 

s.e. 0.048 0.062 0.053 0.083 0.141 

Belted: u 0.68* 0.54* 0.131 * -0.287* -1.063* 
s.e. 0.048 0.062 0.053 0.083 0.141 

Crash type x Injury 
Head-on: u -0.914* -0.634* -0.23* 0.599* 1.18* 

s.e. 0.087 0.103 0.096 0.138 0.291 

Rear-ended: u 0.496* 1.074* 0.375* -0.548* -1.398* 
s.e. 0.18 0.182 0.182 0.231 0.701 

Rear-ender: u 0.683• 0.258* 0.024 -0.263 -0. 702 
s.e. 0.113 0.117 0.118 0.162 0.43 

Broad-sided: u 0.223 0.112 -0.065 -0.118 -0.152 
s.e .. 0.116 0.121 0.122 0.176 0.429 

Broadsider: u 0.408* -0.14 -0.082 -0.117 -0.069 
s.e .. 0.116 0.124 0.124 0.181 0.429 

Sideswipe: u 0.724* -0.175 -0.214* -0.219 -0117 
s.e. 0.116 0.124 0.124 0.181 0.429 

Roll-over: u -1.62* -0.497* 0.191 0.666* 1.259 * 
s.e .. 0.101 0.115 0.1 0.154 0.293 

*Indicates significance at p ~ .05. 
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TABLE3 Odds Multipliers of-Seat Belt Use and Crash Types on Severity of Injury 
("No Injury" is Reference Category) 

Severity No Possible Noni neap. In cap. Fatal 
of Injury Injury Injury Injury Injury 

[O] [C] [B] [A] [K] 

Baseline odds 0.179 0.251 0.038 0.007 

Odds Multipliers 
Seatbelt 

Non belted l.15 1.73 2.63 5.71 
Belted 0.87 0.58 0.38 0.18 

Crash type 
Head-on l.32 l.98 4.54 8.12 
Rear-ended 1.78 0.89 0.35 0.15 
Rear-ender 0.65 0.52 0.39 0.25 
Broadsided . 0.9 0.75 0.71 0.69. 
Broadsider l. 0.58 0.61 0.59 0.62 
Sideswipe 0.4 l 0.39 0.39 0.43 
Roll-over 3.07 6.12 9.84 17.8 

Source: Motor Vehicle Accident File, State of Hawaii 
Note: The odds of a particular category relative to no injury are calculated by multiplying 
the odds multiplier and the baseline odds. 

tating injury and smallest for fatal .injury. Other findings can be 
grouped by (a) relationship between crash type and injury [CI], (b) 
relationship between seat belt use and injury [SI], and (c) interac
tion effects among crash type, seat belt use, and injury [CSI]. 

Crash Type and Injury 

Although the baseline odds of being killed in a car crash in Hawaii 
are small, the odds of being killed increase greatly for those 
involved in head-ons and rollover crashes. The odds of incapacitat
ing and nonincapacitating injury also increase significantly for 
those involved in head-ons and rollovers. The odds of receiving an 
incapacitating or fatal injury for rear-end, broadside, and sideswipe 
crashes are considerably lower than the odds for head-ons and 
rollovers. If rear-enders are compared with rear-ended, the odds of 
possible and nonincapacitating injuries are greater for those rear
ended and the odds of incapacitating injury and fatal injury are 
greater for the rear-enders. Being broadsided appears to increase 
overall the odds of injury across category, compared with the broad
siders. Sideswipes had the lowest odds of injury across all cate
gories. Another interesting finding is that, although being rear
ended has the lowest odds of beirig killed (even lower than 
sideswipes), being rear-ended has the highest odds of possible 
injury (with the exception of rollovers). 

Seat Belt and Injury 

Also in Table 3 are estimates of the odds of injury to noninjury for 
seat belt users and nonusers. According to these results, the odds of 
being killed for nonusers of seat belts are 32 times greater than the 
odds for seat belt users. The odds of an incapacitating injury are 
nearly seven times greater for nonusers. In fact, the odds across all 

injury categories (K, A, B, C) are greater for nonusers than for users 
of seat belts. These findings also support other research that has 
found that seat belts are effective in preventing serious or fatal 
injuries. 

Other Interaction Effects 

To test for the interaction effects the log-linear model for crash type 
and seat belt use, [CS] as well as the saturated model [CSI], was also 
run. Significant interaction effects were found between rollover 
crashes and seat belt use, namely, that nonusers were more likely to 
be involved in rollovers than were users of seat-belts. It was also 
found that seat belt users were more likely to be rear-ended or 
broadsided than nonusers. These interaction effects were attributed 
to behavioral factors that were not controlled for in this study and 
will be the subject of future research. When the fully saturated 
model was run, no significant higher order interaction effects were 
found, demonstrating that the developed model is acceptable. More
over, the absence of significant three-way interactions suggests 
that the benefits of seat belt use, as described earlier, exist in all 
categories of crash type. 

CONCLUSIONS 

Two types of conclusions were reached. The first pertains to the 
findings, and the second to the methodology. The findings suggest 
that injury levels are related to crash type and that rollovers and 
head-on collisions produce the most severe injuries. The lowest 
odds for fatality are for those who have been rear-ended. There are, 
moreover, different levels of injury associated with rear-end, broad
side, and sideswipe collisions. The odds of serious injury are greater 
for broadside collisions than for either sideswipes or rear-end colli-
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sions. Being a rear-ender increases the odds of incapacitating or 
fatal injuries compared with being rear-ended. Seat belt use was 
shown to have strong positive effects in reducing the risk of injury 
and fatality, although the effects were greatest in the serious and 
fatal injury categories. 

Log-linear analysis provides a powerful tool with which to exam
ine the relationships among crash types, seat belt use, and injury 
levels. The strategy in this study was to use log-linear analysis to 
uncover underlying relationships, to convert log-linear equations 
into logit functions to estimate parameters and model effects, and 
finally to convert the logit model results into odds multipliers to 
yield comparisons among various categories of crash type, seat belt 
use, and injury level. The method is particularly useful in circum
stances (typical of epidemiological studies) in which the actual 
number of cross-classified events (e.g., fatally injured drivers 
involved in rollover crashes) may be small or the research questions 
involve categorical data. 

More work is needed on both fronts. The relationship between 
injury and crash type warrants further consideration of behavioral 
and human factors. Future modeling efforts will concentrate on 
building structural equations relating background driver character
istics to risk-taking behaviors to crash types and injuries. As part of 
the Hawaii CODES project, economic data will also be examined 
to link the costs of medical treatment with various crash types. For 
modeling efforts, more widespread use of categorical data analysis 
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techniques is predicted, and other researchers are invited to apply 
similar techniques to estimate the effects of crash type, seat belt use, 
alcohol involvement, driver education, and other factors on injury 
level. We would Jike to test this method on a larger data set
perhaps using national data or at least using data from a larger 
population base. 
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Commercial Bus Accident 
Characteristics and Roadway Treatments 

CHARLES V. ZEGEER, HERMAN F. HUANG, JANE C. STUTTS, 

ERIC RODGMAN, AND JOSEPH E. HUMMER 

Traffic accidents involving buses result in about 35,000 injuries in the 
United States each year. This study describes bus and motor vehicle 
accident characteristics and recommends roadway-related counter
measures. Analyses were carried out on a primary study file of 8,897 
commercial bus crashes in five states-Illinois, Maine, Michigan, 
Minnesota, and Utah-for 1985 through 1989. A subset file with urban 
crashes in four states and the entire Illinois motor vehicle accident file 
with all vehicle types were also analyzed. The overall number of crashes 
was highest in winter, perhaps partly because of snow and ice. Older 
buses were overrepresented in injury and fatal crashes in comparison 
with newer buses. Neither bus driver age nor gender was related to acci
dent involvement. Bus crashes at traffic lights were more likely to cause 
injuries and fatalities than those at stop signs. In Illinois, the most com
mon bus accident types were rear end with one vehicle stopped, side
swipe same direction, and turning. Rear-end and angle accidents were 
most likely to cause injuries and fatalities. A number of measures may 
be used to improve bus safety. Roadway improvements on bus routes 
include wider travel lanes, paved shoulders or bus pull-off lanes, wider 
intersection turning radii, separate tum lanes, restriction of on-street 
parking, proper use and placement of signs and lane markings, and sep
arate left-tum phasing. General roadway improvements in suburban and 
rural areas that can also reduce bus crashes include flatter roadside 
slopes and improved design of guardrail and roadway alignment. Future 
research needs related to bus transit safety are also discussed. 

Traffic crashes and injuries related to buses represent a safety prob
lem on U.S. highways. For example, in 1990 an estimated 64,000 
of the 627,000 registered buses nationwide were involved in 
crashes, or 10.2 percent. By comparison, only 5.8 percent of other 
types of vehicles were involved in crashes in that same year. The 
crash rate for buses was 11.17 /million vehicle miles, compared with 
5.51 for passenger cars (J). The higher involvement rate of buses 
results from greater exposure to potential accident situations includ
ing stop-and-start operation (and perhaps more encounters with 
other vehicles associated with congested urban roadways). 

Bus crashes take a substantial toll of injuries and deaths. In 1990, 
an estimated 32,000 bus occupants sustained minor or moderate 
injuries in highway crashes. Another 3,000 sustained serious injury 
(1), including 32 deaths. The number of occupant injuries or fatali
ties per 100 crash involvements was 54.7 for buses, compared with 
only 29.5 for passenger cars (2). This higher rate may be attributed 
to the lack of passenger restraints on buses and to the large number 
of occupants on buses. In addition, bus crashes are associated with 
approximately 100 deaths to nonoccupants (largely pedestrians and 

C. V. Zegeer, H. F. Huang, J. C. Stutts, E. Rodgmon, Highway Safety 
Research Center, University of North Carolina, 1341/2 E. Franklin St., 
Campus Box 3430, Chapel Hill, N.C. 27599. J.E. Hummer, Department of 
Civil Engineering, North Carolina State University, P.O. Box 7908, Raleigh, 
N.C. 27695. 

bicyclists) and 200 deaths to occupants of other vehicles per year, 
according to the Fatal Accident Reporting System (2). 

This study quantifies the characteristics and causes of crashes 
involving commercial buses (i.e., all types of full-sized buses except 
for school buses) and their resulting injuries. The analysis consid
ers bus crashes with other motor vehicles and bus run-off-road 
crashes (e.g., rollovers or striking poles, trees, and other fixed 
objects). 

In conclusion, recommendations are made for highway improve
ments to reduce the number and severity of bus-related highway 
crashes. Recommended modifications to bus design features and 
bus driver training are found elsewhere and are directed primarily 
to highway designers and engineers (3). 

LITERATURE REVIEW 

It is convenient to distinguish between collision and noncollision 
bus accidents. Collisions include crashes with other motor vehicles, 
bicycles, pedestrians, and fixed objects. Examples of noncollisions 
are passenger falls while boarding, alighting, or riding buses. This 
section discusses previous literature on collision accidents only. 

Dixon et al. (4), examine the injury-producing mechanisms for 
five types of collision accidents: head-on, rear-end, sideswipe, side 
impact, and rollover. Head-on collisions are those that involve 
impact at the front of the vehicle, causing the bus to decelerate (and 
where the direction of deceleration is toward the rear of the bus). 
Rear-end collisions usually involve another vehicle running into the 
back of the bus, causing the bus to accelerate. Contact with the bus 
described as a "glancing blow to the side" is a sideswipe collision. 
A side impact is characterized by lateral acceleration. 

Of the five accident types, rollover accidents are the most likely 
to result in severe passenger injury or death. A lack of occupant 
restraints (i.e., seat belts) results in uncontrolled body movement, 
and during rollover passengers fall against internal bus fittings and 
other passengers. Partial or complete passenger ejection through 
windows, doors, or openings in the passenger compartment created 
by the collision may result in severe injuries. Injuries may also 
occur because of the collapse of a roof or wall into the passenger 
compartment (4). For all motor vehicle accidents, occupants who 
are ejected are four times more likely to suffer a serious or fatal 
injury than occupants who are not ejected (J). 

Jovanis et al. (5) conducted one of the few studies that analyzed 
data bases related to bus crashes on a large scale. That study ana
lyzed accident report data from PACE, a suburban bus transit 
agency in metropolitan Chicago, for 1982 through 1984. Eighty
nine percent of the 1,800 bus accidents involved collisions with 
another vehicle or object; 11 percent involved noncollision passen-
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ger injuries while boarding, alighting, or moving about the bus. The 
authors suggest that buses pose the greatest risk to automobile occu
pants when the buses are stationary, such as when stopped behind 
other vehicles or when processing passengers. Bus accidents did not 
appear to be more prevalent during times of darkness. The number 
of accidents dropped during night hours, reflecting lower service 
frequency and lower levels of automobile traffic. The gender and 
age of bus drivers did not contribute to accidents. However, the 
number of years of experience was found to be a contributing fac
tor. Drivers with 3 to 6 years of experience at PACE were signifi
cantly overrepresented compared with those with less or more expe
rience. The accident frequency by time of day generally followed 
congestion patterns. The number of accidents along a route was vir
tually linear with its mileage and negatively correlated with vehicle 
headway and speed (5). 

Other researchers have analyzed bus accident data on a large 
scale in Great Britain; Delhi, India; and Victoria, Australia (6-9). 
In Great Britain, 43 percent of bus passenger injuries occurred as 
the result of collisions; 57 percent was the result of falls and other 
incidents under normal conditions (6). Another study in Great 
Britain found that 20 percent of the casualties were pedestrians (7). 
More than 50 percent of bus injury accidents occurring in Delhi 
involved pedestrians, cyclists, and motorcyclists (8). Nearly 14 per
cent of the bus injury accidents in Victoria involved pedestrians. 

Additional research is needed to fill the gaps that exist in the 
literature. For example, the characteristics of bus accidents have 
not been adequately compared with the characteristics of acci
dents involving other vehicle types. Little information is available 
on the role of roadway, driver, or environmental features in bus 
accidents. Furthermore, additional information is needed on the 
types of roadway treatments that could potentially reduce the num
ber of bus crashes on streets and highways. This study addresses 
some of the gaps. 

DATA SOURCES 

The data base chosen for analysis in this study was the ~ighway 
Safety Information System (HSIS). This data base consists of com
puterized information related to motor vehicle crashes, traffic vol
ume data, and roadway characteristics from Michigan, Minnesota, 
Maine, Illinois, and Utah. The HSIS data were obtained from the 
respective states by the University of North Carolina's Highway 
Safety Research Center through funding from FHW A. The HSIS 
states were chosen on the basis of the availability of good quality 
data, the capabilities for merging various data files, and other fac
tors. Although these states may not be representative of the entire 
United States, they have data on accidents in urban and rural areas, 
on different types of roads, under a variety of climatic and geo
graphic conditions, and on roadways with various design features. 
Thus, the information obtained from these states was useful in 
achieving the primary study objective. 

The HSIS files contained information on 8,897 bus crashes that 
occurred from January 1, 1985, through December 31, 1989. For 
each accident, the available information included when the crash 
occurred (i.e., time, day of week, month), environmental conditions 
(light and weather conditions), vehicle information (e.g., age of 
bus), driver information (age, gender, injury), accident type (i.e., 
single vehicle, sideswipe, turning accident, etc.), and crash sever
ity. These variables were analyzed to gain a better understanding of 
factors related to bus crashes. 
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ANALYSIS METHODS 

Several methods were used to analyze the HSIS bus accident data. 
The most common analysis technique was a simple comparison 
among the levels of a particular variable. For example, the numbers 
of bus-involved accidents reported by day of the week were com
puted and compared. These simple comparisons were useful when 
the variable was not related to exposure. The study team also made 
many comparisons between the levels of a variable on the basis 
of the percentage of severe accidents (i.e., accidents involving one 
or more fatalities or injuries). These comparisons show the levels 
of the variable that deserve particular attention. 

For some types of analyses, there was a need to compare crash 
factors for buses with those of other vehicle types. For example, to 
determine the types of crashes in which bus~s were overrepresented 
(e.g., sideswipe crashes), it was necessary to compare the distribu
tion of crash types for buses with that for cars and pickups, trucks, 
and school buses. For these analyses, all 620,000 vehicle crash 
involvements (including 1,500 bus-involved crashes) from the 
Illinois accident file for 1988 and 1989 were used. Bus crashes 
were then compared with crashes of other vehicle types for accident 
types and crash severity. 

Some analyses were performed for all bus-involved accidents in 
the five-state sample. However, these analyses include accidents 
involving intercity buses on rural highways, which have different 
characteristics from accidents involving intracity transit buses. 
Therefore, most detailed analyses were performed for bus-involved 
accidents on urban surface streets, using the best available defini
tion for those factors in each state. 

Although the computer accident files contained a large sample of 
bus crashes and dozens of variables of interest for each accident, a 
limitation of the study was that no bus "exposure" data were avail
able. In particular, statewid~ bus mileage data were not available for 
computing overall bus accident rates (e.g., in terms of bus accidents 
per million vehicle miles of travel) or for computing accident rates 
by driver characteristic, age of bus, and so forth. The lack of suit
able exposure data has also been a problem in safety analysis of 
trucks (e.g., by truck size and configuration) and other vehicle types 
for research purposes. 

A substitute or surrogate measure of exposure can be used, the 
"innocent victim technique." For this study and for driver cate
gories, driver age, driver sex, and bus model year variables were 
analyzed with the innocent victim technique. This technique adjusts 
for the exposure of driver or vehicle-related groups using only acci
dent data. The technique relies on the assumption that a group's 
(e.g., bus group's) exposure is related to the number of times the 
group's members are involved in crashes in which they are not the 
"at-fault" or striking vehicle, and thus are "innocent victims." 

The best way to understand the innocent victim technique is to 
think through an example application. Suppose an analyst wants to 
know whether younger drivers are overrepresented in intersection
related crashes. The analyst computes that 20 percent of drivers 
involved in intersection-related crashes were less than 25 years old. 
The analyst then computes that 15 percent of the innocent victims 
of crashes at intersections were less than 25 years old. The ratio of 
the 2 percentages provides an indication of overrepresentation. 
Because the percentage of younger drivers involved in all inter
section-related accidents is higher than the percentage of younger 
innocent victims, the analyst concludes that younger drivers are 
overrepresented. The innocent victim technique has been used by 
researchers in accident studies for more than 20 years. Readers 
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interested in a review of the theory and applications of the technique 
are referred to Bowman and Hummer (10). 

The innocent victim technique was used with data from Michigan 
and Illinois for bus crashes. To be effective, the technique requires 
relatively large samples, and the states provided the largest samples 
of bus-related accidents among the five states. Innocent victims were 
defined using the best available variables and accident types in the 
two states. In Michigan, bus innocent victims were identified when 
the bus driver had "no hazardous action" coded and the other driver 
had some type of hazardous action coded. This is a very strong 
definition of an innocent victim. In Illinois, bus innocent victims 
were identified when a bus was struck in a rear-end collision. 

RESULTS OF COLLISION ACCIDENT ANALYSIS 

General 

A total of 8,897 crashes involving commercial buses was identified 
from the HSIS files. These bus crashes included 3,825 (43.0 per
cent) from Illinois (mostly from Chicago), 2,160 from Michigan 

Illinois 
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(24.3 percent), 2,014 from Minnesota (22.6 percent), 526 from Utah 
(5.9 percent), and 372 from Maine (4.2 percent). A greater number 
of accidents in a state does not mean that buses are less safe in that 
state, since no measure of exposure, such as number of buses regis
tered or bus miles driven, is available to normalize these data. Fig
ure 1 shows the distribution of bus crashes by severity of the crash 
for each of the five states included in the files. Overall, 0.7 percent 
(65) of the crashes resulted in fatal injury, 28.5 percent (2,537) in 
nonfatal injury, and 70.8 percent (6,295) in property damage alone. 
For fatal and injury crashes combined, Minnesota was highest with 
32.7 percent and Maine lowest with 22.6 percent. For this study, a 
serious bus crash was defined as one that resulted in at least one 
injury or fatality. 

Of the total 8,897 crashes, 5,283, or 59.4 percent, were identified 
as urban crashes. These urban bus crashes had a severity .pattern 
very similar to the overall sample, with 0.5 percent resulting in fatal 
and 28.3 percent in nonfatal injuries. Most of the urban bus crashes 
in the HSIS file occurred in Illinois (63.6 percent), with smaller 
percentages in Minnesota (16.1 percent), Michigan (15.7 percent), 
and Utah (4.6 percent). The available HSIS data for Maine did not 
permit the identification of urban crashes. 

D Fatal Crashes 

FJI Injury Crashes 

II Property Damage Only 

FIGURE 1 Distribution by state of bus crashes in HSIS file. 
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The analysis of Illinois data comparing bus crashes with other 
crash types showed that commercial bus crashes represented only 
slightly more than 0.2 percent of all crashes in Illinois in 1988 to 
1989. In comparison, cars and pickup trucks were involved in 87.2 
percent of crashes, and large trucks iff6.2 percent. Compared with 
car and pickup truck crashes, bus accidents are about equally likely 
to result in a fatality or injury (Figure 2). Truck crashes and events 
involving other vehicle types were found to have the highest fatal
ity rates. 

Temporal 

Approximately equal numbers of crashes involving commercial 
buses were reported for each of the 5 years ~n the HSIS file~ The total 
number of reported crashes was lowest in 1987 (1,643) and highest 
in 1985 (1,837) and 1989 (1,838). The number of injury crashes 
ranged from 499 in 1987 to 568 in 1985. Overall, 29:2 percent of 
the crashes resulted in injury, with some evidence of a decline in 
this percentage.over the 5~year period.· . 

Injury and overall crashes were lowest in July and August, likely .. 
reflecting the reduced number of bus trips and reduced ridership · 
typical during· this time. Although the o_verall number of crashes is 
greatest in January and February, April and May have the highest 
percentages of crashes involving injury. 

As expected, the percentage of urban crashes on weekends is 
lower than on weekdays. The distribution of injury crashes is simi
lar to that of total crashes. A higher percentage of crashes occurs on 
Friday than on other weekdays (significant at the 0.05 level using 
the chi square test). However, crashes on Friday are less likely to 
result in injury than on some other days. Traffic volumes may be 
higher on Fridays, resulting in slower travel speeds, which in tum 
mitigate accident severity. The greatest percentage.of injury crashes 
occurs on Tuesday. 
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Frequency of urban bus crashes by time of day generally fol
lowed expected bus travel patterns (Figure 3). Crashes were most 
common during the afternoon rush hours, from 3 p.m. to 6 p.m. 
(28.3 percent of the total). Another 56 percent of crashes occurred 
during the morning commute and midday hours, from 6 a.m. to 
3 p.m. Although considerably fewer crashes occurred during the 
evening and night, these tended to be more severe. Nearly 40 per
cent of bus crashes occurring from 9 p.m .. to 3 a.m. resulted in 
injury .. 

Environmental Factors 

Light Condition 

An analysis of bus crashes by light conditioii on urban streets was 
based on data from Illinois, Minnesota, and Utah. Accidents were 
more corrimon during daylight hours (80.3 percent). Lower per
centages· of crashes occurred after dark on lighted streets (12.3 per
cent), during dawn or dusk (4.9 percent), or in darkness with no 
street lights (2.5 percent). These percentages for urban crashes 
agreed closely_ with the total sample (rural and urban areas) of bus 
crashes. The 2-year sample of Illinois data revealed that 78.7 per
cent of commercial bus accidents occurred in daylight, compared 
with 68.8 percent of car and pickup accidents and 92.9 percent of 
school bus accidents. 

Urban bus accidents occurring at night on lighted streets had a 
higher percentage of injury plus fatal accidents (33.8 percent) than 
did those during daylight (28.3 percent), dawn or dusk (26.1 per
cent), or dark without lights (25.2 percent). These differences were 
significant at the 0.05 level. The higher severity of crashes at night 
on lighted roadways could be the result of the greater use of 
lighting on high-speed arterial routes, compared with lower-speed 
collector or local streets . 

••••••••••••. 74.7 ................. . 
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FIGURE 2 Distribution by vehicle type and crash severity of 1988-1989 Illinois crashes. (Note: 
"Other" includes vans, farm equipment, motorcycles, and vehicles coded as "Other"). 
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FIGURE 3 Distribution by time of day of urban bus crashes. 

Weather and Road Conditions 

Of the total bus accidents (urban and rural areas), 64.8 percent 
occurred on dry pavement compared with 20.7 percent on wet pave
ment and 13.9 percent on snow and ice. On urban streets, accident 
percentages were slightly higher on dry pavement (66.2 percent) 
and wet pavement (22.9 percent), but were lower on ice and snow 
(10.6 percent). This lower percentage of urban crashes on ice and 
snow could be related to better snow removal or lower speeds, or 
both, in urban areas than in rural areas. 

Bus accidents in the total sample tended to be more severe on wet 
roads than on other pavement conditions, with 32.2 percent of 
wet-road crashes resulting in injury or fatality. This compared with 
28.9 percent injury or fatal crashes on dry roads and 26.4 percent on 
snowy or icy roads. Wet roads are more associated with longer brak
ing distances than are dry roads, which can result in higher-speed 
impacts (all else being equal). The lower severity on snowy or icy 
roads could be the result of added driver caution, including reduced 
travel speeds. 

Vehicle Factors 

The primary vehicle factor available for analysis from the HSIS 
crash file was the model year. Model year was analyzed with sim
ple comparisons and with the innocent victim technique. Buses built 
in 1975 through 1979 were involved in a higher percentage of 
reported accidents (31.8 percent) in the four states with available 
data than any other model years. This finding is most likely because 
of a larger number of these vehicles in service (greater exposure) 
than other model years. Older buses were also overrepresented in 

injury and fatal crashes. The injury or fatality rate was almost 6 per
centage points lower for buses built after 1984 than for buses built 
before 1975, and the chi-square statistic for this was significant at 
the 0.05 level. 

Because direct vehicle exposure data were not available, the 
innocent victim technique was used to account for the relative expo
sure of the different model years. The analysis revealed that older 
buses were significantly overinvolved in reported accidents in 
Illinois (p = 0.01); in Michigan, the relationship was marginally 
significant (p = 0.10). A possible explanation for the better per
formance of newer buses is that changes in bus design through the 
years, such as better visibility from the driver's seat, power steer
ing, and improved brakes, have had a positive impact. 

Driver Factors 

Several driver-related factors were analyzed. Driver age was inves- . 
tigated through simple comparisons. In the full five-state sample, 
drivers near the age of 40 years were involved in many more 
reported crashes than were other age groups. More than 30 percent 
of all reported bus crashes involved a bus driver aged 36 to 45. 
Of course, this finding may be because of a greater number of bus 
drivers aged 36 to 45, or the large number of miles driven by this 
age group, or both. 

Drivers near the age of 40 experienced more serious crashes 
than they did all other crashes. In contrast, the proportion of serious 
crashes for drivers under 35 and over 65 years old was lower than 
that for all crashes. This finding, which was statistically signifi
cant at the 0.005 level, may be because of the route and schedule 
tendencies of the different driver groups. Younger and older 
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drivers may drive less demanding routes or schedules with fewer 
passengers, or both. On the other hand, the innocent victim 
analysis showed that driver age was not related to accident in
volvement. 

Another driver age-related variable analyzed was driver experi
ence, which was recorded only in Utah. No statistically significant 
differences were found among groups with different amounts of 
driving experience in terms of involvement in injury and fatal acci
dents. Note that this variable was driving experien_ce, and not bus 
driving experience. None of the five states recorded that. 

The gender of the.bus driver proved to be unrelated to accident 
involvement. Male bus drivers were involved in almost 80 percent 
of the crashes in the four states where data were available (Maine 
did not report driver gender). However, the innocent victim tech
nique showed that there was no strong relationship between driver 
gender and accident involvement. In addition, there was no statisti
cally significant relationship between driver gender and accident 
severity ( p > 0.10). This finding was corroborated with the inno
cent victim technique. 

The bus driver condition reported on the accident form proved to 
be minor in explaining accidents. Ninety-seven percent of all bus
involved accidents in Illinois, Maine, and Minnesota (where driver 
condition was reported) had a "normal" bus driver condition 
recorded. The driver condition recorded for most of the remaining 
cases was "other" or "unknown." The bus driver was reported 
to have been drinking alcoholic beverages in only 14 of 5,861 
accidents (less than one-fourth of 1 percent). In the 2-year 
Illinois sample of accidents, a driver was reported to have been 
drinking in about 3 percent of car and pickup truck accidents· as 
compared with less than 1 percent for drivers in commercial bus
involved accidents. 

Roadway Factors 

The full bus crash data base showed that there was no traffic con
trol present in about 46 percent of the cases. In other cases, a traffic 
signal (34.3 percent) or a stop sign (12.4 percent) was present. Bus 
crashes at traffic signals were more likely to cause injuries and fatal
ities than bus crashes at stop signs. This difference was significant 
at the 0.01 level. 

Road alignment data for urban streets were collected in Michi
gan, Minnesota, and Utah. Most collisions (about 95 percent) took 
place on straight roads. Injuries and fatalities appear to be more 
likely in accidents on straight roads than on curved roads (29.9 per
cent versus 20.2 percent), but this finding is based on a small sample 
of curved roads and should be interpreted with caution. 

The 2-year sample of Illinois accidents (comparing buses with 
other vehicles) revealed that about 55 percent of commercial bus 
accidents occurred at nonintersections, and the remaining 45 per
cent occurred at various types of intersections. Relatively similar 
percentages of car and pickup crashes and school bus accidents hap
pened at intersections. However, only one-third of truck accidents 
occurred at intersections. Situations that may result in bus accidents 
at intersections include the following: 

• Buses stopping to pick up passengers from stops located at 
intersections (while the general traffic stream is moving on a nor
mal green phase) and 

• Buses entering or leaving curb loading areas (which may not 
be anticipated by some drivers). 
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Accident Type 

Each of the five HSIS states coded accident type differently. Extra 
attention was paid to analyzing accident type because this variable 
reveals patterns of accidents and helps suggest possible counter
measures related particularly to roadway design and bus driver 
operation. 

Figure 4 provides a general accident-type breakdown for all bus
involved accidents in Illinois. Rear-end accidents with one vehicle 
stopped (probably most often the bus), sideswipe same-direction 
accidents, and turning accidents were the most common in the sam
ple. Pedestrian and pedalcycle (bicycles, tricycles, etc.) accidents 
were uncommon, but when they occurred they usually resulted in 
an injury or fatality. Rear-end accidents, angle accidents, and other 
accidents (mostly single-vehicle, fixed-object accidents) also had 
high percentages of injuries and fatalities. Other states showed 
basically similar patterns. 

Results from the 2-year Illinois sample comparing commercial 
buses with other vehicles helped clarify the general pattern. Com
mercial bus-involved accidents are more often "sideswipe same
direction" accidents and are less often "rear-end, both moving" 
accidents, compared with accidents involving other vehicles. 

Single-vehicle bus accidents on urban streets (including fixed
object, overturn, and animal accidents, but not including pedalcycle 
and pedestrian accidents) were not common and resulted in injuries 
or fatalities less often than other accident types. Only 139 such acci
dents were reported on urban streets in four states (Illinois, Michi
gan, Minnesota, and Utah) during the sampled years. Only 27 of 
those accidents involved an injury, and there were no fatalities. 
Single-vehicle accidents on urban streets tend to occur more often 
than multivehicle accidents at night, in the snow and ice, and dur
ing right turns. 

In multivehicle accidents, buses were more likely to be struck 
than to strike another vehicle. The 2-year Illinois sample compar
ing commercial buses to other vehicles showed that 

• Commercial buses were struck by automobiles 1,474 times but 
struck automobiles 1,051 times. 

• Commercial buses were struck by trucks 180 times but struck 
trucks 77 times. 

• Commercial buses were strµck by other vehicles (not trucks or 
automobiles) 100 times but struck other vehicles 61 times. 

The comparison between buses and trucks, both large vehicles, is 
revealing. Overall, commercial buses did the striking 1,204 times 
and were struck 1,769 times; trucks did the striking 40,826 times 
and were struck 28,885 times. Thus, buses were less likely to be the 
offending vehicle in bus crashes; trucks were more likely to be 
the offending vehicle in truck crashes. School buses had a similar 
accident pattern to commercial buses. 

A breakdown of multi vehicle bus-involved accidents on urban 
streets in Illinois revealed some interesting trends. Almost 12 per
cent of all 3,075 multi vehicle accidents in this sample were reported 
as sideswipe same-direction accidents when the bus was going 
straight. These accidents may have been the result of buses pulling 
into and out of curb loading areas. In 84 percent of the angle acci
dents, the bus was reported to be going straight. For rear-end acci
dents in which one vehicle was stopped, the bus was coded more 
often as stopped in traffic rather than picking up passengers, going 
straight, or stopped for traffic control. The bus was coded turning in 
about half of the turning accidents. Only 6 percent of the 3,075 
multivehicle accidents involved a right-turning bus. 
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Percent of crashes that are serious by accident type 
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FIGURE 4 Distribution by accident type of bus crashes in Illinois. 

Accident type and time of day were significantly related at the 
0.005 level. Angle accidents were overrepresented at nighttime, 
rear-end accidents with one vehicle stopped were overrepresented 
during morning peak hours, parked vehicle accidents were over
represented during early afternoon, and sideswipe same-direction 
accidents were somewhat overrepresented during afternoon peak 
hours. 

Of the 8,897 commercial bus crashes in the HSIS files, pedestri
ans were involved in 189 (2.1 percent). Nearly all (98.4 percent) of 
these pedestrian accidents resulted in injuries or fatalities. In fact, 
13 accidents (6.9 percent) were fatal. The 2-year Illinois data file 
showed that 1.2 percent of all commercial bus crashes involved 
pedestrians, compared with 0.3 to 0.5 percent of other vehicle types. 
Many of these bus-pedestrian crashes may occur when individuals 
running to or waiting at a bus stop are struck by an approaching bus 
or when individuals exiting are struck by a departing bus. 

CONCLUSIONS AND RECOMMENDATIONS 

This study was carried out to examine the characteristics of crashes 
involving transit buses (defined in this study as all buses involved 
in a reported motor vehicle crash except school buses) and to make 
recommendations for reducing the incidence of bus crashes and 
related personal injuries. The study included a detailed review of the 
available literature and an analysis of 8,897 bus accidents in Illinois, 

Maine, Michigan, Minnesota, and Utah. These crashes became the 
primary study file. In addition, separate analyses were carried out 
on a smaller sample of 5,283 crashes (59 percent of the original 
study sample) identified as occurring on urban streets. The study 
also examined the characteristics of noncollision bus-related 
injuries, such as falls while boarding or alighting the bus (3). 

The analysis was primarily descriptive, involving cross tabula
tions of selected variables of interest and testing of differences in 
the resulting distributions. In addition, application of the innocent 
victim technique allowed some control over exposure differences 
that might otherwise confound results. Using the Illinois data only, 
a comparative analysis was conducted comparing bus crashes with 
other motor vehicle (passenger car, truck, etc.) crashes. 

In terms of crash severity, less than 1 percent (0.7 percent) of bus 
crashes in the overall five-state file resulted in fatal injury; 28.5 per
cent resulted in nonfatal injury, and the remaining 70.8 percent 
involved property damage only. The pattern for urban crashes only 
was similar, with 0.5 percent fatal and 28.3 percent nonfatal injury. 

Commercial bus accidents represented less than one-fourth of 1 
percent of all motor vehicle crashes occurring in Illinois during 
1988 to 1989. Also from the Illinois data, bus accidents and car and 
pickup accidents were all about equally likely to result in a fatality; 
however, truck accidents were twice as likely to result in a fatality 
as accidents involving other vehicle types. 

The number of bus crashes is lowest in July and August and high
est in January and February. However, winter crashes tend to be less 



Zegeer etal. 

severe, so that the greatest percentage of injury crashes actually 
occurs in May. 

Although the analyses of the 8,897 bus crashes in this study were 
not in-depth case study investigations, the analyses of many crash 
factors allow educated judgments of probable causes and develop 
potential countermeasures corresponding to each probable cause. 
On the bases of results of the analyses of bus crash factors, the bus 
safety literature, and decades of highway safety research and expe
riences on causes and treatments for various crash types, a number 
of general measures are recommended to reduce the likelihood of 
bus crashes and resulting passenger injuries. Measures relating to 
roadway design include the following: 

1. Wider intersection turning radii-The analysis showed that 
rear-end crashes represent one of the most common bus crash types, 
particularly at intersections. One means of reducing the incidence 
of rear-end crashes to the bus at intersections is to provide wider 
intersection turning radii. Because of the length of transit buses, 
problems may occur when buses tum right at intersections or 
driveways with a very tight turning radius. This will require the bus 
to swing wide and often encroach on the oncoming lane of the side 
street to the right of the bus, which can increase the risk of an acci
dent with an oncoming vehicle from the side street. In addition, with 
a tight turning radius, the bus must slow down considerably when 
making such a right turn, and a rear-end crash to the back of the bus 
can result. By designing or reconstructing the curb radius to be 
wider, the bus can then make an easier turn without slowing to a 
near stop and without swinging across the center line as it makes its 
right turn. This can reduce the risk of rear-end and other crashes 
involving the bus. 

2. Wider lanes on bus routes-Another primary transit bus 
accident type involves sideswipe collisions between buses and other 
motor vehicles. Because of the wider vehicle dimensions on buses, 
it is important that lane widths be adequate to minimize the chance 
for sideswipe accidents involving vehicles in adjacent lanes. With 
narrower lanes, the potential for sideswipe accidents is increased, 
particularly when a bus passes or is being passed by a large truck or 
other bus. Along major arterials where buses and large trucks are 
likely to travel, consideration should be given to providing lane 
widths of 12 ft when possible, or at least 11 ft. This will increase the 
lateral spacing between buses and other motor vehicles. 

3. Turn lanes at intersections along bus routes-The analysis of 
data from Illinois revealed that 17 percent of bus crashes were 
turning accidents. Rear-end accidents may occur when adequate 
separate turning lanes are not available at intersections where buses 
turn. First, the bus must slow down during right turns and may be 
rear-ended. When making left turns with no left-turn lane, the bus 
will often be forced to stop in the left-most through lane and wait 
for oncoming traffic to clear before turning left into an adequate gap 
in through traffic. Again, the bus is exposed to the potential for rear
end collisions. For these types of accidents, a potentially effective 
countermeasure involves adding separate left-turn and right-turn 
lanes when feasible. 

4. Elimination of on-street parking along bus routes-Parked 
vehicles along bus routes can be associated with several types of bus 
crashes. These include (a) parked vehicles being struck by the bus, 
(b) pedestrian accidents as the result of pedestrians stepping or run
ning into the path of the bus from between parked cars, or ( c) side
swipe accidents between the bus and other motor vehicles in adja
cent lanes (as the result of the bus swerving over the lane line to pass 
parked vehicles.) To reduce the probability of such accidents, the 
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elimination of on-street parking along selected sections of a bus 
route is sometimes an effective solution. 

5. Adequate paved shoulders or a bus pull-off lane-In subur
ban and rural areas, some crashes occur when buses stop in the lane 
to pick up or drop off passengers, thereby resulting in a rear-end col
lision. Such accidents could be reduced by providing paved shoul
ders of 8 to 12 ft along such bus routes to allow buses to pull out of 
the through lane and onto the shoulder to pick up and unload pas
sengers. Where continuous paved shoulders are not feasible, a paved 
pull-off lane at the bus stop should be considered to allow buses to 
pull out of the travel lane. Such pull-off lanes are particularly impor
tant at bus stop locations where sight distance is severely limited for 
approaching motorists because of horizontal or vertical alignment. 
For example, if a bus is stopped in the through lane around a sharp 
curve, the driver of an oncoming vehicle may not have enough time 
to see the bus and stop before striking the bus in the. rear. 

6. Larger traffic signal lenses-The intersection of two road
ways is often associated with large numbers of rear-end and turning 
collisions as a result of conflicting traffic movements. To reduce 
such intersection collisions involving buses (and other motor vehi
cles as well), a number of traffic signal-related improvements may 
be helpful. For example, the use of 12-in. signal lenses instead of 
the customary 8-in. lenses allows approaching motorists to see the 
signal more clearly. Vehicles following a transit bus are, therefore, 
more likely to see a red light and stop behind a bus at the inter
section. This is important, because vehicles behind a bus have a 
limited field of vision of the traffic signal because of the height of 
the bus and may see the signal of a larger red signal head sooner. 

7. Longer clearance intervals-The use of adequate signal 
clearance intervals can reduce the chance of angle accidents 
between buses and vehicles at intersections. This is because some 
intersections are programmed with a minimal amount of yellow 
time that results in more vehicles running red lights and colliding 
with vehicles on the cross streets. Angle accidents may be a partic
ular problem for transit buses because of their greater length and 
greater target area for vehicles coming from cross streets. 

8. Separate left-turn phasing-Left-turning buses are involved 
in accidents more often than right-turning buses. Without left-turn 
phasing, a left-turning bus must wait in traffic for an adequate gap 
in oncoming traffic before turning. Under congested conditions, bus 
drivers may be tempted or forced into making a left turn with an 
inadequate gap and may be struck by an oncoming through vehicle. 
This is a particular problem for buses because they are much longer 
than cars and require a larger gap in traffic to complete a left-turn 
safely. Separate left-turn phasing stops oncoming traffic, allowing 
a protected interval for the bus to turn left. 

9. Roadway design improvements-Although bus crashes are 
primarily an urban problem, rural and suburban bus crashes may be 
reduced by many types of roadway improvements that have shown 
to be effective for reducing motor vehicle crashes in general. These 
include providing flatter roadside slopes (to reduce bus rollovers) 
and clearing roadsides of trees, utility poles, and concrete culverts 
to the extent possible. Further, guardrail and other roadside hard
ware should be. designed that consider the possibility of bus 
impacts. On rural roads, adequate widths of lanes (i.e., 11 or 12 ft) 
and shoulders (paved if possible) and adequate roadway alignment 
can also be beneficial to bus safety. 

10. Improved snow and ice removal-Based on the analysis dis
cussed earlier, bus crashes tend to be more frequent during winter 
than summer. This may be partly because of the increased snow and 
ice on the roadways that could contribute to rear-end and other 
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crashes. Snow removal is a problem in many northern states, but 
special effort should be made to clear streets of snow and ice 
promptly along bus routes. 

FUTURE RESEARCH NEEDS 

The primary future research need is for a study that integrates acci
dent data with high-quality, widespread exposure data. Exposure 
data could help answer more subtle questions about routes, drivers, 
and vehicles that could not be answered with the methods of this 
study. These questions include the following: 

• What are the levels of bus exposure (mileage) by bus age, bus 
type (Interstate versus local transit), type of roadway, and driver 
factors (age or experience)? 

• What types of streets and highways have the highest bus acci
dent rates? 

• Are bus accident rates higher at certain times of day and for 
various types of buses or driver factors? 

• What are the effects of specific improvements (routing, bus 
stop location, geometric and traffic control improvements, etc.) on 
bus crash rates? 

The HSIS data base does not separate local transit and intercity 
buses. Yet these types of buses are likely to have different levels of 
exposure and are operated under different conditions. Bus exposure 
data can be obtained from local transit agency and Interstate bus 
company records .. 

The study team also identified several other areas for promising 
future bus safety research. First, accident data should be obtained 
from states not included in the HSIS data base. Many states will 
incorporate a wider range of roadway and weather conditions and 
increase the sample of bus crashes. This could allow additional con
clusions relating accident characteristics to bus crashes and associ
ated injuries. 

Another area of needed research involves a more extensive data 
base, to be obtained from local transit agencies, of noncollision 
accidents such as falls by passengers. This would allow better com
parisons of various bus designs and operating practices on passen
ger injuries. Research is also needed on accidents in which the bus 
contributed to an accident but did not collide with persons or other 
vehicles. For example, pedestrians may step out in front of buses 
and be struck by passing automobiles. Such accidents would not 
have appeared in the data base in this study. 
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Estimation of Safety of Four-Legged 
U nsignalized Intersections 

CARL BELANGER 

In this study, empirical Bayesien methods were applied to the estima
tion of the safety of four-legged unsignalized intersections. This appli
cation can be described as a two-step process. First, multivariate mod
els were developed to estimate the number of accidents from various 
flow functions at these intersections. The best model was obtained from 
the product of major and minor flows, raised to a power. Attempts were 
made to develop models for specific patterns of collisions and to incor
porate variables other than traffic flow functions to these models. The 
modeling results were then combined with the accident count of a 
four-legged unsignalized intersection to estimate its safety. Results 
were used to identify blackspot locations and to evaluate the effects of 
interventions more accurately. 

In urban areas, more than half of all accidents occur at intersections, 
and the corresponding figure for rural environments is about one
quarter (J). Given the importance of safety problems at these 
locations and the relatively small portion of the highway network 
they represent, interventions aimed at improving the safety of inter
sections are desirable. To identify sites that have a potential for 
improvement, knowledge of their long-term mean number of acci
dents is required. This mean is defined as the "safety" and is denoted 
by m; its estimate is denoted by m. Estimates of m are also needed 
to evaluate the effects of interventions adequately and to determine 
the success of such actions. 

Several methods that have been developed to estimate m are 
based on the number of accidents observed at the site of interest in 
a relatively short period. Because of the rarity of accidents and 
annual variations in the accident count, these estimates are often 
inaccurate. Also, given that sites are generally chosen for treatment 
because of a recent poor accident record, m is often overestimated. 
In these situations, the count of accidents in the period after identi
fication will generally revert toward its expected value even if no 
treatment is applied to the site. This phenomenon, which is called 
regression to the mean (RTM), introduces significant bias to the 
conclusions of safety studies (2-4). Using longer periods of analy
sis does not solve the problem because many factors that influence 
m change over time. Consequently, new methods of analysis were 
sought. In the past decade, an approach based on empirical 
Bayesian (EB) methods emerged as a better way of estimating 
safety. More recently, multivariate statistical analysis was proposed 
to enhance the benefits of EB methods. We were interested in using 
these techniques to estimate the safety of unsignalized intersections. 
To ensure a higher level of homogeneity, a subclass was chosen. 
Only four-legged intersections that are signed with two stops on 
minor approaches and have one lane in each direction were selected. 

Ministry of Transportation of Quebec, 700 Rene Levesque Blvd. East, 22nd 
floor, Quebec, Qc., Canada GlR 5Hl. 

DATA 

The detailed information about accidents, traffic fl.ow, and geomet
ric characteristics needed for this project was only available for a 
few sites that had been the object of a safety analysis in recent years. 
Because these analyses are generally motivated by requests from 
elected officials to improve sites that are perceived as hazardous, 
RTM problems are likely to be present. To improve the accuracy of 
the models, accident data relating to events preceding each site's 
identification wer~ not used. Only the period following the demand 
(the number of accidents in the after period is not subject to RTM 
bias) was considered. With this decision, the establishment of a 
constant period of analysis became impossible because a sufficient 
number of accidents could not be gathered during any fixed period. 
Instead, specific period lengths were determined for each site; 
consequently, this analysis is based on the number of accidents per 
day. The sample for this project consists of 149 intersections located 
in eastern Quebec. 

Accidents were considered pertinent if they occurred within 
30 m of the intersection or were intersection related. A total of 1084 
accidents fulfilled these criteria. Of these, more than 85 percent 
involved two vehicles. The determination of each pattern of colli
sion and each combination of flows that caused the accident was 
required, but this information, as coded in the accident file, is unre
liable. The list of patterns provided in the accident report form is not 
exhaustive, and codes are often missing or inconsistent. However, 
by analyzing the microfilm of each accident report, several of these 
problems were corrected. Eighteen patterns of accidents were iden
tified (Figure 1). Pattern "999" is a miscellaneous category that 
includes single-vehicle accidents, accidents with pedestrians, bicy
clists, parked vehicles, and reversing vehicles. Right-angle collisions 
represent 42 percent of the accidents with two or more vehicles. 

For each site, a 12-hr count was available, which provided 
estimates of flows for each of the 12 possible maneuvers at a 
four-legged intersection: left turn, through, and right turn on each 
approach. On the basis of data collected from permanent traffic 
counters, these estimates were converted to daily fl.ow estimates that 
are representative of an average day, month, and year of the period 
of analysis. The distribution of flows is shown in Figure 2. It ranges 
from 388 to 15,942 vpd. 

METHODOLOGY 

To reduce the regression-to-the-mean bias, EB estimates use not 
only information from the intersection analyzed but also informa
tion from a group of intersections having similar characteristics 
(called the reference population). The weight attributed to the ref
erence population is a function of its homogeneity. A major diffi-
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FIGURE 1 Number of accidents, by pattern. 

culty associated with the use of EB methods consists of defining a 
reference population that is sufficiently homogeneous to be reliable 
and yet large enough to improve the estimation. To alleviate this 
problem, the multivariate approach, as recently proposed by Hauer 
(5) was used. Regression models were first developed to estimate 
the moments E(m) and V AR(m) that describe the distribution of ms 
in an imaginary group of intersections having the same characteris
tics as the site under analysis. Once E(m) and V AR(m) become 
available, they are combined to the accident history (x) at the inter
section of interest to obtain the updated estimate of safety [denoted 
E(mlx)] and its variance [denoted VAR(mlx)]. 

E(mlx) = aE(m) + (1 - a)x 

VAR(mlx) = a(l - a)E(m) + (1 - a)2x 

with a= E(m) 
E(m) + V AR(m) 

(1) 

Thus, the major task consisted of developing multivariate mod
els to estimate E(m) and VAR(m). In this project, modeling was 
undertaken in three stages: (a) development of models relating the 
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total number of accidents to various flow functi<;ms, (b) develop
ment of models relating accidents of a specific type to various flow 
functions, and ( c) evaluation of the effect of variables other than 
traffic flow. 

Most of the regression theory is based on the assumption that the 
error structure is normal with mean equal to 0 and a constant Vari-

. ance (cr2); however, this hypothesis is not valid in road safety 
analysis because residuals tend to increase with larger fitted values. 
A number of recent studies have concluded that a negative binomial 
type of error is more appropriate to describe the variations in the 
number of accidents at several sites. This choice is based on the 
assumptions that the variations in the number of accidents (x) at any 
particular location can be described by a Poisson process and that 
the variations in the levels of safety (m) in a group of similar inter
sections can be fitted by a gamma distribution (6). The GLIM soft
ware (7) was selected to estimate the coefficients of our models 
using a negative binomial error structure consistent with the data. 

The estimation of E(m) is straightforward because it is obtained 
directly from the models, but the estimation of VAR(m) from multi
variate techniques is less common. It is only recently that a method 
has been proposed to estimate VAR(m) from the regression results, 
using the following empirical relationship (8): 

V AR(m) = E(m)2/k (2) 

The appropriateness of this relationship was confirmed with the 
data. As both V AR(m) and kneed to be estimated, the process must 
be iterative, as explained elsewhere (9). 

GOODNESS OF FIT 

In ordinary least-square regression, the coefficient of determination, 
R2, is frequently used to express the goodness of fit of a model. It 
represents the proportion of variation in the observation that is 
explained by the model and can be calculated in two ways 

R2 = 1 _ ( Unexplained_v~iation) or 
Total vanat10n 

R2 = (Explained variation) 
(Total variation) 

(3) 

However, when the variance is not constant (as with the negative 
binomial distribution), both forms of this equation do not yield 
identical results, and the R2 statistic does not constitute a precise 
estimator of the goodness of fit. Nevertheless, two values of 
"Pseudo R2" have been calculated from Equation 3; they constitute 
a possible range of R2 values. The difficulty arises in that no equiv
alent measure of goodness of fit has yet been developed and widely 
accepted when the error structure is other than normal. 

McCullagh and Nelder (10) proposed to evaluate the discrepancy 
of a fit based on the deviance or on the generalized Pearson X2 sta
tistic. Maycock and Hall ( 6) determined that the expected value of 
the scaled deviance for a good model having a negative binomial 
type of error follows a x2 distribution with (n - p) degrees of free
dom as long as the fitted values are generally larger than 0.5; n is 
the number of observations, and p is the number of estimated 
parameters. Larger than expected values of scaled deviance indicate· 
model deficiencies. The appropriateness of adding parameters to a 
model can be evaluated by comparing decreases in scaled deviance 
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versus decreases in number of degrees of freedom between two 
models. A decrease in ·scaled deviance that exceeds the decrease in 
the number of degrees of freedom justifies the additional complex
ity of a model. However, when many fitted values are smaller than 
0.5, the expected value of the scaled deviance is considerably less 
than 1 and the x2 comparison cannot be used to evaluate the good
ness of fit of a model. The Pearson X2 statistic is calculated from 

[x; - E(m;)]2 
Pearson )(l = L; V AR(x;) (4) 

Miaou et al. (11), Bonneson and McCoy (12), and Persaud and 
Dzbik (13) evaluated their models on the basis of this statistic, 
which also follows a x2 distribution. McCullagh and Nelder (JO) 
mentioned that it may not provide adequate results for limited 
amounts of data. Hauer (5) based model evaluations on the maxi
mum value of the k parameter of Equation 2. Given the relationship 
between E(m) and V AR(m), models with larger values of k provide 
a better overall fit because they have a smaller variance. In this 
research, the evaluation of the adequacy of our models was based 
on the average behavior of these four indicators: k, scaled deviance, 
Pearson X2, and pseudo R2• 

RESULTS 

Models for Total Intersection Accidents 

In the first stage of regression modeling, relationships between the 
total number of accidents and various traffic flow functions were 
explored. To choose functional forms that were coherent with the 
data, the appropriateness of the selected relationships was verified. 
The procedure is illustrated with the simple model of the sum of 
entering vehicles (Q 1 ). A graph of the number of accidents per day 
versus Ql was prepared (Figure 3). Sites were ordered in increas
ing values of Ql and assembled into groups. Each square on the 
graph represents an average of 15 sites. The relationship between 
these two variables is evident: it is almost linear with a hint of 
downward bend. Regression has been evaluated with the more gen
eral functional form of Ql raised to a power. The best model is 

Ace/Day = 3.65 x lQ-6 * Ql·s6 
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FIGURE 3 Model of total intersection accidents/day 
versus sum of entering vehicles. 
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The fitted curve is also shown in Figure 3. A similar approach has 
been used to develop models that estimate the number of accidents 
from the product of major and minor flows (Fl, F2), the sum of 
products of conflicting flows (Q2), and the sum of weighted prod
ucts of conflicting flows (Q3). Although various definitions have 
been proposed to describe the notion of conflicting flows, no agree
ment has yet been reached as to its best representation (14,15). In 
the determination of a conflict index, the concern was to ensure that 
the proposed function provides an adequate representation of acci
dent occurrence in the population of sites. Accordingly, the conflict 
index consists of the sum of the products of each combination of 
flows that is involved in ten accident patterns responsible for 95 
percent of all collisions involving at least two vehicles. Q2 is calcu
lated from 

10 p [ ] 
Q2(l) = 6 ~ Fl(i, j, l) * F2(i, j, l) (6) 

where 

i =pattern number, 
j = approach number, 
l =intersection number, and 

p =number of occurrences of the same pattern at each inter
section. 

Because different patterns of accidents have different probabili
ties of occurrence, a model that takes into consideration the relative 
risk of a maneuver is likely to provide a better fit than a model allo
cating the same weight to all products of conflicting flows. To test 
this hypothesis, weighting indexes (WI) have been calculated. 
These weighed indexes are obtained by dividing the total number of 
accidents of a given pattern by the corresponding sum of products 
of contributing flows 

p 149 

I I acc(i, j, l) 
j=l 1=1 

Wl(i) = -p--14-=-9-------- (7) 

L I Fl (i, j, l) * F2(i, j, l) 
j=I 1=1 

Values of the weighting indexes are shown in Table 1. They 
range from 0.08 for rear-end collisions to 4.19 for right-angle colli
sions. The flow function Q3 becomes 

Q3(Z) = f f Wl(i) * [Fl(i, j, l) * F2(i, j, l)] 
i=I j=I p 

(8) 

Results of total intersection accident models are summarized in 
Table 2. Although ranking obtained from each goodness-of-fit indi
cator is unique, the product of major and minor flows is generally 
identified as the best functional form. 

Modeling by Type of Accidents 

A logical approach to modeling consists of relating accidents to the 
traffic flows that cause the impact. In our population of sites, right
angle collisions (Pattern 1) account for 42 percent of all collisions 
involving two or more vehicles, and a specific model has been 
developed for this accident pattern. The pattern second in impor
tance is angle collisions between a through vehicle and a left-
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TABLE 1 Weighting Factors, by Patterns 

Pattern Number of Weighting 
accidents indexes 

Number Type 

I t-- 403 4.19 

2 ( 125 1.08 

3 f 83 0.08 

4 ~ 73 1.00 

5 f 71 0.91 

6 
Jt 

45 0.49 

7 
( 

31 0.25 

8 
t\t_ 

27 0.35 

9 
_) 

24 0.21 

10 f 21 0.46 

Total 903 

turning vehicle; 125 collisions of this type have been coded. As 
causes of these collisions differ depending upon whether the left
turning vehicle is located on the minor or the major approach, these 
accidents were subdivided into two groups. The resulting subsets 
were too small to allow the determination of logical relationships 
based on observed trends of the data, and the goodness of fit was 
reduced. Instead of proposing several "intuitive models" that would 
present a poor fit for more than half the data, only right-angle colli
sions were analyzed in detail, and all remaining collisions were 
grouped into one aggregate model. The resulting tool to evaluate the 
safety of an intersection consists of two models: a right-angle model 
and a remaining patterns model. 

Estimation of Contribution of Additional Features 

To assess whether variables other than traffic could make a signifi
cant contribution to the explanation of accident occurrence, factors 
were added to the models; these are dummy variables that take 
distinct integer numbers for each specific value of a variable. For 
example, to evaluate the influence of flashing beacons on the 
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observed number of accidents, a two-level factor is created: 0 for 
intersections with flashers and 1 for intersections without flashers. 
If the coefficients of each value of the factor are different, it means 
that the factor has an influence on the total number of accidents. The 
following functional form was used to examine the effect of flash
ing beacons, sight distance, turning lanes, and speed: 

Ace/day = ho * Fl bl * F2b2 * e(Factor) (9) 

For example, the value of the "flasher factor" for intersections 
that are equipped with this warning device is 0.17, which indicates 
that at the same flow these junctions are expected to have 19 per
cent more accidents than intersections without such a device. How
ever, given the magnitude of the standard error of this coefficient 
(0.15), the effect is uncertain. As shown in Table 3, similar results 
were obtained for sight distance, turning lanes, and speed. It should 
be remembered that regression equations provide relationships that 
are associative and not causative. That intersections with flashers 
have on average more accidents does not necessarily mean that bea
cons reduce the safety. Instead, it could be that they are generally 
installed at intersections that have a poorer safety performance and 
that they do not succeed in making these junctions as safe as other 
similar sites. 

Whenever feasible, it is better to assess the effect of a variable by 
the development of distinct models for each level of a factor. With 
this data, it was possible to do so for the maximum posted speed at 
intersection approaches. Models were developed for the 50 and 90 
km/hr speed limits. Results are summarized in Table 4. 

TABLE 3 Effect of Causal Factors 

Characteristic Factor Value St .... ..1 ... ..1 ... 
error 

Flashing beacon 1: no 0.00 - 3.0 
2: yes 0.17 0.15 

Sight distance 1: <lOOm 0.00 -
2: 100-200m 0.41 0.24 3.3 
3: 200-300m 0.17 0.25 
4: >300m 0.45 0.23 

Turning lanes 1: 2 lanes 0.00 -
2: 2 +RT 0.10 0.16 
3: 2 +LT 0.25 0.20 3.1 
4: 2 +LT+ RT 0.21 0.22 

Speed limit 1: 50 Km/hr 0.00 - 3.6 
2: 90 Km/hr 0.17 0.15 

TABLE 2 Models for "Total Intersection Accidents" 

1 Functional form k Deviance xz Rz 
(d.f.) 

Ace/Day = 3.65*10~ * Q1·86 2.50 168.45 144.01 .42, .50 
(147) 

Ace/Day = 5.59* 10~ * FI-42 * F251 2.95 164.64 135.88 .47, .56 
(146) 

Ace/Day= 4.41*10-5 * Q2.36 2.05 164.75 146.32 .33, .53 
(147) 

Ace/Day = 3.14*10-5 * Q3·45 2.80 166.14 147.04 .50, .50 
(147) 
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TABLE 4 Summary of Results 

Total intersection models 

al) Acc/Day=bo * Qbl 

a2) Acc/Day=bo * Flbl * F2b2 

Pattern models 

b 1) Pattern 1 (Right Angle): 
Ace/Day= ho* EXP(b1 *Fl) * Ftb2 * F2b3 

(50 km/hr and "all speeds") 
Acc/Day=bo * Flbl * F2b2 

(90 km/hr) 

b2) Remaining Patterns: 
Acc/Day=b0 * Flbl * F2b2 

ESTIMATION OF E(m Ix) AND V AR(m Ix) 

With these models it is now possible to estimate the safety of a four
legged unsignalized intersection when its traffic flow and accident 
history are known. This estimation consists of two steps 

1. Estimation of E(m) and VAR(m) with the multivariate 
models, and 

2. Estimation of E(mlx) and VAR(mlx) from Equation 1. 

The application of the method is shown with the following exam
ple. Suppose that the traffic flows and accident count at a four
legged unsignalized intersection are as indicated in Figure 4. 
Depending on the availability of the data, different models can be 
selected to estimate its safety. When· the number of collisions by 
pattern and traffic flow estimates per movement are available, 
Models b 1 and b2 of Table 4 can be used. If instead only the major 
and minor flows are known, Model a2 should be used. In this case, 
the calculation is as follows: 

Step 1: Estimation of E(m) and VAR(m) 

E(m) = (1.07 * 10-5 * 450034 * 2000.49) * 1095 

= 7.74 * 10-3 * 1095 

= 8.48 acc/3 years 

V AR(m) = [(7.74 * IQ-3)2/3.10] * 10952 

= 23 .17 ( acc/3 years )2 

Main road speed limit All 

SO km/hr 90 km/hr 
speeds limits 

b0 =4.59E-6 b0 =4.42E-6 b0 =3.65E-6 
bl=0.83 bl=0.83 bl=0.86 
k =2.70 k =2.70 k =2.50 

b0= 1.07E-5 b0 =3.37E-6 b0 =5.29E-6 
bl=0.34 bl=0.41 bl=0.42 
b2=0.49 b2=0.59 b2=0.51 
k =3.10 k =5.10 k =2.95 

b0 =2.05E-6 b0=6.14E-6 b0 =1.09E-5 
bl=-3.69E-4 bl=0.32 bl =-6.52E-5 
b2=0.57 b2=0.43 b2=0.26 
b3=0.46 b3=0.46 
k =1.95 k =1.40 k =1.50 

b0 =1.97E-6 b0 =1.57E-6 b0 =1.42E-6 
bl=0.59 bl=0.57 bl=0.65 
b2=0.36 b2=0.45 b2=0.35 
k =3.30 k =6.20 k =2.80 

Step 2: Estimation of E(m Ix) and V AR(m Ix) 

E(mlx) = aE(m) + (1 - a)x 

with a = E(m)/[E(m) + Var(m)] 

= 8.48/(8.48 + 23.17) 

= 0.27 

= (0.27 * 8.48) + [(1 - 0.27) * 15] 

= 13.24 acc/3 years 

VAR(mlx) = a(l - a)E(m) + (1 - a)2x 

= (0.27 * (1 - 0.27) * 8.48) + [(l - 0.27)2 * 15] 

= 9.67 (acc/3 years)2 
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In this example, the estimate of safety is reduced from 15 to 13.24 
acc/3 years, which corresponds to a RTM correction of 12 percent. 
The larger the difference between the number of accidents at the site 
and the expected value of the reference population, the larger the cor
rection. Once these estimates are made available, two major tasks 
can be accomplished: identification of entities that require interven
tion and evaluation of the effects of road safety interventions. 

IDENTIFICATION OF DEVIANT SITES 

A site is selected when the difference between its safety and 
the safety of sites having similar characteristics is unacceptable. 
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Speed: 50 km/h 
Period: 3 years 

_/_:__so 
~500 

250 

Stop 1-

25~00 
1500 

1500 

-I Stop 

250 

500+--

250 

50r250 
Q l = 6500 veh/day 
Fl= 4500 veh/day 

· F2= 2000 veh/day 

Number of right angle accidents : 7 
Number of accidents of remaining patterns: 8 

FIGURE 4 Numerical example. 

The determination of what is unacceptable should be a function of 
the resources allocated to the correction of deviant sites. The 
process is as follows: 

• Estimate E(m) and VAR(m) from the multivariate models and 
plot the probability density function (pdf) of the reference popula
tion (gamma distribution). 

• On the basis of this pdf, determine the value of m to be used as 
a point of comparison; the use of the median of the· reference pop
ulation (P50%) is recommended. 

• Estimate E(mlx) and VAR(mlx) from Equation 1 and plot the 
pdf of the intersection of interest (gamma distribution). 

• On the basis of this pdf, calculate the probability of the mix of 
this intersection being larger than the median of the reference pop
ulation and decide whether the site is deviant. 

The previous example is continued to illustrate this method. It has 
been estimated that E(m) = 8.48 acc/3 years and V AR(m) = 23.17 
(acc/3 years)2• When the density function is plotted one finds that 
the median of the distribution of ms for an imaginary group of four
legged unsignalized intersections having a major flow of 4500 vpd 
and a minor flow of 2000 vpd is 7.60 acc/3 years. It was also esti
mated that intersections with this flow combination that had 15 acci
dents in the last 3 years have E(mlx) = 13.24 acc/3 years and 
VAR(mlx) = 9.67 (acc/3 years)2• When the corresponding pdf is 
plotted one finds that there is only a 1.9 percent probability for this 
intersection to have m smaller than 7 .60 acc/3 years. In other words, 
there is a 98.1 percent chance that this intersection is less safe than 
50 percent of intersections having similar characteristics; con
sequently, it is selected for treatment. The result is illustrated in 
Figure 5. 

To facilitate the use of the method, a computer program has been 
developed that estimates the safety of these intersections and iden
tifies blackspots. Information on this program is available from the 
author. 
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FIGURE 5 Gamma distributions, prior and posterior 
estimates of safety. 

EVALUATION OF EFFECTS OF INTERVENTIONS 
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To estimate an intervention's effect on safety, an index of effec
tiveness (IE) must be calculated. It corresponds to the following 
ratio: 

IE= ~~~~~-S_at_e~ty.___in_th~e_af_te_r~p~e_ri_o_d~~~~~ 
Safety that would have been after, without intervention 

(10) 

The numerator and denominator of this equation need to be esti
mated adequately. When the number of accidents is large enough to 
minimize the effect of random variations, the count of accidents in 
the after period is a good estimate of the safety after treatment. The 
estimate of what would have been the safety of the entity in the after 
period if the intervention had not been implemented is more diffi
cult to obtain because it corresponds to a quantity that cannot be 
observed directly. A commonly used estimator of the denominator 
of Equation 10 is the observed number of accidents in the period 
preceding the intervention, but it often leads to an overestimation of 
the benefits of our actions. To improve the accuracy of the denom
inator, two questions must be answered. 

1. What was the safety of the entity before treatment? 
2. How would the estimate of safety in the before period have 

changed between the before and after period if the intervention had 
not been implemented? 

The safety before treatment at four-legged unsignalized intersec
tions should be estimated from the multivariate models and the 
knowledge of the number of accidents at the site, as shown in the 
previous example. Between the before and the after period, several 
factors are likely to have changed and to have modified the level of 
safety at the site: traffic, weather, economy, and so forth. The influ
ence of some factors is unknown and cannot be estimated, but it is 
important to calculate the effect of factors whose influence is 
known. For example, the impact of modifications in traffic flows 
can be estimated from the models. The previous example is contin
ued to illustrate the method. 

At the same intersection, 11 accidents have been recorded in a 
3-year period following its treatment. In the same period, the average 
daily traffic increased from 4500 to 5000 vehicles/day on the major 
street and from 2000 to 2500 vehicles/day on the minor street. The 
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best estimate of safety in the after period is 11 acc/3 years. Earlier 
it was found that the estimate of the safety of the intersection before 
treatment is 13.24 acc/3 years. To correct for changes in traffic, use 
is made of the Model a2 (Table 4). With the after flows, one would 
expect 9.81 acc/3 years, which represents an increase of 16 percent 
compared with the original level of traffic. Assuming that only traf
fic flow changes can be taken into consideration, the estimate of 
what would have been the safety of the entity in the after period 
without intervention is equal to (13.24 * 1.16) = 15.36 acc/3 years. 
Accordingly, the index of effectiveness is 

IE= 11/15.36 

= 0.72 

In other words, the treatment at this intersection is estimated to 
be associated with a 28 percent reduction in accidents. However, 
results of similar interventions at several intersections are required 
to increase the accuracy of this estimated effect. 

SUMMARY AND CONCLUSIONS 

In this study, multivariate models have been developed thatcan be 
used to estimate the safety of four-legged unsignalized intersections 
in an EB framework. Multivariate models are used to estimate the 
moments E(m) and V AR(m) of an "average" intersection; this infor
mation is then combined with the count of accidents (x) at a specific 
intersection to calculate its updated estimate of safety, as expressed 
by E(mlx) and V AR(mlx). 

This study confirms the applicability of methodological elements 
proposed in recent research. The negative binomial error structure 
was shown to be consistent with the data. Also confirmed by the 
data is the useful empirical relationship between E(m) and V AR(m); 
that is VAR(m) = [E(m)]2/k. 

. Total intersection models and pattern models for three categories 
of speed were developed: 50 km/hr, 90 km/hr, and all speeds. The 
50 and 90 km/hr models are more precise than the all speeds mod
els and should be used whenever possible. When only the total num
ber of accidents and entering vehicles on each approach is known, 
total intersection models must be used. However, when accidents 
by pattern and traffic volumes by movements are available, the use 
of pattern models is preferred. They constitute a more powerful tool 
of analysis because they can provide a detailed identification of 
abnormal situations. For example, a site could have a total number 
of accidents not significantly higher than the average total for sim
ilar sites but show an abnormal frequency of right-angle collisions. 

In practice, both the total intersection models and pattern models 
are of interest. Given that it is unlikely that accidents by pattern and 
detailed traffic flow estimates will be available on a large scale in 
the near future, total accident intersection models could be used as 
a first sieve. Data requirement is not as extensive as with pattern 
models and allows for a wider number of intersections to be con
sidered initially. Detaile_d information could then be collected on the 
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reduced sample to make possible the use of more precise pattern 
models. 

ACKNOWLEDGMENTS 

This research has been made possible by the support of the Ministry 
of Transportation of Quebec. We are grateful for the collaboration 
of Ezra Hauer, who supervised the work. 

REFERENCES 

1. Hodge, G. A., and A. J. Richardson. The Role of Accident Exposure in 
Transport System Safety Evaluations I: Intersection and Link Site 
Exposure. Journal of Advanced Transportation, Vol. 19, No. 2, 1985, 
pp. 179-213. 

2. Abbess, C., D. Jarrett, and C. C. Wright. Accidents at Blackspots: 
Estimating the Effectiveness of Remedial Treatment, with Special 
Reference to the "Regression-to-Mean" Effect. Traffic Engineering and 
Control, Vol. 22, No. 10, 1981, pp. 535-542. 

3. Brtide, U., and J. Larsson. The "Regression-to-Mean" Effect. Some 
Empirical Examples Concerning Accidents at Road Junctions. VTI 
Report 240, 1982. 

4. Hauer, E., and B. N. Persaud. Common Bias in Before and After Acci
dent Comparisons and its Elimination. In Transportation Research 
Record 905, TRB, National Research Council, Washington, D.C., 1983, 
pp. 164-174. 

5. Hauer, E. Empirical Bayes Approach to the Estimation of "Unsafety": 
the Multivariate Regression Method. Accident Analysis and Prevention, 
Vol. 24, No. 5, 1992, pp. 457-477. 

6. Maycock, G., and R. D. Hall. Accidents at 4-Arm Roundabouts. TRRL 
Laboratory Report 1120. U.K. Transport and Road Research Labora
tory, Crowthome, Berkshire, England, 1984. 

7. Baker, R. J., and J. A. Nelder. The GLIM System-Release 3. Rotham
sted Experimental Station, Harpenden, U. K., 1978. 

8. Hauer, E., and B. N. Persaud. How to Estimate the Safety of Rail
Highway Grade Crossings and the Safety Effect of Warning Devices. 
In Transportation Research Record 1114, TRB, National Research 
Council, Washington, D.C., 1988, pp. 131-140. 

9. Hauer, E., J.C. N. Ng, and J. Lovel. Estimation of Safety at Signalized 
Intersections. In Transportation Research Record 1185, TRB, National 
Research Council, Washington, D.C., 1988, pp. 48-61. 

10. McCullagh, P., and J. A. Nelder. Generalized Linear Models. The Uni
versity Press, New York, 1983. 

11. Miaou, S. P., P. S. Hu, T. Wright, A. K. Rathi, and S. C. Davis. Rela
tionship Between Truck Accidents and Highway Geometric Design: a 
Poisson Regression Approach. In Transportation Research Board 
1376, TRB, National Research Council, Washington, D.C., 1992, pp. 
10-18. 

12. Bonneson, J. A., and P. T. McCoy. Estimation of Safety at Two-Way 
Stop-Controlled Intersections on Rural Highways. In Transportation 
Research Record 1401, TRB, National Research Council; Washington, 
D.C., 1993,pp. 83-89. 

13. Persaud, B., and L. Dzbik. Accident Prediction Models for Freeways. 
In Transportation Research Record 1401, TRB, National Research 
Council, Washington, D.C., 1993, pp. 55-60. 

14. Surti, V. H. Accident Exposure for At-Grade Intersections. Traffic 
Engineering, Vol. 36, No. 3, 1965, pp. 26-27. 

15. Peleg, M. Evaluation of the Conflict Hazard of Uncontrolled Junctions. 
Traffic Engineering and Control, Vol. 9, No. 7, 1967, pp. 346-347. 

Publication of this paper sponsored by Committee on Traffic Records and 
Accident Analysis. 



30 TRANSPORTATION RESEARCH RECORD 1467 

Effect of Resurfacing on Safety of 
_Two-Lane Rural Roads in New York State 

EZRA HAUER, DONALD TERRY, AND MICHAEL S. GRIFFITH 

In the early 1980s, two kinds of resurfacing projects were undertaken in 
New York State: Fast track projects involving only resurfacing and 
reconditioning and preservation (R&P) projects in which roadside and 
roadway safety improvements have been incorporated with resurfacing. 
The question was whether following resurfacing the fast track projects 
(226.7 mi) perform less well, from a safety viewpoint, than the R&P 
projects (137.2 mi). Findings indicated that in fast track projects safety 
initially declined, but in R&P projects safety improved. Another con
clusion that emerges from this work is that, within the first 6 to 7 years 
of pavement life, safety improves as the pavement ages. The Empirical 
Bayes approach to the study of the safety effect has been used. Two 
methodological innovations may be of interest. First, because the safety 
effect of resurfacing changes as the pavement ages, it was necessary to 
find a way to examine changes in safety as a function of time. Second, 
the accuracy of studies of this kind_ is often limited by the sparsity of 
accident data. The method used here allows the use of a long "before" 
accident history to enhance estimation accuracy. 

The effect of resurfacing on the safety of rural two-lane roads was 
in the eye of a stormy debate in the .late 1980s. To clarify the issue, 
a special TRB study was initiated, culminating in the publication of 
Designing Safer Roads (1). A critical review of published evidence 
conducted for this study by Cleveland (2) concluded that, although 
there is diversity in the findings of the few extant studies, the detri
mental effect ofresurfacing on safety, if any, is likely to be small. 

In the State of New York Department of Transportation 
(NYDOT) as in all states, road resurfacing is an ongoing activity. 
In the early 1980s, two kinds of resurfacing projects were under
taken. 

• Projects involving only resurfacing are called fast track. These 
consist of simple resurfacing and restriping. Initially, they did not 
include shoulder preparation or backing up, replacing guardrail, 
cutting trees, or other work. These activities were to be done later 
by the maintenance forces. After a few years, the scope of the fast 
track projects was enlarged to allow maintenance to catch up. 

• Projects in which roadside and roadway safety improvements 
have been incorporated with resurfacing are called Reconditioning 
and Preservation (R&P) projects. In addition to resurfacing these 
may include limited pavement reconstruction and remedies to 
safety or operational problems. Superelevation, shoulder, drainage, 
slope flattening, and guide-rail and roadside improvements (remov
ing or relocating fixed objects) are typically included. 

E. Hauer, Department of Civil Engineering, University of Toronto, Toronto, 
Ontario M5S 1A4, Canada. D. Terry, Traffic Engineering and Safety Divi
sion, State of New York Department of Transportation, Albany, N. Y. 12232. 
M.S. Griffith, Office of Safety and Traffic, FHW A, 6300 Georgetown Pike, 
McLean, Va. 22101. 

A before-and-after comparison indicated that there might be a 
substantial difference between the safety performance of these two 
kinds of resurfacing projects. To check whether the difference is 
real; additional data were collected for comparison sites. However, 
questions still remained about the appropriateness of the compari
son groups selected, about a possible regression-to-mean bias, and 
about the statistical significance of the results. Eventually, the 
FHW A was asked to assist in resolving the issue whether projects 
involving only simple resurfacing perform less well, from a safety 
viewpoint, than similar resurfacing projects where roadside and 
roadway safety improvements have been incorporated. 

This paper is the product of that request. The main aim is to add 
what has been found for the kinds of treatments used in New York 
state in the early 1980s to the store of facts about the safety effect 
of resurfacing. In performing the work, some methodological inno
vation was required and will be described without burdening the 
exposition with too much theory. Full details are given in the orig
inal report (3). 

DATA 

All data pertain to rural, two-lane, undivided, free-access road sec
tions. The following information has been assembled by officials of 
NYDOT for each road section: 

• The length of the section and the number of intersections in it. 
• Traffic counts for the 13 years from 1975 to 1987, factored to 

represent the AADT in the year of the count. 
• The count of fatal, injury, property damage only, fixed object, 

and intersection accidents for each month of the 13 years from 197 5 
to 1987. 

• If the road section was resurfaced, the month and year in which 
construction started and ended (mostly in the 1981 and 1982 con
struction seasons). 

The data pertain to 82 fast track projects (226.7 mi, 2.09 inter
section/mi), 55 R&P projects (137.2 mi, 4.36 intersections/mi), and 
525 comparison and reference road sections (2193.2 mi with 1.92 
intersections/mi). During preliminary analysis, a few suspicious 
traffic volumes, intersection densities, and accident records were 
identified. Where possible, these were checked and corrected. If 
verification or correction was not feasible, the data were not used. 

PRELIMINARIES 

Before analysis could begin, several preparatory activities had to be 
undertaken. 
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Estimating AADT 

Because traffic and accidents are closely related, changes in traffic 
have to be a~counted for when changes in safety are examined. The 
accident data to be analyzed are for the 13-year period from 1975 
to 1987: Thus, estimates of AADT for the same period were needed. 

Traffic counts are conducted on each road section every few 
years. These counts are then factored to represent the AADT in the 
year of the count. The task was to fill in all the blanks for the years 
for which ·there were no counts. This estimation procedure is 
described in detail in Appendix A of the work by Hauer (3). At the 
conc~usion of this task, estimates of the AADT and its standard 
devi~tion for all 13 years for each of the 662 sites were obtained. 

Accident Counts 

The following questions required answers: 

1. What were the effects of changes in 1978 and again in 1985 
in the reporting threshold for property damage only accidents? 

2. What was the effect of the change that occurred in May 1993 
in the definition of an intersection accident? 

3. Is the year-to-year variation the same for all accident types to 
be analyzed? 

4. What is the month-to-month variation by accident type? 

In response to Questions 1 and 2, no discernible effect could be 
found for either the changes in the reporting threshold or the defin
ition of what constitutes an intersection accident (3). On Question 
3, each ~ccident type was found to have its own year-to-year varia
tion. Therefore, when modeling how the expected number of acci
dents depends on time and traffic, discrete parameters have to be 
assigned to each year and accident type. 

Inasmuch as the safety effect will be estimated as a function of 
the number of months after the end of construction, information 
about month-to-month variation is also needed and has been 
estimated. 

Examination of Comparison and Reference Group 

In before-and-after studies, the role of a comparison group is to 
account for changes in safety from the before to the after period that 
are due to a variety of uncontrolled factors (weather, accident
r~porting threshold, driver demography, vehicle fleet, definition of 
intersection accident, etc.). Therefore, the requirement is that the 
change in these uncontrolled factors and their effects on safety be 
the same on the entities in the comparison group and on the treated 
entities. (Note that here the comparison group is not used to account 
for changes in traffic flow inasmuch as this can be done better using 
the available estimates of the AADT.) 

A reference group in before-and-after studies serves mainly to 
account for any bias due to regression to the mean. The requirement 
is that the expected number of accidents of a treated entity with 
given traits (geometry, traffic flow) be the same, roughly, as the 
expected number of accidents of a reference-group entity with iden
tical traits. Although the purpose and use of the comparison group 
and the reference groups are different, there is no reason why the 
same group of entities can not serve in both roles, provided that both 
requirements are met. 
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It was established earlier that one of the differences among the 
fast track, R&P, and the comparison and reference road sections 
was that their intersection densities are very different (2.09, 4.36, 
and 1.92 intersections/mi, respectively). It was therefore clear that 
intersection and nonintersection accidents have to be modeled 
separately. 

The 525 road sections which make up the reference and compar
ison group are composed of 47 sections originally selected for their 
proximity to fast track projects, 49 sections originally selected for 
their proximity to R&P projects, and 429 sections selected to rep
resent the entire state. Therefore, the comparison group requirement 
is likely to be satisfied. To examine the suitability of these road sec
tions as a reference group, nonintersection accidents per vehicle-mi 
and intersection accidents per intersection-vehicie of treated and 
not-treated road sections were compared in the 1975 to 1980 period 
(i.e., before any construction took place). On the basis of such com
parisons and in view of the overall similarity in the average rate and 
its large year-to-year fluctuations, it was concluded that there was 
no reason to distinguish between the three groups of road sections. 
Therefore, they were used jointly as one reference group. 

In summary, the fast track sites differ from the R&P sites in inter
section density. This requfred modeling intersection and noninter
sectio~ accidents separately. Once this was done, all untreated sites 
were combined to serve as reference group and as comparison 
group. 

Multivariate Modeling 

To account for the effect of changes in uncontrolled factors 
(weather, reporting threshold, demography, etc.), for the effect of 
changes in AADT, and also for the possible bias due to regression 
to mean, the parameters of a set of multivariate models need to be 
estimated. These models link accident counts from 1975 to 1987 to 
traffic in those years and to variables representing the passage of 
time. (Details are given in Hauer (3), Appendix D). Three models 
were estimated for three accident types: (a) nonintersection acci
dents, (b) intersection accidents, and ( c) fixed-object accidents. 

The models are of the form 

E(m;,y) = ayF ~Y 

VAR(m;.y) = [E(m;,y)]2/b (1) 

where 

m;,y = what would be the average number of accidents per 
mi (or per intersection) of road section i in year y if 
it were possible to freeze all relevant conditions of 
year y and repeat them a very large number of times. 
If there were another road section}, with the same 
traffic as section i, in the same state, same number 
of lanes, and so forth, still m;,y =;f. m1.y because the 
two road sections will differ in many traits that are 
unmeasured and are not featured in the model. 

E(m;.y) = average of the m;./s for an imaginary set of road 
sections that have exactly the same measured and 
modeled traits (including traffic) as section i. 

V AR(m;.y) = variance of these m;./ s. 
ay = parameter for year y that captures the influence of 

all factors that change from year to year, except for 
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the change in traffic flow. Values are estimated for 
a,, a 2, ••• , a 13, in which the subscript 1 is for 1975, 
2 for 1976, ... , 13 for 1987. 

F;,y = AADT for road section i and year y, 
~ = manner in which E(m;,y) is thought to depend on F;,y· 
b =parameter required to estimate VAR(m;,y). The 

larger the b, the better a model fits a specific data 
set. 

Because m;,y is the expected number of accidents per mi or per 
intersection, if Road section i is L; mi long and has N; intersections, 
then the mean and variance for nonintersection and fixed object 
accidents are L;E(m;,y) and L;2VAR(m;,y); the mean and variance for 
intersection accidents are N;E(m;,y) and N;2V AR(m;,y). 

For each accident type there are 15 parameters to be estimated: 
~. b, and 13 values of a. These were first estimated using data for 
all 525 road sections. After some outliers were identified and 
deleted, the parameters were re-estimated. The likelihood function 
that these parameters maximize is described in Appendix D of 
Hauer (3). To illustrate, the maximum likelihood parameter esti
mates for nonintersection accidents are given in Table 1. 

It is worth noting that the exponent ~ of AADT is 0.78 for 
nonintersection accidents (0.71 for intersection accidents and 0.60 
for fixed-object accidents). Thus, the relationship between the 
expected ·number of accidents and AADT is in each case distinctly 
nonlinear. 

HOW EFFECT ON SAFETY WAS ESTIMATED 

In this section the method used to estimate the effect resurfacing on 
safety is described. It is somewhat more complex than the more 
familiar "before-after-with-comparison-group" method. The aim 
was to (a) use a long accident history to enhance estimation 
accuracy, (b) account explicitly for changes in traffic flow and for 
changes in the uncontrolled factors in the "before" and "after" 
periods, and (c) eliminate the regression-to-mean threat to the valid
ity of the estimates. 

These aims can be attained within the Empirical Bayes approach 
to estimation. In general, the process can be thought to entail four 
steps. 

Step 1 

Estimate for each road section what the expected number of acci
dents per year was during the before-treatment years. Two clues are 
used for this purpose: (a) the history of accident counts on the road 
section and (b) the expected count of accidents for road sections 
with the same traits (AADT, length, number of intersections) in the 
reference population. This procedure eliminates bias due to possi
ble regression to the mean. The information needed for (b) is the 
parameters of the multivariate models that link the number of acci
dents on road sections of a reference population to their AADT, 
length, and number of intersections. Here Step 1 was based on the 
following development explained fully in Hauer (3): 

Let Road section i have accident counts x;,i. x;,2, ••• , x;,n in Years 
y = 1,2, ... , n. Collectively, these form the Vector x. The infor
mation contained in x can be combined with the information con
tained in E(m;,y) and VAR(m;,y) obtained earlier into E(m;,11.x) using 
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TABLE 1 Parameter 
Estimates 

01 0.002844 
02 0.002885 
03 0.002745 
04 0.002550 
C1.5 0.002662 
a6 0.002634 
CY.7 0.002479 
CXg 0.002699 
CY.9 0.002601 
010 0.002709 
CY.11 0.002373 
CY.12 0.002541 
CY.13 0.002414 
~ 0.77606 
b 5. 571 

n 

b + Ixi.y 
E(m;,dx) = __ _._=-'-~--

a+ L;IC;.y 
y=I 

(2) 

In this E(m;,1lx) is used to estimate them of Road section i in Year 
1, n is the number of time periods for which accident data are used, 
and a and C;,y are given by 

a = b/E(m;,1) (3) 

and 

(4) 

Step 2 

Using the results of Step 1, predict what the expected number of 
accidents on that road section would have been in the period after 
resurfacing if it had not been resurfaced. In this step, one has to 
account for changes in traffic from the "before" years to the "after" 
year, as well as for changes in the various uncontrolled factors. 

Here, based on the earlier development, E(m;,ylx) = C;,yE(m;, 1 Ix), 
it follows that for a road section that is L; mi long, 

(5) 

Step 3 

Estimate for that road section what was the expected number of 
accidents during the after period with resurfacing in place. Compare 
this to the result of Step 2. Estimate the safety effect. 

Step 4 

Repeat Steps 1, 2, and 3 for all treated road sections. Combine the 
results for individual road sections to obtain estimate of mean 
effect. 
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To illustrate, estimate E(m1,1) and V AR(m1,1) for nonintersections 
accidents of a site that in 1975 (ie., for Year 1) is estimated to have 
had AADT = 1199 and is 1.6 mi long. From Table 1 a 1 = 
0.002844, ~ = 0.77607, and b = 5.571. The estimate of E(m1,1) is 
0.002844 X 1199°·77606 = 0.697 nonintersection accidents/mi per 
year; VAR(m1,1) = 0.6972/5.571 = 0.0872, which makes a standard 
deviation of VoOOi = 0.295 accidents/mi per year. The estimate 
of b is 5.571 as given in Table 1. Therefore the estimate of a is 
5.57110.697 = 7.99. 

For this site there are "before resurfacing" accident counts for 7 
full years (1975 to 1981) and 3 months in 1982. Thus, n = 8. The 
accident count vector x is 1, 4, 5, 1, 4, 1, 3, 0. Their sum is 19. 
Because b was found to be 5.571, the numerator in Equation 2 is 
5 .571 + 19 = 24.571. For the denominator of Equation 2 one needs 
values of C;,y· These are calculated by Equation 4 and shown in 
Table 2. 

One now can calculate the denominator of Equation 2. The value 
of a calculated earlier was 7.993. The length of this road section was 
said to be 1.6 mi. The sum of the C's for 7 full years is 6.325. Only 
3 months of accident data for the 8th year are used. Therefore, C1,8 

= 0.848 X Y12 = 0.212. This makes the sum of C's to be 6.325 + 
0.212 = 6.537. Thus, the denominator in Equation 2 is 7.993 + 1.6 
X 6.537 = 18.452. Doing the calculations of Equation 2, one finds 
that E(m1,1ll, 4, 5, 1, 4, 1, 3, 0) = 24.571/18.452 = 1.33 acci
dents/mi/year in 197 5. 

Note that if one were to take the raw accident count for the 7 full 
years, one would obtain 19/(7 X 1.6) = 1.70 accidents/mi per year. 
This amounts to setting a = 0 and b = 0 and making all C's 1. Doing 
so means that one does not recognize the variations in traffic from 
year to year or the variations that go with the passage of time. (This 
is why the usual advice is not to extend the "before" period beyond 
three years. The fear is that, if corrections for changes in traffic and 
other factors are not applied, accident counts from the distant past 
are of doubtful use when projections are to be made into the "after" 
period.) The advantage of accounting for changes in traffic and other 
factors as is done in Equation 2 is to allow the use of a longer 
"before" history of accidents counts. This enhances the accuracy of 

·estimation. The incorporation of Parameters b and a in Equation 2 

TABLE 2 Calculation ofC1,y 

:'._:···· .. •. 

... a. F, v 

><. 0.002844 1199 0.697 1.000 1.000 
·:.< 
:: 0.002885 1201 0.708 1.016 2.016 

I .,~ .:·• 0.002745 1175 0.662 0.950 2.966 

\'4.' 0.00255 1163 0.610 0.875 3.841 

/'.5.: 0.002662 1098 0.609 0.874 4.715 

I <:~. : 0.002634 1042 0.579 0.830 5.546 

: 7 0.0024 79 1038 0.543 0.779 6.325 

>rs. · 0.002599 1030 0.591 0.848 7.173 
1.:: ..... · •. --:. 

9 . 0.002601 1049 0.575 0.824 7.997 

Jfo ·. 0.002109 1083 0.614 0.880 8.878 

i.11 : . 0.002373 1104 0.546 0.782 9.660 

>:.1:2 ... 0.002541 1140 0.599 0.859 10.519 

},13:: 0.002414 1228 0.603 0.865 11.384 
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reflects the influence of the reference population and ensures that the 
result is not biased by regression to the mean. 

What the expected number of accidents on this site would have 
been can now be predicted if no resurfacing had taken place. Using 
Equation 5 one predicts, for example, for 1983 (y = 9, the first full 
year after resurfacing), that E(L1m1,9lx) = 1.6 X 0.824 X 1.33 = 

1.76 accident per year. This prediction has been built up gradually 
from several pieces of information. 

• Accident history of the site during the "before" period taking 
into consideration the changing AADT in the "before" years and 
also accounting for the year-to-year change in various uncontrolled 
factors. 

• Distribution of m's at similar sites, based on the multivariate 
model. 

• AADT in 1983 and the effect of the uncontrolled factors for 
that year. 

The next step is obvious. In 1983, after the site had been resur
faced, it recorded three nonintersection accidents. Without resur
facing 1.76 such accidents would have been expected. Thus, for this 
site and year, there were 1.24 more nonintersection accidents than 
expected. Since changes in traffic and other factors were accounted 
for, the noted difference is attributable to resurfacing. 

Of course, one can not form an opinion about the safety effect of 
resurfacing on the basis of one site and one year. The effect will be 
added up for all sites and examined for all years. The hope is that, 
by doing so, sufficiently accurate results can be obtained. This is the 
subject of Step 4. Since the suspicion is that the effect of resurfac
ing changes with time, an attempt will be made to examine the 
effect on a monthly not a yearly basis. Indexes of monthly variation 
are used for this purpose. 

EFFECT OF RESURFACING IN FAST TRACK 
PROJECTS 

There is information about 82 fast-track sites, that is, projects 
involving primarily resurfacing. The effect of resurfacing on safety 
for three accident types-nonintersection, inte.rsection, and fixed 
object-will be estimated. 

Effect of Resurfacing on Nonintersection Accidents 

By using the method in the previous section, the results in Table 3 
were obtained. Thus, during the first month after resurfacing, 20.91 
nonintersection accidents would be expected if no resurfacing had 
taken place, and the average pre-resurfacing pavement conditions 
were to prevail (Column 2). The accumulative sum of the expected 
numbers is given in Column 3. Actually, 24 such accidents were 
recorded in the first month after resurfacing (Column 4). Both num
bers, 20.91 and 24, are the sum for the 82 fast-track project sites 
(Column 5). The difference between 24 and 20.91 is the excess 
number of accidents, Column 6. The last column lists the cumula
tive excess. Thus, at the end of the third month after resurfacing, the 
cumulative excess is estimated to be 10.06 nonintersection acci
dents. The table is interrupted in several places. Because not all 82 
sites were resurfaced at the same time, not all had the same length 
of "after" history. For example, only 40 sites had a history longer 
than 74 months after resurfacing. 
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TABLE 3 Summary Calculations 

20.91 

2 23.35 

3 23.68 

4 20.35 

30 18.07 

31 17.91 

41 18.82 

42 17.02 

60 21.08 

61 23.57 

73 16.24 

74 

Cumul. 
Expected 

(3) 

20.91 

44.26 

67.94 

88.29 

605.37 

623.27 

829.78 

846.80 

1203.41 

12.26.98 

1438.00 

The data of Table 3 are shown in Figure 1. The asterisks in Fig
ure 1 belong to the left scale and show the accumulation of the 
excess of nonintersection accidents with time after resurfacing (the 
last column in Table 3). The solid line in Figure 1 belongs to the 
right scale and shows the accumulation of the number of accidents 
expected without resurfacing. Note that the two scales differ by a 
factor of 10. To make interpretation easier, the same ratio of left and 
right scales also will be used in the subsequent figures. 

The orderliness of the results is remarkable. For the first 30 
months or so, there is an excess averaging 4.15 nonintersection acci
dents/month. The standard deviation of this average is 0.93. (So, 
even from the statistical point of view, the excess must be thought 
real. A null hypothesis that there was no increase in nonintersection 
accidents is clearly rejected). Over 30 months the excess accumu
lates to about 125 nonintersection accidents (with a standard devi
ation of 28). Thus, it is estimated that, if no resurfacing had taken 
place and if the pre-resurfacing pavement conditions continued to 
prevail, 125 fewer nonintersection accidents would have been 
recorded within 30 months. Over the same period of time about 605 
nonintersection accidents would be expected without resurfacing. 
Thus, the increase is of about 21 percent (124/605 = 0.21). After 
the first 30 months, there is a 10-month transition during which the 
monthly accident excess gradually diminishes. The detrimental 
effect of resurfacing appears to vanish after about 40 months. Over 
these 40 months, more than 135 nonintersection accidents has accu
mulated, with a standard deviation of 33. Without resurfacing one 
would have expected to accumulate by that time 810 nonintersec
tion accidents. 

After 40 months there is a plateau that lasts until about 63 months 
after resurfacing. During this period the average monthly excess is 
0.28 nonintersection accident. The standard deviation of this aver
age is 0.79 accident. Thus, it appears that on the plateau the number 
of accidents is approximately what would have been expected with-
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24 82 3.09 3.09 

27 82 3.65 6.74 

27 82 3.32 10.06 

17 82 -3.35 6.71 

17 82 -1.07 124.63 

12 82 -5.91 118. 73 

22 

18 

21 

31 

12 

82 3.18 138.22 

82 0.98 139.20 

82 -0.08 133.59 

82 7.43 141.02 

50 -4.24 106.00 

~ n~ 109 n~ 

out resurfacing but with pavement conditions that prevailed before 
resurfacing. Following the plateau, there is a gradual decline. That 
is, beginning with month 64 after resurfacing, there are fewer non
intersection accidents every month than one should expect if the 
pre-resurfacing pavement conditions continued to prevail. The 
number of sites having such a long post-resurfacing history is small. 
Therefore, one can not say whether the noted decline is real. How
ever, inasmuch as similar declines will later be noted for other acci
dent types, the trends appear to have substance. One may speculate 
that after more than 5 years of service, the pavement condition is on 
average worse than what it was in the before-resurfacing period. · 
Just as a new pavement was seen to generate an excess of noninter
section accidents, it should not be surprising that old pavements 
seem to have the opposite effect. 
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FIGURE 1 Safety effect of resurfacing on nonintersection 
accidents in 82 fast track projects. 
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Effect of Resurfacing on Fixed-Object Accidents 

In general, the detrimental effect of resurfacing on fixed-object acci
dents was found to be similar to that observed earlier for noninter
section accidents. For the first 30 months, there is an average excess 
of 3.31 fixed.:.object accidents per month. The standard deviation of 
this average is 0.69 accident. This amounts to an excess of nearly 
100 fixed-object accidents in 30 months after resurfacing. The stan
dard deviation here is 21 accidents. Over the same period of time 
about 290 fixed-object accidents would be expected without resur
facing. Thus, the increase is 34 percent. There is a hint of a plateau 
at about 40 months. The cumulative excess after 63 months is 130 
with a standard deviation of 29 fixed-object accidents. As for non
intersection accidents, there is a clear intimation of a decline after 
63 months. 

Effect of Resurfacing on Intersection Accidents 

Two of the 82 road fast-track road sections have no intersections. 
Therefore, the results here are based on 80 road sections. The accu
mulation of excess intersection accidents and the number expected 
without resurfacing is shown in Figure 2. 

There are two main differences between the effect of resurfacing 
on intersection accidents (Figure 2) and its effect on nonintersection 
accidents (Figure 1). First, the.hump that separates the period when 
more than the expected number of accident occurs from the period 
when fewer then expected accidents materialize occurs much ear
lier. Second, the absolute excess is smaller, and therefore the results 
are not as reliable. 

For the first year after resurfacing, there are more intersection 
accidents than would be expected if the road sections had not been 
resurfaced. The excess is 2.92 intersection accidents/month with a 
standard deviation of 1.21 for a total of 35 intersection accidents 
with a standard deviation of 15. By the end of the first year, 101 
intersection accidents would be expected without resurfacing. Thus, 
there was an increase of 35 percent. 

Disregarding the undulations, from the end of the first year until 
Month 32 there is a plateau. The excess here is 0.01 with a standard 
deviation of 0.50 intersection accidents per month. From Month 33 
to Month 63 (where there are still data for all 80 road sections), each 
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FIGURE2 Safety effect of resurfacing on intersection accidents 
in 82 fast track projects. 
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month there are fewer accidents than would be expected if there had 
been no resurfacing and the pre-resurfacing pavement conditions 
continued to prevail. The average monthly excess is -2.04 inter
section accidents per month with a standard deviation of 0.50. 

In Figure 1, a decline was already noted, that is, a negative excess. 
Here for the first time its magnitude can be estimated. The hypothe
sis has been advanced earlier that, just as new and smooth pavement 
is associated with a positive excess, as the pavement ages after a 
turning point the excess becomes negative. Although the hypothesis 
is plausible, it is merely a hypothesis. Here one must ask why the 
turning point for intersection accidents occurs earlier than for non
intersection accidents and by what mechanism can resurfacing and 
pavement aging affect the frequency of intersection accidents? 

One also needs to ask whether there is some factor neglected in 
the analysis that could have brought about these results. Could per
haps the change in the definition of intersection accidents be respon
sible for the decline? We think not. Firstly, the decline starts about 
32 months after resurfacing while the change in definition occurred 
(May 1983) perhaps 10 to 20 months after the projects were finished 
(either in fall 1981or1982). Second, no change was detected in the 
count of intersections accidents coinciding with the change in defi
nition. Third, whatever the effect of the change in definition, it is 
reflected in the corresponding as. 

EFFECT OF RESURFACING AND OTHER 
MODIFICATIONS IN R&P PROJECTS 

The R&P projects include various additional improvements with 
resurfacing. Thus, the effect to be estimated is not only of resurfac
ing but the joint effect of all modifications implemented. There is 
information about 55 R&P sites. As in the previous section, the joint 
effect of resurfacing and other improvements on safety will be esti
mated for three accident types-nonintersection, intersection, and 
fixed-object. 

Effect on Nonintersection accidents 

The accumulation of excess nonintersection accidents and of the 
number of nonintersection accidents expected without resurfacing 
versus months after resurfacing is shown in Figure 3. 
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FIGURE3 Safety effect of improvements on nonintersection 
accidents in 55 R&P projects. 
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The comparison .is with Figure 1, and the contrast is stark. With
out much analysis, one can state that in Figure 3 there is no dis
cernible change in the number of nonintersection accidents from 
what would be expected if these projects had not been implemented 
and the pavement condition remained as in the pre-improvement 
period. 

Effect on Fixed-Object Accidents 

Although the corresponding figure is not shown here, its examina
tion would show that the joint effect of the resurfacing and other 
improvements was to make the number of fixed-object accidents 
just what it would have been if no improvements had been under
taken and the pavement conditions from before the improvement 
continued to prevail, just as is true for the nonintersection accidents 
in Figure 3. 

Effect on Intersection Accidents 

Four of the 55 R&P road sections have no intersections. Therefore, 
the results here are based on 51 road sections. The accumulation of 
excess intersection accidents and the number expected without 
resurfacing are shown in Figure 4. 

As is clear, the R&P project improvements are associated with a 
reduction in the number of intersection accidents for a long period 
of (ime. The horizontal tail after Month 70 merely signifies that very 
few sections have such a long "after" history. The. full 51 road sec
tions can be followed only for 60 months. 

During that 60-month period, the average number of intersection 
accidents was reduced by 2.78 per months, with a standard devia
tion of 0.31 accidents. This accumulates over the 60-month period 
to a reduction of 167 intersection accidents, with a standard devia
tion of 19. By that time, 572 intersection accidents would have been 
expected if the R&P project had not been undertaken and pavement 
conditions remained constant. This amounts to a 29 percent reduc
tion in intersection accidents. 

Again there is the question Is this real? What aspect of the R&P 
projects can be thought to act on intersection accidents? On one 
hand, the results here are internally consistent with what has been 
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found for fast-track projects. In fast-track projects, resurfacing was 
associated with an increase in nonintersection accidents and a slight 
increase followed by decline of intersection accidents. In R&P pro
jects nonintersection accidents were found to remain stable while 
intersection accidents declined steadily from the end of resurfacing. 
Thus, there is a link between how nonintersection and intersection 
accidents appear to respond. On the other hand, a mechanism by 
which the kinds of actions undertaken in R&P projects can dimin
ish the number of intersection accidents is unknown. 

SUMMARY AND CONCLUSIONS 

In the early 1980s, two kinds of resurfacing projects were under
taken. The task was to ascertain whether projects involving only 
simple resurfacing (82 fast-track projects, 226.7 mi) perform less 
well from a safety viewpoint than similar resurfacing projects where 
roadside and roadway safety improvements have been incorporated 
(55 R&P projects, 137 .2 mi). 

The overall answer is yes. In fast-track projects, safety initially 
declined; in R&P projects safety improved. Since the safety effect 
of resurfacing changes with the passage of time and differs from one 
type of accident to another, one can not describe the difference 
between fast-track and R&P projects by a single number. Table 4 is 
an attempt at a succinct summary. Another conclusion that emerges 
from this work is that with the first 6 to 7 years of pavement life, 
safety improves as the pavement ages. 

Retrospective studies of this kind can provide estimates of what 
the effect on safety of some intervention was. However, to say in 
such a study how the estimated effect came to be is difficult. There 
are no data on how speed has changed, how pavement friction was 
affected, what were the changes in traffic volumes on the crossing 
legs of intersections, no knowledge of when shoulders were backed 
up in fast-track projects, or details about what specific improve
ments were made in which R&P projects. Because the effect of 
these interventions on safety appears to be large, this lack of expla
nation is troubling. One would have more confidence in the results 
if these could be attributed to causes. 
; Still, the results display a pleasing internal consistency. One can 

not imagine any element of method or of data analysis that could be 
incorrect and still leave this internal harmony intact. It is also reas
suring that the results presented here are in many ways similar to the 
results obtained earlier by the NYDOT staff when using part of the 
data in simple before-and-after comparisons and in comparisons 
involving the use of control sections. 

It appears clear that the kind of resurfacing that went with fast
track projects affect_ed safety differently from the kind of resurfac
ing associated with R&P projects. This leads to the conclusion that 
resurfacing as referred to in the professional literature may cover a 
heterogeneous set of activities. When discussing the effect of resur
facing on safety, one should be specific about the kind of activities 
performed. Lumping together the safety effect of diverse kinds of 
resurfacing may give a fuzzy picture. 

There are two main novel aspects to the method used in this 
study. First, it is sensible to expect the effect of resurfacing on safety 
to change with time as the pavement ages. The method used facili
tates the examination of this aspect. Second, the accuracy of stud
ies of this kind is often limited by the sparsity of accident data. The 
method used here allows the use of a long "before" accident history 
and enhances accuracy by using information from the reference 
population. 
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TABLE 4 Summary of Results 

FAST TRACK R&P 

Non- Intersection Intersection Non

Intersection 

Intersection 

Mo. 0-30 +21% Mo. 0-12 + 35 % No Change Mo. 0-70 -29% 

Mo. 40-

63 

Later 

0% 

decline(?) 

Mo. 13-

32 

Later 

The central theme of this study was to assess the effect of the two 
kinds of treatment on safety. En route, two by-products have been 
generated. One is a procedure for estimating AADTs for every road 
section and every year on the basis of traffic counts conducted once 
in 3 to 4 years. The other by-product consists of the multivariate 
models, which, with a slight extension, can be the basis of a ratio
nal procedure for the identification of hazardous locations. 

The work reported here had to be done within time and on bud
get and is not as complete as it could have been. The procedure for 
estimating AADT is somewhat ad hoc; the investigation of the cor
respondence between the reference and comparison groups is lim
ited; with added effort it would have been possible to investigate 
separately the effect of resurfacing on property damage and· on 
injury accidents; it would also have been possible to examine the 
effect of the construction period itself. 

There is one deficiency that became apparent only after the analy
sis was completed. The results indicate that as the pavement ages 
accidents diminish. Because all treated road sections were resur
faced within 1 year of each other, their pavements must have been 
deteriorating approximately in tandem; they were all in need of 

0% 

-23% 

repair just before resurfacing and in good shape 5 to 7 years earlier. 
If so, there is a systematic factor that the analysis in Step 1 
neglected. The net effect of this deficiency is that prediction of what 
would be expected without resurfacing has been produced as if a 
constant pavement condition prevailed during the entire before
resurfacing period. This logical deficiency applies equally to the 
fast-track and the R&P projects and is unlikely to affect any of the 
conclusions materially. 
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Use of Weigh-in-Motion Scale Data for 
Safety-Related Traffic Analysis 

JERRY J. HAJEK, JOHN BILLING, PHI HOANG, AND ALEXANDER J. UGGE 

So far, more than 2000 traffic lanes on North American highways have 
been equipped with weigh-in-motion (WIM) scales. These WIM scales 
provide and will continue to provide a large amount of data for indi
vidual highway vehicles, such as axle spacing and weights, vehicle 
length, speed, and headway. Because of their unobtrusiveness and con
tinuous operation, WIM scales provide unbiased, statistically reliable 
data. The use of WIM data for investigating safety-related highway traf
fic flow·characteristics is examined. WIM technology and its capabili
ties to generate traffic-monitoring data useful for transportation plan
ning and decision making are described. Examples of data analysis that 
demonstrate the usefulness ofWIM data for investigating safety-related 
traffic characteristics are provided. They include determination of truck 
exposure rates and evaluation of vehicle speed and headway distribu
tions as a function of highway facility, vehicle type, daytime and night
time conditions, and truck load. WIM data are useful in many areas of 
transportation planning, including safety-related traffic analysis, and 
should be considered corporate data and managed accordingly. 

With the advent of the Strategic Highway Research Program 
(SHRP) and its national satellite programs, such ·as Canadian
SHRP, weigh-in-motion (WIM) scales have become commonplace. 
It is estimated that there are now more than 2000 traffic lanes 
equipped with WIM scales in North America, with installations in 
virtually all states and provinces. The Ontario Ministry of Trans
portation is operating nine in-highway WIM scales. 

The WIM scales provide and will continue to provide a large 
amount of detailed data for individual highway vehicles, such as 
axle spacing and weights, speed, and headway. This is in addition 
to the traditional aggregated traffic characteristics such as daily and 
annual vehicle volumes and equivalent single-axle loads. Consider
ing the effort associated with the installation and operation of WIM 
scales and with subsequent data retrieval and processing, the wealth 
of traffic-monitoring data generated by WIM scales should be prop
erly used for as many purposes as possible. 

Because of the original association with the SHRP-related pave
ment research effort, it is often assumed that WIM data are only 
applicable to pavement performance research. Many potential users 
of WIM-type data do not know the following: 

• Traffic-monitoring capabilities of WIM technology, 
• Type of data available, and 
• How the data can be used within their area of interest. 

Hajek et al. (J) demonstrated that WIM data are useful for a wide 
range of transportation planning and decision-making purposes, 
including 
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• Planning of transportation facilities, 
• Pavement design and rehabilitation, 
• Apportionment of pavement damage, 
• Compliance with vehicle weight regulations, 
• Development of geometric design standards, 
• Compliance and regulatory policy development of truck 

dimensions, 
• Traffic safety analysis, 
• Traffic operation and control, and 
• Analysis related to highway bridges. 

The objective of this work is to make traffic safety researchers 
and administrators aware of the potential of WIM data in the traffic 
safety analysis area. Specifically, the objective is to show, by prac
tical examples, that WIM data are also useful and indeed indis
pensable for fundamental safety-related traffic analysis. 

The data used in this study were obtained by three Ontario WIM 
scales: two scales were located on a freeway (Hwy 402) and one 
scale on a two-lane highway (Hwy 31). All scales use piezoelectric 
cable technology (2). Compared with static conditions, the scales 
provide dimensions accurate within 2 to 3 percent, gross vehicle 
weights within about 5 percent, and axle loads within about 5 to 12 
percent. Accuracy depends on vehicle dynamics (e.g., vehicle con
figuration and speed) and on pavement roughness in the vicinity of 
the scale. 

Highway 402 is a four-lane rural freeway with a speed limit of 
100 km/hr. One WIM scale is located in an eastbound right (truck) 
lane near Sarnia and is referred to as Location 1; the second scale 
spans both westbound lanes near London and is referred to as Loca
tion 2. Low traffic volumes at the two locations on Hwy 402 (about 
400 vehicles during a peak daytime hour and about 75 vehicles/hr 
at night in the right lane) enable a large degree of traffic operational 
freedom. However, Location 2 is about 2 km downstream from a 
freeway entrance ramp. Because of highway alignment constraints, 
traffic may not have always reached its free-flow equilibrium at this 
location. 

Highway 31 is a two-lane rural highway with a speed limit of 80 
km/hr. The WIM scale is in both lanes; the WIM in the northbound 
lane is referred to as Location 3. High traffic volumes on Hwy 31 
(about 3500 vehicles per day in each direction) greatly restrict traf
fic operational freedom, particularly passing opportunities. The 
highway grade is at a level for 2 or more km before all WIM scale 
locations. 

DESCRIPTION OF TRAFFIC-MONITORING DATA 
PROVIDED BY WIM SCALES 

A typical WIM scale consists of magnetic loops and axle sensors 
embedded in the pavement and a microcomputer housed in a road-
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side cabinet. Magnetic loops and axle sensors respond to axles pass
ing over the pavement by generating electric signals. The signals are 
processed by the computer and transformed into engineering para
meters for each vehicle. These parameters include a time stamp, 
instantaneous vehicle speed, vehicle length, distances between con
secutive axles, and axle weights. 

The knowledge of engineering parameters for individual vehi
cles, and a knowledge of the impact of vehicle weight and dimen
sion regulations on truck design, can be used to determine vehicle 
types for classification purposes. A judicious classification scheme 
using expert system techniques can pinpoint and select specific 
vehicle types of interest. For example, Figure 1 shows one such 
scheme designed for identification of fully loaded six-axle tractor
semitrailers with a liftable ("belly") axle, the most common heavy
haul truck configuration in Ontario. 

Figure 1 illustrates the following criteria for truck definition: 

1. Six-axle trucks; 
2. Single (steering), dual (tractor), single (liftable), dual (trailer) 

axle arrangement; 
3. Axles 2 and 3 spacing from 1.07 to 1.83 m; 
4. Axles 3 and 4 spacing greater than 4.00 m; 
5. Axles 4 and 5 spacing greater than 2.40 m; 
6. Axles 4 and 5 spacing greater than Axle 5 and 6 spacing; 
7. Axles 5 and 6 spacing from 1.07 to 3.05 m; and 
8. Gross weight within 1000 kg of allowable load. 

The first item simply ensures the proper number of axles. The sec
ond is descriptive and may be redundant. Item 3 covers the known 
range of drive axle spreads. Item 4 ensures that the filter captures 
semitrailers at least 10 m (32 ft) long, so it will exclude tractors 
pulling 7 m (23 ft) tridem container chassis. Items 5 and 6 ensure 
that the liftable axle is properly separated from the trailer tandem 
axle, according to Quebec, Ontario, or Michigan regulations. Item 7 
covers the known range of trailer axle spreads. The final item 
ensures that the gross weight is close to the allowable limit. 

Considering the variety of vehicles on Ontario's highways and 
the large samples of vehicles analyzed, there must be a certain level 
of speculation associated with any vehicle classification scheme 
based on WIM data. There is no reason to believe that these uncer
tainties have a significant effect on the observations presented. 

It should be stressed that, although WIM-type data can be used 
to enumerate the population of trucks of any particular basic type 
(e.g., fully loaded six-axle trucks with one liftable axle, ·as outlined 
previously), WIM scales cannot at this time discern certain types of 
multi-unit trucks, the body style, commodity/load, owner, or other 
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FIGURE 1 Criteria identifying six-axle · 
tractor semitrailers with liftable axles. 
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information that might identify the specific nature of the truck and 
its owner. However, the identification of numbers of specific truck 
configurations is still very important because it allows infrequent 
or low-probability events to be examined,· which is not practical 
with the small samples that can be garnered by· manual survey 
methods (3). 

For a more comprehensive assessment of traffic flows, WIM data 
should be supplemented by data from other sources. Some of these 
sources and sensor technologies are 

• Video imaging for more specific visual vehicle classification 
(4), 

• Radar and microwave image processing to identify vehicle 
shape or bulk, 

• Automatic vehicle identification systems that can provide 
detailed vehicle descriptive data and ownership information (5), 

• Vehicle height detectors (existing ones usually use a laser 
beam) to determine vehicle longitudinal profile (and to facilitate 
detailed vehicle classification), 

• Automatic vehicle location systems that can provide informa
tion regarding distances traveled by individual vehicles (which can 
be related, for example, to travel speeds), 

• Weather stations to assess weather conditions such as the rate 
and type of precipitation and visibility, and 

• Pavement condition sensors to determine presence of snow or 
ice. 

The use of many of these supplemental sensor .technologies 
require appropriate communication and data integration systems. 
Spurred by Intelligent Highway Vehicle System needs, work is 
under way in many of the technology areas to obtain a more com
prehensive knowledge of traffic flows. 

Finally, data obtained from the individual WIM scales represent 
only the traffic mix at a specific highway site during a particular 
monitoring period and not a global picture of traffic flow. 

SAFETY-RELATED TRAFFIC ANALYSIS 

Safety is a major issue in all debates about changes in highway traf
fic regulations and in vehicle weights and dimensions. Invariably, it 
is concluded that adequate information about safety implications of 
the proposed changes is lacking (6). WIM data can contribute to 
analysis of these issues by providing unique and detailed infortna
tion on the following: 

• Frequency of different vehicle types using highway facilities, 
• Driver and vehicle behavior on highway facilities, and 
• Truck payload and its distribution. 

Frequency of Vehicle Types Using Highway Facilities 

The knowledge of accident rates for different truck types is instru
mental in identifying the influence of vehicle design parameters on 
highway safety, The.accident rate is defined as the number of acci
dents divided by the number of kilometers traveled (exposure rate 
to risk of accident). Because trucks are registered once but may 
travel in several jurisdictions, vehicle registration systems usually 
do not provide adequate information for estimating vehicle kilome
ters traveled by different truck classes, which would help to obtain 
accident rates for different truck types. Moreover, such estimates 
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are only general and not for specific highway types or locations. 
WIM data can help establish truck exposure measures, particularly 
for facilities where WIM scales have been installed. For example, 
five-axle trucks, consisting of a three-axle tractor with one dual axle 
semitrailer or 3S2, made up about 60 percent of the total truck vol
ume on Hwy 402 (Location 1) (Figure 2). It would be possible to 
relate the volume percentage of 3S2s to the percentage of accidents 
involving the 3S2s on this facility. · 

Driver and Vehicle Behavior on Highway Facilities 

Although highways are designed to serve a mix of vehicle types, the 
effects of various types of vehicles on traffic operations and safety 
are not uniform. In this context, factors such as acceleration, speed, 
headway, passing, merging and other lane changing maneuvers, 
splash and spray, aerodynamic buffeting, blockage of view, and lat
eral placement are clearly different among vehicle classes and influ
ence the interaction of the vehicles. Inherent vehicle performance 
factors related to highway safety are vehicle handling, stability and 
braking capabilities, and load and load distribution (7). 

WIM data alone can be used to evaluate driver and vehicle behav
ior in terms of speed and headway distributions as a function of axle 
(vehicle) weight and time of day (daytime versus night time). For a 
more comprehensive assessment, WIM data should be supple
mented by data from other sources described previously. In this 
paper data from a nearby weather station were used to select WIM 
data for periods when the pavement was likely to be dry. 

Vehicle Speed Distribution 

Excessive vehicle speed, and particularly speed differentials 
between different vehicles, is considered a main cause of accidents 
(8). When different vehicle types exhibit different speeds (loaded 
trucks may travel more slowly than the prevailing traffic, particu
larly on upgrades), the speed variance of the traffic fl.ow increases. 
The difference in speed variance has been linked to the increase in 
overall accident rates (9). The primary vehicle characteristic affect
ing acceleration and speed performance of trucks is the 
weight/power ratio. Overloaded and speeding trucks may constitute 
an additional safety hazard. 

Examples of vehicle speed distribution for cars and trucks, 
obtained by the WIM scales during daylight hours and at night, are 
shown in Figures 3 and 4. Figure 3 shows data for Location 1 (right 
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FIGURE 3 Vehicle speed distribution, Hwy. 402, truck lane, 
March 19 to 22, 1991. 

lane on a four-lane freeway); Figure 4 shows data.for Location 3 
(northbound lane of a two-lane highway). 

Data for Location 1 were obtained on four consecutive weekdays 
without any precipitation in March 1991. Overall, data in Figure 3 
indicate that truck drivers are more disciplined than car drivers. 
Some specific observations are 

• Highway speed limit is 100 km/hr, and most cars were speed
ing. During daytime, about 53 percent of all car drivers exceeded 
110 km/hr; at night 42 percent of all car drivers exceeded this speed. 
The corresponding numbers for truck drivers were 16 and 10 
percent, respectively. 

• Compared with cars, the truck speed distribution is more uni
form. Looking at the extremes, during daytime, 1.3 percent of cars 
had speeds lower than 80 km/hr compared with only 0.3 percent of 
trucks. At the high end, 1.3 percent of cars (in the right lane) 
exceeded 130 km/hr compared with 0.1 percent of trucks. 

• The more uniform speed distribution observed for trucks is 
reflected in their lower speed variance. A reduction in speed vari
ance has been linked empirically to a reduction in accident rates (7). 

Data for Location 3 (Figure 4) were obtained on seven consecu
tive weekdays in October 1992. It should be noted that the data are 
only for the northbound lane. Any passing northbound vehicles use 
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the southbound lane, and their passage is treated as an error by the 
WIM scale in the southbound lane. There are some similarities 
between the data in Figures 3 and 4. Most cars are again speeding 
(about 87 percent of cars exceed the 80 km/hr speed limit during 
daytime), and truck drivers are again more disciplined than car dri
vers. However, the differences in the speed distribution attributable 
to the vehicle type and the time of day are considerably attenuated 
by the lack of operational freedom caused by the large traffic vol
umes. In fact, because of the large daytime traffic volumes and con
trary to the results given in Figure 3 for Location 1, the daytime 
(7:00 to 16:00) car and truck speeds on Location 3 are smaller than 
the night-time (20:00 to 05:00) speeds. For example, the mean 
night-time truck speed was 91.0 km/hr, and the corresponding day
time speed was only 87.7 km/hr. The higher night-time speeds may 
be one of the contributing factors to the often-encountered higher 
night-time accident rates; - ' 

Headway Distribution 

According to Ontario's Highway Traffic Act (10), maintammg 
"reasonable and prudent" headway (the time or distance between 
successive vehicles) is mandatory for all drivers. There is an extra 
stipulation for drivers of commercial vehicles (trucks) who, while 
driving at speeds exceeding 60 km/hr, "shall not follow within 60 
m of another motor vehicle." 

Vehicles traveling at 100 km/hr (27.8 m/sec) would have a front
bumper-to-front-bumper spacing of only 28 m with 1-sec headway. 
This results in the actual space between vehicles of about 24 m for 
an average car and, of course, considerably less space for even small 
trucks. Clearly, headways less than 2 sec do not meet the "reason
able and prudent" stipulation at highway speeds. 

Figures 5, 6, and 7 compare the difference in headway distribu
tions of cars and trucks. Figures 5 and 6 are for Location 1 and use 
the same data set as that used for Figure 3; Figure 7 is for Location 
3 and uses the same data set as that used for Figure 4. 

Examining first the results for the freeway location (Figures 5 and 
6), the greater discipline of truck drivers, as shown by the speed dis
tribution, is also indicated by the headway distribution. Some addi
tional observations are 

-. During daytime, 7 percent of all cars followed other cars with 
a headway of 1 sec or less; only 2.5 percent of trucks did so. Nev-
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FIGURE 6 Nighttime headway distribution, Hwy. 402, truck 
lane, March 19 to 22, 1991. 

ertheless, considering an average truck speed of 100 km/hr, more 
than 2.5 percent of all trucks appear to be in violation of the Ontario 
Highway Traffic Act headway requirement. 

• Also during daytime, 3.5 percent of all trucks were following 
other trucks with a 1-sec headway or less and only 2.5 percent of 
trucks were following cars with this headway. The difference in the 
headway distribution for these two cases was found_to be statisti
cally significant. 

• Trucks tend to travel in convoys. This is particularly evident at 
night when 7 .5 percent of all trucks had headway of less than 6 ·sec 
compared to only 1.1 percent for cars. 

The headway distribution on the two-lane highway during day
time (Figure 7) shows even more pronounced tendency of ·c.ars to 
follow other vehicles with short, unsafe headways. 

e About 36 percent of cars followed other vehicles with the 
headway of 1.5 sec or less; only 8 percent of trUcks did so. 

• Compared with the headway distribution obtained for the free
way location, there is a pronounced tendency of trucks to follow 
other trucks with headway in the range of 1.5 to 5 sec. This can be 
attributed to the inability of trucks to pass other trucks, thus form-
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ing truck convoys. Passing opportunities for cars that follow such 
convoys may be limited. 

Truck Payload and Distribution 

Another descriptive parameter useful in accident studies (and pro
vided by WIM data) is the gross vehicle weight and its distribution 
among axles and, in the case of multiple truck units, between truck 
units. Braking performance of trucks is not as good as that for 
cars-braking distances of trucks are significantly longer. A recent 
investigation (11) analyzed braking capabilities of different truck 
types for unloaded, partially loaded, and fully loaded vehicles. It 
appears that braking distances can increase substantially when 
trucks are partially loaded or unloaded and that the magnitude of 
this degradation in braking capabilities depends on the truck type. 
A comprehensive analysis of truck accidents in Ontario (12) indi
cated that, except for twin trailers, the highest accident rates were 
for unloaded straight trucks, semi-trailers, and bobtail tractors. This 
suggests a link between braking capabilities of unloaded, partially 
loaded, and fully loaded trucks and accident frequencies, which 
should be addressed in part by the introduction of antilock brake 
systems. 

Payload distribution can also affect truck operating characteris
tics. Billing and Hajek (3) show how WIM data can be used to eval
uate payload distribution on six-axle trucks with one liftable axle. 
Systematic evaluation of WIM data for loaded and unloaded trucks 
can provide valuable insights into their operating characteristics. In 
this work, the loaded trucks were defined as trucks with a payload 
estimated to be at least one-half of the total allowable load. 

Figure 8 uses data obtained on a passing lane at Location 2 (free
way location) to compare the speed distributions for unloaded and 
loaded six-or-more-axle trucks during daytime. Although the dif
ference in mean speed between unloaded and loaded trucks is only 
1.5 km/hr, the corresponding speed variance, with its safety impli
cations, differs by 10 (km/hr)2• 

The differences in speed distributions for unloaded and loaded 
three-or-more-axle trucks during daytime obtained for Location 3 
are illustrated in Figure 9. The differences may be attenuated by the 
relatively high traffic volumes on this highway. Nevertheless, the 
difference in the mean speed of the unloaded and loaded trucks is 
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FIGURE 8 Daytime vehicle speed distribution for six-axle 
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FIGURE 9 Daytime vehicle speed distribution for three-or
more-axle trucks, Hwy. 31, northbound lane, October 1to15, 
1992. 

1.4 km/hr, while both loading conditions have a similar speed vari
ance. 

Examples of headway distribution for loaded and unloaded 
trucks with six-or-more axles, obtained for the right lane at Loca
tion 2 and for the northbound lane at Location 3, are given in Fig
ures 10 and 11, respectively. The headway distribution is different 
on the two facilities. 

On the freeway, the loaded trucks are more likely to follow cars 
with short headways than are the unloaded trucks. The difference in 
the headway distribution was found to be statistically significant. 
The higher occurrence of shorter headways observed for the loaded 
trucks may be attributed to the lack of engine power available to 
pass slower moving cars. The unloaded trucks are able to pass these 
cars using the left (passing) lane. 

In contrast, on the two-lane highway, the unloaded trucks are 
more likely to follow cars with short headways than the loaded 
trucks. For example, about 8 percent of unloaded six-or-more-axle 
trucks followed cars with the headway in the 1.5 to 2.0 sec range, 
and only about 1.5 percent of the loaded trucks did so. It appears 
that the drivers of the unloaded trucks, because of the availability of 
spare power, are positioning their trucks to pass slower moving cars. 
Alternatively, they may simply be better able to maintain the speed 
with the more nimble cars. 
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FIGURE 10 Daytime truck headway distribution for six-or
more-axle trucks, Hwy. 402, Lane 1. 



Hajek et al. 

12 

10 

111111 Loaded 6-or-more-axle truck 
lollowlng car 

WJ Unloaded 6-or-more-axle truck 
lollowlng car 

0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 3.0 

Vehicle headway (seconds) 

3.0 - 4.0 4.0 - 5.0 

FIGURE 11 Daytime vehicle headway distribution for six-or
more-axle trucks, Hwy. 31, northbound lane, October 1to15, 
1992. 

DISCUSSION OF RESULTS 

The discussion on extracting specific information from WIM data 
to provide insights into safety-related highway traffic characteris
tics is not exhaustive. It simply illustrates possible use of WIM data 
in traditional application areas. It is also possible, for example, to 
study more complex functions of traffic flow such as the relation
ship among vehicle speed, headway, payload, and weather condi
tions for different vehicle categories and to provide data to develop 
and manage police strategies for enforcing traffic regulations. 

WIM scales have been also used as a main component of speed 
advisory systems for truck drivers approaching potentially haz
ardous conditions, such as 

• Long steep downgrades, or steep downgrades with traffic sig
nals or stop signs-The system advises truck drivers, particularly 
drivers of loaded trucks, of a recommended speed to negotiate the 
grade safely. 

• Freeway ramps with small turning radii-The system advises 
truck drivers, such as drivers of loaded tanker trucks, of a recom
mended speed to prevent a rollover (13). 

Although this work addresses application ofWIM data and WIM 
scales in the traffic-safety area, their use for transportation planning 
and decision making is much larger and cuts across the organiza
tional structure of any highway agency (1). 

CONCLUSIONS 

1. WIM data are useful for a wide range· of transportation plan
ning and decision-making purposes including traffic safety-related 
applications. 
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2. Using examples, WIM data have been demonstrated to pro
vide previously unavailable insights about a range of safety-related 
highway traffic flow characteristics. 

3. WIM scales, because of their unobtrusiveness and continuous 
operation, can provide truly unbiased statistically reliable data, 
yielding a realistic long-term picture of exposure rates for specific 
vehicle types and other safety-related traffic flow characteristics. 
Both concerns are important for identification of relative influence 
of vehicle design parameters and driver behavior on highway 
safety. 

4. It is imperative that those working in the traffic safety area are 
made aware of the potential of WIM data for traffic-related safety 
analysis, and that this potential is further pursued. 
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Highway Accident Data Analysis: 
Alternative Econometric Methods 

PATRICK S. MCCARTHY AND SAMER MADANAT 

The past decade has seen significant advances in econometric modeling 
including the analysis of disaggregate data, the structure of discrete 
response models, the treatment of simultaneity in linear models, the 
specification of models based on pooled time series-cross sectional 
data, and the estimation of models in truncated and censored samples. 
Furthermore, the data sets available in the field of highway safety 
include significant amounts of detailed information. However, to date, 
highway safety analyses using these data sets have not fully exploited 
state-of-the-art econometric methodologies. The applicability of 
recently developed econometric methods to the field of highway safety 
analysis is illustrated. It is anticipated that such applications will 
improve the accuracy of traffic accident models and lead to more effec
tive policies and investment decisions in the area of highway safety. 

Highway safety is an area of research characterized by a disparity 
between data collection and data analysis. At the state and federal 
level, significant amounts of detailed information are routinely col
lected on highway traffic accidents. The amounts and types of data 
collected are of particular interest to the research community 
because they enable the researcher to investigate aspects of 
highway safety using state-of-the-art statistical and econometric 
methodologies. However, despite significant econometric advances 
during the past decade that potentially have important implications 
for improving understanding of factors that affect highway safety, 
there has been relatively little research identifying and evaluating 
the potential gain from these new methodologies. This paper con
stitutes a small step in this direction. 

In the following sections, several areas, including policy en
dogeneity, cross sectional heterogeneity, and small numbers 
problems, are identified that illustrate problems with existing 
methodologies and offer alternative econometric techniques to cor
rect the problem. In addition, other econometric issues including 
sample truncation and ordinality of accident severity data are dis
cussed to illuminate often implicit assumptions associated with 
existing methodologies. 

POLICY ENDOGENEITY AND IDGHW A Y SAFETY 

Consider the following equation: 

t = 1, ... , T (1) 

where 

y, = highway safety outcome (e.g., fatality rate), 
x, = vector of k explanatory (exogenous) variables, 

P. McCarthy, Department of Economics; S. Madanat, Department of Civil 
Engineering, Purdue University, West Lafayette, In 47907. 

e, = error with mean 0 and constant variance 
a = parameter, and 
~ = parameter vector with k elements. 

Assuming away problems of heteroscedasticity and autocorrelation, 
ordinary least squares (OLS) estimates of the unknown parameters 
will be best linear unbiased estimates (BLUE). Assume that the kth 
explanatory variable reflects a policy that was enacted to enhance 
highway safety (e.g., speed limits laws, mandatory seat belt use 
laws, minimum drinking age laws, etc.). If the policy was truly 
exogenous (the original reduction of speed limits in 1975 was a 
response to the oil crisis instead of to highway safety concerns), 
then the resulting parameter estimates will be BLUE. Alternatively, 
however, suppose that the policy was a reaction to concerns about 
highway safety. Then xk, is itself a function of a set of explanatory 
variables including v,. For example, reluctance in the United States 
to increase speeds after the oil crisis ended was a response to the 
life-saving effects of the lower speed limit. In this case, Equation 1 
is actually a system of two equations that can be expressed as 

t = 1, ... , T 

t = 1, ... , T 

where 

xk, = kth explanatory variable in x,, 
z, = vector of k' explanatory variables, 
u, = error term with mean 0 and constant variance, 
'Y = constant term, 
8 = vector of k' parameters, and 

<1> = parameter of the endogenous variable y,. 

(2a) 

(2b) 

If the estimation sample is a time series data set, then one could 
apply Granger causality tests to check for endogeneity between y, 
and xki· Granger (2) and Sims (3) developed tests to evaluate the 
direction of causality. To test the hypothesis that "xk, does not cause 
y1," regress y, on lagged values of y, and lagged values of xk,; run a 
second regression of y, on lagged values of y, only. An F-test based 
upon the error sum of squares in the unrestricted and restricted 
regressions, respectively, can be used to test the null hypothesis. A 
similar set of regressions is run with xk, as the dependent variable 
and lagged values of xk, and y, as the explanatory variables. In this 
case, the null hypothesis is "y, does not cause xk1." To conclude that 
"xk, causes y,," it is necessary that the null hypothesis is rejected in 
the first set of regressions and accepted in the second set of regres
sions. 

If the true state of the world is Equation 2 but the structural rela
tionship between xk, and y, is ignored, then the OLS estimates of 
Equation 1 will produce biased and inconsistent parameter esti
mates (J). To avoid the endogeneity bias, the analyst typically 
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implements either of two strategies, depending upon the objective. 
First, the analyst wants to capture the influence of Yr on xkr but the 
structural relationship between Xkr and Yr is not important. In this 
case, Xkr in Equation 2b is simply substituted in Equation 2a and the 
resulting reduced form equation is estimated. It is important to rec
ognize, however, that in this case the parameter estimates are not 
capturing the structural impacts of the explanatory variables on 
highway safety but instead the combined effects of these variables 
from the system of equations. Second, if one is concerned with the 
structural effect that a particular (endogenous) policy has on high
way safety policy, then the simultaneous structure must be esti
mated and the structural parameters recovered. 

To illustrate, consider the effect that recent relaxation of rural 
Interstate highway speed limits has on highway safety. Although 
enacting higher speed limits reflects a state's underlying demand for 
higher limits, it is also likely that a state's demand for higher speeds 
depends on the extent to which the affected roads are currently safe. 
Define speed law to be a variable that reflects the relaxation of rural 
interstate speed limits. If this variable is entered in an estimating 
equation for highway safety as a dummy variable that equals 0 in 
the 55 mph environment and 1 in a 65 mph post-law environment, 
the resulting estimates could be biased if enactment of relaxed speed 
limits were, at least in part, a response to changes in highway safety 
on the 55 mph roads. If so, the relaxed speed limit on rural Inter
states is endogenous and the coefficient estimate on a speed limit 
dummy variable is biased. 

To account for endogenous effects of highway safety on speed 
limit legislation, consider the following system of three equa
tions (4): 

y = J3 1x1 + a(speed law) + 'YA + e1 

A*= A+ K(y*) (3) 

where 

y = measure of highway safety, 
y* =yin the absence of the relaxed speed limit, 
A = latent variable reflecting attitudes towards relaxed 

speed limits 
A* = latent variable that reflects the demand for speed 

limit relaxation, 
speed limit = dummy variable that equals 1 when the speed limit 

was relaxed and 0 otherwise, 
x 1 = vector of explanatory variables for highway safety, 
Xi = vector of explanatory variables for A, and 

e; (i = 1,2) = error term. The relationship between A* and speed 
law is given by the following: 

A*= A+ K(y*) > 0 = >speed law= 1 

A* =A + K(y*) < 0 = >speed law = 0 

Thus, the hypothesis is that highway safety depends upon a set of 
explanatory variables, Xi. the speed limit, and the state's preferences 
for higher speeds, which depend upon a set of explanatory variables, 
xi. The state's demand for higher speeds, in tum, reflects its atti
tudes toward higher speeds and the incidence of accidents, y*, in the 
lower speed environment. This produces two estimating equations 

(4) 

and 

A* = J3~xi + K[Jj;x1 + 'Y(J3~xi)] + ui 

= K(J3ix1) + (1 + q) J3~xi + ui 
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(5) 

where u1 = e1 + aei and ui = ei + Ke1• Estimation is a two-step 
process. First, Equation 5 is estimated where A* is replaced with 
speed law. The predicted value of the dependent variable in Equa
tion 5, speed law, gives the demand for relaxing the speed limit and 
replaces speed law in the estimating Equation 4. Note that the full 
set of structural parameters can be recovered. From Equation 4, 
estimates of J3i and a are obtained; dividing the coefficient of x 1 in 
Equation 5 by the coefficient of x 1 in Equation 4 gives K; dividing 
the coefficient of xi in Equation 4 by that in Equation 5, and know
ing K, enables one to solve for 'Y; from Equation 4, knowledge of 'Y 
produces J3~. 

In the estimations, the components of x 1 would include standard 
determinants of highway safety (e.g., young drivers per capita, alco
hol consumption, per capita income, and time trend). xi reflects a 
state's attitudes towards raising the speed limit and could be mea
sured by two variables: excess speed, defined as the extent to which 
observed average speeds on 55-mph roads exceed the 55 mph limit, 
and speed variance, the variance of speed on 55-mph roads. Since 
the primary benefit of an increased speed limit is travel time sav
ings, observed average speeds that are above the mandated 55-mph 
limit are tantamount to the driving population revealing its demand 
for higher speeds. This suggests that excess speed is positively cor
related with drivers' sentiments toward raising the speed limit. On 
the other hand, authorities have a responsibility for providing safe 
driving environments and will not be inclined to raise the speed 
limit if it is believed to compromise highway safety. Thus, the net 
effect of excess speed on the demand for raising the speed limit is 
ambiguous and depends upon the magnitudes of these two effects. 

Lave (5) has shown that increases in speed variance, all else con
stant, reduce highway safety. Consistent with this, the demand for 
raising the speed limit would be expected to be negatively related 
to speed variance. 

Using this methodology, Saffer and Grossman (6) estimate a 
model in which highway safety and a state's drinking age policy are 
endogenous. McCarthy and Ziliak (7) use a similar framework to 
analyze the simultaneity between highway safety and the formation 
of Mothers Against Drunk Driving chapters. 

TRUNCATION 

Most analyses of the policy effects on highway safety base these 
results upon an OLS model (simple or reduced form) in which the 
dependent variable is some measure of highway safety. Because 
highway safety policy strives to reduce the incidence of the most 
serious accidents, namely, those involving a fatality, a frequently 
used measure of highway safety is some function of highway fatal
ities (fatal accidents, fatality rate, fatalities per capita.) By limiting 
the analysis to accidents involving a fatality, the sample is truncated 
from below because it excludes observations on all individuals who 
have experienced nonfatal accidents in the sample period. Thus, the 
estimates of the effect of a policy on highway safety are likely to be 
biased. Figure 1 illustrates this graphically. By excluding those 
accidents below severity level SC, the effect of increasing speed on 
highway safety is seen in the figure to bias the slope parameter 
downward and the intercept upward. 



46 

Accident Severity 
Level 

0 

-. 

/ . /'. . . / . . ·---""' r- -. /. . 

true regression line 

truncated regression line 

SC severity level cut-off 

FIGURE 1 Potential bias from truncation. 

Speed 

To quantify the potential bias, consider a problem in which the 
dependent variable y is highway safety, xis a vector of K indepen
dent variables and 13 is a vector of parameters to be estimated. The 
underlying sample is a cross· section of states or counties. Often
times, an OLS model of the following form is estimated 

Yi= 13'xi + ui i = 1, ... , N 

where ui is a normally distributed error term with 0 mean and con
stant variance. Let y; be measured as the number of fatalities or 
the fatality rate for Cross Section i. Define SC to be the level of trun
cation (e.g., AIS severity level) such that all accidents for which 
Yi :5 SC (e.g., AIS :5 4) are eliminated. The density function for the 
truncated variable Yi is 

(1/cr )<j>[ (yi - 13' xi)/ a] 
g(yi) = 1 - <I> [(SC -13'x;la)] 

=O otherwise 

yi>SC 

(6) 

where cp( ·) and <I>(·) are the density function and the distribution 
function of the standard normal, respectively ( 4). The log
likelihood for this function is given as 

which can be shown to be globally concave. Standard Newton
Raphson techniques can be used to obtain the maximum likelihood 
parameter estimates for 13 and er. Once estimated, the parameter esti
mates are used to obtain the conditional mean and variance of Yi· In 
particular, 

E(y;lyi >SC)= 13'xi + crA.(ti) 

V(yilYi > SC) = cr2[1 - 8(ti)] (7) 
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where A.(t;) = cp(ti)/1 - <l>(t;) and 8(ti) = A.(ti)(A.(t;) - ti) [which lies 
in the open unit interval (J)] and ti= SC - 13' x;la. Thus, the bias is 
crA. (t;), which can be shown to be increasing in SC. By excluding 
accidents with severity levels below SC, the effect of explanatory 
variables, including policy variables, on highway safety will be 
biased. To determine the marginal effect of an increase in xki ( i = 1, 
. . . , I; k = 1, . . . , K), differentiate the conditional mean with 
respect to xki· This gives 

marginal effect of xki = IMl - 8(ti)] (8) 

which is less than 13k since 8(ti) lies between 0 and 1. In the sub
population, the marginal effect of each of the k explanatory vari
ables on Yi is less than the coefficient 13k· 

To illustrate the potential importance of this bias, return to the 
graph showing the effect of increasing speeds on highway safety. If 
the analyst is concerned only with the subpopulation of accidents 
above severity level SC, then the marginal effect identified in Equa
tion 8 is the relevant effect; alternatively, if the objective is to iden
tify the effect for the entire population, then 13k is the relevant effect. 
Thus, an inference on the highway safety effects of higher speeds 
drawn from an analysis based upon a subpopulation of fatal acci
dents will understate the effect if applied to the entire population. 

In the literature, criteria for truncation include accident severity 
(8-10), age of driver (11-14), alcohol involvement (15-17), num
ber of vehicles involved (18), and vehicle size (19-22). 

ENDOGENOUS STRATIFICATION 

A related problem is endogenous stratification. As indicated, most 
models identify fatalities (or fatality rate, fatal accident rate) as a 
measure of highway safety to the general exclusion of other acci
dents (serious injury, minor injury, and property damage accidents). 
In this case, the sample is stratified according to accident severity. 
Lower severity accidents are often undersampled or completely 
absent. A generalization of the truncated sample is to analyze a 
model that identifies various severity strata and their sampled pro
portions. This may be an important stratagem for reducing costs 
because of the size of accident data files (statewide as well as 
nationally). In California, for example, there are more than 500,000 
accidents annually. 

To illustrate, suppose that a researcher uses the regression model 
y; = 13 'xi + u; (i = 1, ... , N) to identify the determinants of 
statewide highway safety. ui is normally distributed with mean 0 
and variance cr2• Instead of obtaining the complete set of accident 
records, the analyst takes a p1 and p2 percent sample of fatal 
(Yi > SC) and nonfatal accidents (yi :5 SC) respectively. Note that 
for the truncated model in the previous section, p 1 percent = 1 and 
P2 percent= 0. 

The density function for Yi is now given as (4) 

yi> SC 

Yi :5 SC (9) 
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where f(y;) is the density of y; in the population. Substituting for f(y;) 
and t; (defined as in the previous section) gives 

p 1 (y; - 13'x;) 
g(y;) = p + (1 - p )<l>(t;) -;; 4> (j 

y;>SC 

_ 1 _!_ cf> (y; - 13' X;) 
p + (1 - p )<l>(t;) (j (j 

Y;::; SC (10) 

where p = (ptlp2). These expressions can be used to form the log
likelihood function, which is then maximized with respect to ~ and 
cr (if p is not known, the log-likelihood function can be maximized 
with respect top as well). The conditional means for this model are 

E(y;lx;, y; >SC)= 13'x; + E(u;IY; >SC) 

QI <f>(t;) 
= t-' X; + <I 1 - <l>(t;) (1 la) 

E(y;lx;, y;::; S) = 13'x; + E(u;ly;::; S) 

Q' <f>(t;) 
= t-' X; - <I <l>(t;) (1 lb) 

and the unconditional mean is a weighted average of the conditional 
means 

I Pt<f>(t;) - P24>(t;) 
E(y;lx;) = ~ X; + cr Pt [1 - <l>(t;)] + pz<l>(t;) 

= 13' X; + <I -y(t;) (12) 

Similar to the comments made in the previous section, depending 
on whether the analyst is concerned about the marginal effect of xk; 

on the estimation subpopulation or its effect on the entire popula
tion, the appropriate marginal effect is obtained by differentiating 
Equations 11 and 12, respectively, with respect to xki· It can be 
shown that the marginal effect of the unconditional mean with 
respect to xk; is ~k [1 - B'(t;)] where B'(t;) equals -y(t;) ['Y(t;) - t;], 
which is similar to the expression for B(t;) given below Equation 7. 
Also note that if Pt = 1 and p2 = 0, then the marginal effect obtained 
from Equation 12, ~k [1 - B'(t;)] is identical to the conditional mar
ginal effect (Equation 8) for the truncated model in the previous sec
tion. That is, B'(t;) = B(t;). 

Although this would appear to be a useful procedure for obtain
ing meaningful highway safety results while reducing the effort and 
computational burden associated with analyzing statewide or 
national accident records, the authors are not aware of any studies 
in the highway safety literature that use this methodology. 

CROSS SECTION-TIME SERIES 

Continuous Dependent Variable 

State and national highway agencies routinely collect highway 
safety data that are organized into monthly and annual reports. In 
that these reports often discriminate by state, by county within state, 
by type of road, by various socioeconomic characteristics, and 
along numerous other dimensions, the information represents a 
panel of data-a time series of data across a set of cross section 
units. 
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When a time series of cross sections is available, ordinary least 
is generally not appropriate because it ignores the heterogeneity in 
the cross-sectional units. There are generally two methodologies 
for estimating panel data. First, a fixed-effects approach includes 
dummy variables for each of the cross-sectional units. This model 
assumes that differences between cross-sectional units can be cap
tured by a parametric shift in the regression line. If all cross
sectional units are represented in the sample (e.g., all states in the 
nation, all vehicle types, all times of day), then a fixed-effects 
approach may be appropriate because it embodies all the differ
ences among the cross-sectional units. However, if the cross sec
tions represent a sample from a larger population (e.g., a subset of 
states), then it may be more appropriate to assume that the cross
sectional heterogeneity is randomly distributed across cross
sectional units. This latter approach represents a random effects 
specification. 

In general, a cross section-time series model can be expressed as 

k 

Yit = O'. + I ~j X;1,j + Eil + 'Tl; 
j=t 

where 

(13) 

y;, (i = 1, ... , N; t = 1, ... , T) =highway safety outcome for 
cross section i and time period t, 

x;t,j (i = 1, ... , N; t = 1, ... , T;j = 1, ... , k) = jth explanatory 
variable for cross section i and time period t, 

a = constant term and ~/j = 1, ... , k) is a parameter that 
reflects the marginal effect of the jth explanatory variable on 
the highway safety outcome, 

E;i = error term associated with cross section i and time period t 
with mean 0 and constant variance, and 

'Tl; = term specific to cross section i. 

In the absence of any cross-sectional heterogeneity, 'Tl; is equal to 
0, and OLS is used to estimate the model. For a fixed-effects spec
ification, 'Tl; is a parameter that is estimated along with ~j' where 'Tl; 
represents a parallel shift in the regression line for cross-section unit 
i. In a random effects model, 'Tl; is assumed to be a random term with 
mean 0 and constant variance that is specific to cross section unit i. 
Notice that cross-sectional heterogeneity is confined to the error 
term in the random effects model, whereas in the fixed effects model 
it is explicitly represented as a parametric shift in the regres
sion line. 

In general, there are advantages and disadvantages to either 
approach. A fixed-effects specification entails a potentially large 
decrease in degrees of freedom if there are a high number of cross 
sections in the sample. In addition, fixed effects models cannot be 
estimated if any of the explanatory variables is constant throughout 
the sample period. On the other hand, if the fixed effects parameters 
are correlated with the included variables but omitted from the 
model, then a random effects specification leads to biased parame
ter estimates (23). Hausman (24) developed a specification test, 
based on a chi-squared statistic, to test the null hypothesis that the 
cross section-specific parameters in a fixed effects model are inde
pendent of the included explanatory variables. Accepting the null 
hypothesis would be consistent with a random effects specification, 
whereas rejecting the null hypothesis would argue for a fixed effects 
specification. 

There have been a number of recent examples in the literature 
(14, 16, 17) of panel data analyses using accident data. 
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Discrete Dependent Variable 

An interesting variation of that problem occurs when the dependent 
variable takes on very small integer values. For example, suppose a 
researcher is interested in modeling the incidence of countywide 
alcohol-related fatal accidents or countywide fatal accidents among 
teenagers. If this study were undertaken by state transportation 
departments, it is likely that in many states there would be a large 
number of counties in which very few or no fatal accidents 
occurred. As an example, consider Indiana, which has 92 counties. 
In 1989, there were 99 alcohol-related fatal accidents and 2923 
alcohol-related injury accidents statewide, which represents an 
average of just over 1 and 31 alcohol-related fatal accidents and 
injury accidents, respectively. 

One methodology for modeling these accidents is to estimate a 
logit model that defines the dependent variable y;1 to be one if an 
accident in cross section i and time period t involved a fatality and 
0 otherwise. In particular, the probability of a fatal accident is given 
by 

ef3'xit 
P(fatal accident)= P(y;1 = 1) = -~'--

1 + ef3'xit 

i = 1, ... , N; t = 1, ... , T (14) 

Similar to the continuous case discussed, if the cross-section units 
are heterogeneous and the heterogeneity is ignored, then estimating 
Equation 14 will lead to inconsistent parameter estimates. 

Consider an alternative model that incorporates cross-sectional 
parameters, a; (i = 1, ... , N) to reflect the underlying heterogene
ity. Then Equation 14 becomes 

i = 1, ... , N; t = 1, ... , T (15) 

For large N and small T ( ~5) Chamberlain (25) devised a method 
for estimating this model that is based on conditional maximum 
likelihood functions that do not depend on the heterogeneity pa
rameters. Moreover, on the basis of a Hausman test of the null 
hypothesis that the cross-section units are homogeneous, it is pos
sible to test a standard logit specification in Equation 14 against the 
alternative specification given by Equation 15. 

To date, the authors are aware of no studies in highway safety 
using a panel lo git methodology. 

MODELS WITH ORDINAL DEPENDENT 
VARIABLES 

Accident data generally obtained from police records are disaggre
gate data. However, when such data are used to analyze the effect 
of various factors on accident severity, they are usually aggregated 
and analyzed by using classical statistical methods such as multi
variate regression. These methods are limited to the analysis of con
tinuous variables, such as the total number of accidents, or the total 
number of fatalities and hence require that the data on individual 
accidents be aggregated before analysis. This is especially the case 
when accident data are recorded on an ordinal instead of a continu-
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ous scale. For example, the National Safety Council (26) devised a 
scheme for injury classification-no injury, possible injury, non 
incapacitating injury, incapacitating injury, and fatal injury. 

With such a scale, an order is established between different cat
egories of injury, but the distance between any two numbers on the 
scale is of unknown size. As such, these data cannot be analyzed by 
using traditional statistical methods, except by aggregation and sub
sequent loss of information. 

In a recent paper, Nassar et al. (27) proposed using a sequential 
logit approach for modeling accident severity using disaggregate 
accident data. Such a model structure implies that an accident 
moves up the scale of severity, starting from the least severe. After 
each move, the accident either moves up one more notch or stays at 
its current level of severity. By assuming independence across error 
terms of the different lo git models, the authors end with a model that 
is a product of binary logits. Each logit model is of the form 

P(SmlS@m-1) = ---""-------
1 + exp(L ~1mX1m) 

(16) 

P(Sm I S@m- 1) = probability of experiencing injury severity level m 
given that the impact is sufficient to produce at 
least an injury of severity level m - 1. 

X1m = impact of factor j on severity level m. 
~Jm = coefficient associated with factor j on severity 

level m. 

With such a modeling approach, the richness of information 
available at the disaggregate level is exploited. Sequential choice 
models, however, are restrictive in the sense that they assume inde
pendence of the error terms across moves, for each accident, which 
may be an unrealistic assumption. 

To relax the assumption of independence that the sequential logit 
approach imposes on the error terms, models with ordinal depen
dent variables such as the ordered logit should be used. Such an 
approach was specifically developed for models in which the 
dependent variable is ordinal, such as the accident severity ratings 
described (28). These models do not assume that the observed rat
ing is the result of a sequence of move-ups; instead, the assumption 
is that the ratings represent a discretization of an underlying latent 
severity scale that is continuous. By using such an approach, it is 
possible to estimate jointly the parameters of the different severity 
factors and the thresholds that separate the successive severity rat
ings on the underlying latent scale. Mathematically, let the contin
uous underlying accident severity be denoted by y*. Then, we have 
that 

where 

J0 = impact factor j, 
~1 = coefficient associated with factor j, and 
E = random disturbance. 

The process giving rise to the observed severity levels Sm 
(m = 1, ... , M) may be viewed in terms of y* crossing some of the 
M - 1 threshold values. Specifically, we have that 
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m = 1 if -00 < I ~jxj + E < ti 

• 
• 
• 

m = M if tZ- 1 <I BjXj + E < +oo 

Thus, the probability of observing an injury severity Sm is 

P(Sm) = P(t':.- 1 <I ~jXj + E < t'(:.) 
= P(E < t:i; ~ I ~jXj) - P(E < t':.-1 - I ~jXj) 

If the error terms E's are independently and identically distributed 
logistically, then the probabilities of various severity are given by 
an ordered logit model (28). 

CONCLUSION 

An overview has been presented of the potential application of 
some recent developments in econometric methodology to the field 
of highway safety analysis. Although no empirical work was pre
sented, the data required to perform the analyses discussed are read
ily available to highway safety researchers. 

In addition to the presented methodologies, there have been other 
modeling techniques, including empirical Bayesian analysis and 
Poisson methodologies (and variants thereof), which have been suc
cessfully although not frequently used to study the effect of traffic 
improvements at highway intersections (29-32). However, because 
these techniques are more familiar to traffic safety analysts than 
those identified here, they have been omitted from the overview. 

Because major policy and investment decisions are often made 
by state and federal agencies on the basis of the results of highway 
safety analyses, the importance of accuracy in such analyses can 
hardly be overemphasized. By using state-of-the-art econometric 
methods such as those described herein, researchers can improve 
the level of accuracy in highway safety analysis. 
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Application of Automated Records Linkage 
Software in Traffic Records Analysis 

KARL KIM AND LAWRENCE NITZ 

Following a brief discussion of the underlying theory of records link
age, an automated record linkage software package called Automatch is 
examined along with its various applications. Features, hardware, and 
user requirements are discussed, and user support and interfaces are 
detailed and commented on. An example linking crash reports to ambu
lance records is described. After other possible applications and uses for 
this software are described, additional issues about records linkage are 
raised. The report is part of ongoing research carried out by the Hawaii 
Crash Outcome Data Evaluation System (CODES) project, funded by 
the National Highway Safety Traffic Administration, U.S. Department 
of Transportation. The purpose of the CODES Project is to link crash, 
EMS, hospital, claims, and long-term care data to conduct analyses on 
the effectiveness of seat belts, motorcycle helmets, and other traffic 
safety interventions. 

At one level, linking records from different data bases raises inter
esting and complex questions about privacy and the uses of com
puterized data. When one considers the many data bases that have 
been created and adds the possibility of linkages among these data 
bases, frightening, Orwellian images could be invoked. At a second 
level, there are other questions involving how to accomplish such a 
task. Recent developments in the theory and methods of records 
linkage, including the release of a software package called 
Automatch (J), serve to enhance the feasibility of records linkage. 
These technological developments may in turn spark more debate 
and discussion on issues of the uses of data and appropriateness of 
linking diverse data bases together. This report deals principally 
with the second-order concerns-that is, how to use available meth
ods and technology to carry out records linkage. While outside the 
scope of this paper, the basic concerns about the appropriateness 
and ethics of data linkage must also be addressed. Recent advances 
in technology point to some areas of concern that are summarized 
in the conclusions. 

Perhaps every social science researcher has at one point linked or 
tried to link two different data bases. Typically, the data bases were 
collected by different agencies for different purposes, but they pro
vide valuable information. Studies have linked land-use data with 
tax data, typically at the parcel level. Transportation data (car own
ership, drivers licenses, etc.) could also be linked to housing data 
bases and to zoning data bases. School enrollment figures are often 
pooled with other data bases to derive estimates of population 
change. Other social data such as health statistics, crime surveys, 
and many different surveys and opinion polls are often used for pur~ 
poses for which they might not have been initially designed. This is 
the nature of data collection-the cardinal rule is often to use exist
ing data bases before expending the time and resources to gather 
what would amount to essentially the same information. 

Department of Urban Planning, University of Hawaii, Porteus 107 2424 
Maile Way, Honolulu, Hawaii 96822. 

More data are becoming available in computerized form so that 
it is not at all unusual to pass machine-readable data (tape, diskette, 
or CD-ROM) between different users. At the same time, more users 
are becoming computer literate with the proliferation of PCs, work
stations, and statistical packages. Yet the merging of different data 
bases still poses some basic difficulties. First, surveys and other data 
bases generally protect anonymity so that unique identifiers such as 
name or social security number and so forth are not used. Second, 
even if name, street address, or other identifiers are available, there 
are still problems with matching records because of inconsistencies 
across sources in data entry and editing procedures. For example, 
the use of initials instead of full names, different abbreviations for 
street names, and the usual assortment of misspellings and other 
errors in the data base make exact matches impossible. 

Several years ago, a survey on attitudes toward helmet laws in 
Hawaii was conducted. To construct a sample, two different data 
bases were linked: the vehicle registration file and the operator's 
license file. For the city and county of Honolulu in 1989, there were 
8,514 registered motorcycles. (Military Personnel were excluded 
from the population.) For the same year, 13,595 persons held motor
cycle licenses. It is not expected that everyone who has a motorcy
cle license owns a motorcycle and vice versa. Yet in terms of pro
ducing the best sample of motorcyclists, it appeared reasonable to 
construct a single file consisting of those who both were licensed 
and owned motorcycles. Because of misspellings, differences in 
punctuation, and other differences in the information contained in 
the two files, few records could be exactly matched. A matching 
strategy was devised to organize records in both files around the 
name field, then to match on the basis of last name, first name, street 
address, and zip code using the Statistical Analysis System (SAS) 
statistical package. Once the exact matches were located by com
puter, all remaining pairs were reviewed manually. On the basis of 
name and address, only 2,970 cases were matched, less than 35 per
cent of the registered motorcycles. 

Manual review took many hours and, serious problems are 
associated with this procedure. Certain people, particularly those 
who tended to move or change addresses frequently, were more 
likely to be excluded, which could introduce certain biases. Some 
individuals in the ownership file owned more than one motor
cycle and therefore showed up as duplicates in the ownership file 
but as unique records in the license file. Finally, uncontrolled error 
was introduced by the manual review process-in addition to being 
tiresome work, the process of comparing records to identify a 
match is tedious, particularly because it is difficult to devise a com
prehensive set of decision rules without reviewing all the data. 
Each of these problems, from the duplicate records in the registra
tion file to the problems associated with manual comparison of 
records, could have been handled more effectively with the Auto
match software. 
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THEORY OF RECORD LINKAGE 

Although a detailed mathematical discussion on the theoretical 
developments of record linkage is outside the purview of this paper, 
it is important to note that there have been many important theo
retical developments. The Automatch software builds on the work 
of Felligi and Sunter (2), Newcombe and Kennedy (3), Newcombe 
(4), Jaro (5), and others. Although there are a few commercially 
available programs for records linkage, the Automatch program is 
experiencing growing popularity-not just among those interested 
in records linkage but also among those involved in more special
ized activities of geocoding and data base management. The 
geocoding and record unduplicating features of the program will be 
discussed later. 

To conceptualize the theory behind the Automatch software, one 
must begin with two different files. Each file contains fields of fixed 
length and a finite number of records. For records to match on these 
two different files they must share one or more equivalent fields. If 
every common field contributes to linking, the larger the number of 
common fields in the two files, the greater the opportunities for link
ing the two files. The record-matching process involves pairing 
records from the two files and determining whether a given record 
pair can be considered a match or a nonmatch. For any two files, 
there are always many more unmatched pairs than true matches. In 
two files, each of which contains exactly 500 records, the possible 
number of record pairs would be 500 X 500, or 250,000 possible 
record pairs. Because there are only 500 records in each file, the 
maximum number of matches one could hope to produce is 500 
(assuming no duplicates in either file and perfect matches between 
the two files). The basic idea is to use common fields in both fields 
to match records. Each of the matching fields has certain properties 
that affect its performance as a matching variable. Some fields (e.g., 
date of birth, name, social security number) contain many different 
possible values. A match on one or more of these fields greatly 
increases the probability of a match between two records. On the 
other hand, many of these fields have a higher likelihood of errors 
and inconsistencies at the time data are collected and entered. Other 
fields, such as gender, zip code, political party affiliation, or other 
attributes with a limited number of possible values, may be more 
accurately entered but do little by themselves to increase the likeli
hood of matching record pairs. Of course, taken together matches 
on many individual fields help increase confidence of an overall 
match between records that have been paired. The matching algo
rithm involves determining the extent to which any individual field, 
as well as the summation of all fields used in matching, contributes 
to the probability of a true match. 

FEATURES OF AUTOMATCH SOFTWARE 

Automatch was recently developed and marketed by Matthew A. 
Jaro (MatchWare Technologies, Inc.) of Silver Spring, Maryland. 
Jaro is a computer scientist who left the U.S. Bureau of the Census 
to form a software development firm. Although Match Ware Tech
nologies has many of the problems associated with small start-up 
ventures, one advantage of its small scale is that customers can deal 
directly with the developer. Slick packaging and carefully edited 
training manuals received from most vendors are less valuable than 
the personalized and informed user support received from Match
W are. There are not many users-in part because records linkage 
tends to be a more specialized field within social science research 
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(few basic courses on data base management and statistical analy
sis include record linkage as a topic). Moreover, although there is 
tremendous potential for new uses and abuses of this technology, it 
is, for the most part, an emerging technology that has not yet been 
widely implemented. 

Automatch is currently available in a PC version running on the 
MS-DOS or OS/2 operating system. It is also available in Unix ver
sions for running on workstation environments. There are some dif
ferences between the PC and Unix versions of Automatch, but many 
are a function of operating system and hardware characteristics 
instead of program differences. Obvious differences are processing 
speeds and memory management. Although the PC version can run 
with just 640K, the performance is acceptable with only relatively 
small data bases. On the other hand, running Automatch on a work
station allows for the handling of much larger files. For example on 
a Spare 10, a 70,000 record file was matched against a 9,000 record 
file in under 5 min. 

In some respects, the PC version is more user-friendly than the 
Unix version tested. With a color menu-driven system, the PC ver
sion of Automatch can be used by most who are familiar with data 
base management systems. The PC version was found to be espe
cially good for training purposes. Users must be able to define file 
structures clearly, name variables, specify types and lengths, and 
understand the basic principles of records linkage. If one could not 
carry out the records linkage manually, it would not be possible to 
instruct the machine to do so. 

Automatch is a collection of specialized programs that operate by 
indexing instead of sorting the original files to be matched. To use 
Automatch, a certain amount of file preparation must be done. The 
amount of preparation will depend on the nature of the data col
lected as well as inputting, editing, error checking, and other data 
management practices. The files must be standard ASCII files, with 
each line delimited with a carriage return. Records must be of fixed 
size. Automatch does not support records or fields of variable 
length. Automatch will support most character, numeric, date, street 
address, and other types of variables. There is a procedure for defin
ing missing value codes, although Automatch does not recognize 
the SAS use of"." as a missing value. Automatch is not a substitute 
for a data base management system or a statistical analysis system. 
Although one byproduct of a matching exercise is the identification 
of errors in the files being matched, Automatch is not equipped to 
correct or modify the original files directly. Automatch calculates 
certain statistics and distributions, which are specific to the match
ing procedures and not particularly useful for description, analysis, 
or modeling of data. The Unix version, unlike the PC version, is not 
at present a menu-driven system, so users must be familiar with a 
good text editor to write the control files required to run the pro
gram. Users of the Unix version of Automatch must have some ele
mentary programming skills as small files are written and compiled 
to control the linkage process. Anyone who has written batch com
mand files in DOS or has written control files in statistical packages 
such as SAS or statistical package for social sciences (SPSS) should 
have no difficulty mastering the Automatch system. 

The program is designed so that users begin by assigning a proj
ect name that is used in all steps of the linkage procedure. The pro
gram generates various extensions that identify all the files for a 
given project. A first step in Automatch involves the creation of data 
dictionaries for the files to be matched. The data dictionary defines 
the location of the file, the record size, as well as variable names, 
positions, lengths, and .missing value codes. The prepared dictio
naries for the files are then compiled into binary format. It is impor-
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tant to note that if changes are made to the dictionary or the under
lying data set the dictionary must be recompiled. 

In addition, users must prepare a match specification file to con
trol the matching algorithm. It identifies the type of program, sets 
out a blocking scheme to subset the file, and lists matching variables 
and the matching procedure to be used with each one. 

Automatch contains three different types of matching programs: 
(a) MATCH-for matching between records on two files, (b) GEO
MATCH-for matching a file to a geographic reference file (e.g., 
the 1980 Census DIME map files or the 1992 Census TIGER map 
and street address files), and (c) UNDUP-for identifying duplicate 
records within a single file. 

The Automatch procedure is efficient because it breaks the 
matching process into two distinct steps: (a) blocking the data in 
each file into small groups using a few variables that partition the 
total file into subsets of similar cases and (b) indexing the blocks 
and running the match comparisons within each block using prob
abilities of matches developed in the indexing stage. 

In this way a 70,000 case file can be tested for possible matches 
against a 100,000 case file without examining 7 billion possible 
match pairs, that is, without actually testing every unlikely case. 
Auto crashes involving male 45-year-old drivers need not be tested 
against ambulance calls to pick up female 16-year-old injury vic
tims. Thus, by restricting the range of comparisons to a block of 
plausible cases, the number of actual tests is dramatically reduced. 

Blocking involves the creation of homogeneous subsets formed 
around variables such as age or place of residence. The more blocks 
that are created, the smaller they will be, and, therefore, the more 
efficient will be the matching procedure. Automatch recommends 
block sizes of 100 records per file. The PC version has a block lim
itation of 32,400 pairs in a block (180 records per block). The best 
variables for blocking are those with a large number of possible val
ues and a high degree of reliability. 

Automatch also requires the user to specify the variables to be 
used for matching and the cutoff values for declaring matches. The 
matching variables must be different from those selected for block
ing. The program accepts a variety of different types of vari
ables (character, numeric, time, odd or even interval, etc.). Depend
ing on the type of variable selected for matching, different 
approaches to comparison are used. For example, with character 
fields; a character-by-character comparison is carried out with 
shorter fields padded with trailing blanks to match the length of the 
longer field. Automatch also provides for an uncertainty character 
field in which tolerance for phonetic errors, transpositions, random 
insertions, deletions, and other differences between two fields can be 
set. Numeric fields involve a straight algebraic numeric comparison 
in which leading spaces are converted to zeros and numbers are com
pared. This is particularly useful for record data that have ill-defined 
columns or out-of-place number values. Automatch also has a delta 
percent comparison in which differences between fields should be 
measured in percentages. There are also allowances for interval data 
and odd or even intervals (useful for geocoding applications). 

After specifying the fields to be used for matching in terms of 
their names and types, the user must specify two different subjec
tive probabilities, m and u. Them probability is the probability that 
the field agrees, given that the record pair is a match. The u proba
bility is the probability that the field agrees at random. Although the 
user must provide an initial estimate of these probabilities, some 
guidelines are given that are helpful. It is easier to begin by esti
mating the u probabilities. For a field such as gender, where there 
are only two possible outcomes, male and female, the probability is 
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.5. Estimating the probabilities for fields with more possible values, 
say, zip code or date of birth, may be more difficult, but it forces the 
user to think about the characteristics of the particular fields selected 
for matching. In a similar manner, the user should estimate the m 

probabilities. This probability can be estimated by subtracting the 
error of the field from one and typically ranges between .9 and .99. 
The prospects of having to estimate these probabilities may seem 
somewhat daunting, but Automatch contains a program that can be 
run to update this probability (after a match run is executed) that is 
based on the actual characteristics of data included in the matching 
files. 

After specifying the probabilistic matching parameters, the user 
must also specify the cutoff weights that signify the threshold lev
els for an acceptable automated match and those cases that require 
clerical review. The weights for a given field are calculated by tak
ing the log to the base 2 of the ratio of m and u probabilities (if the 
fields agree) and the log (base 2) of the ratio 1-m and 1-u (if the 
fields disagree). In this way, fields that agree receive positive 
weights and those that disagree receive negative scores. A compos
ite weight for the record pair is calculated by summing all of the 
individual field weights. The program produces a histogram of these 
composite weights. Records that have a high positive weight are 
assumed to match and those that have a low or negative weight are 
assumed to be nonmatches. Based on the distribution for all com
parisons, users are able to discriminate between matches and non
matches (see Figure 1). On the basis of this distribution, cutoff 
weights can be established, and those cases that require clerical 
review can be identified. 

Only occasionally will users be able in a single pass to determine 
the matching specifications and produce a satisfactory match. It is 
clear that, with each pass of the matching algorithm, more informa
tion about the data is gleaned and can be incorporated into the selec
tion of blocking and matching variables as well as in the selection 
of appropriate cutoff weights. By design, Automatch is meant to be 
iterative; it may take several passes before initiating clerical review. 

The clerical review process involves classifying record pairs as 
matches or residuals (nonmatching records). A report-generator 
program is built into Automatch to facilitate clerical review. This 
program enables the user to view records and additional fields 
defined in the data dictionary to make an assessment about whether 
a record pair is indeed a match. The clerical review program allows 
the user to examine not only potential matches but also duplicate 
records that may have ended up in either of the two comparison 
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files. One feature of the clerical review algorithm is a history file, 
which keeps a record of all the decisions made by the clerical 
reviewer so that if the matcher program is rerun the user will not 
have to view the same records that have been previously reviewed. 

The final step in Automatch generally involves producing an out
put file of the matched records that can then be imported into 
another package such as SAS or SPSSx for statistical analyses. 
Other special features are built into the Automatch program for 
handling geocoded data and producing other specialized reports 
related to the matching procedure. Match Ware Technologies has 
also developed address standardizers and other specialized pro
grams and routines that are useful in file preparation and records 
linkage. 

EVALUATION OF AUTOMATCH 

In this section Automatch' s performance on matching two data 
bases from Hawaii-the state Motor Vehicle Accident (MV A) file 
and the state Emergency Medical Services (EMS) Data Base-is 
described. Based on experience, an evaluation of Automatch's per
formance· is provided. The data were matched as part of require
ments for a federal grant to build a Crash Outcome Data Evaluation 
System (CODES), administered by the Department of Transporta
tion. The Hawaii CODES project involves linking crash data to 
ambulance transport (EMS) data, hospital data, insurance data, and 
other Information on traffic crashes in Hawaii during 1990. The pur
pose of the project is to build a linked data base on which models 
explaining crashes, driver behavior, and the effectiveness of safety 
devices on reducing injury and fatality can be tested. 

The MVA data contains computerized records on all major traf
fic accidents in Hawaii. Data are collected by police officers called 
to the scene of a traffic collision. Data on driver, vehicle, occupant, 
and roadway characteristics are filled out on a paper form, which 
data in turn are entered into a computer system maintained by the 
Department of Transportation, Hawaii. In 1990, there were approx
imately 27,000 major traffic crashes, involving some 45,000 driv
ers, and an additional 30,000 occupants. The data suffer because it 
is collected by police officers under not ideal conditions and then 
entered by keypunchers who have few resour~es with which to 
check or verify the work. On the other hand, there are only four 
counties in Hawaii, and the data are more centralized than in many 
other states with more local law enforcement agencies. 

The EMS data are also collected on a statewide basis and main
tained by the Department of Health, Hawaii. This data base draws 
information from a dispatch card, which is filled out when a call for 
ambulance service comes in, and an EMS report, which is com
pleted by ambulance attendants called to the scene of an accident. 
When the nonemergency, nontraffic-related ambulance runs are 
excluded from the EMS data base, approximately 9,000 ambulance 
runs must be accounted for. 

The steps in records linkage involve cleaning the two data bases, 
preparing the fields for matching, devising a matching strategy, run
ning several passes with the Automatch program, conducting cleri
cal review, and preparing various summary reports. 

In matching EMS records to MV A records, more time and effort 
went into the preparation, editing, and cleaning of the files than in 
conducting the matching procedure. Part of the reason for this has 
to do with the nature of public data bases that are maintained more 
for individual records reporting than for data analysis and model-
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ing. A basic hardware problem involved extricating and decoding 
the MV A data from an antiquated Wang minicomputer system 
before it could be read on to the Spare 10 workstation. For the MV A 
data, the data files were prepared, using SAS, by recording variables 
into a usable format and writing them to a text file using the "PUT" 
command. For the EMS data, dBASE was initially used because the 
data had been entered into a relational data base management sys
tem. Eventually, the data were transferred into SAS so that com
parable matching variables could be constructed. 

The blocking strategy was dictated by the nature of error in the 
original data. Blocks were to be as small as possible to provide near 
certainty that matches that were not physically possible would be 
prohibited. The most important variables for blocking were county 
and date. These were good variables because in Hawaii each of the 
four counties consists of separate islands, isolated by ocean. The 
date field was systematically edited and verified by EMS personnel. 
We also used gender as a blocking variable. These blocks enabled 
a match with greater certainty on the variables such as age, time of 
the incident and service, and location codes. The matching strategy 
produced a distribution of matched and unmatched pairs, including 
exact matches, duplicates, and clerical (manual) review cases (see 
Figure 2). 

At the outset, it is important to note that Automatch's perfor
mance was impressive. First, few products comparable in cost or 
flexibility are available. Second, there is an underlying mathemati
cal basis for the matching algorithm that is based on probability the
ory and enables the user to specify error ranges and accompanying 
levels of tolerance. Also the user is led through a logical sequence 
of data definition, developing a blocking and matching strategy, 
adjusting or correcting the strategy based on information generated 
through the match procedure, and can set parameters for clerical 
review. Automatch encourages the user to think systematically 
about the data that are being matched. Third, the level of technical 
support and the quality of customer service offered by Match Ware 
Technologies, Inc., has been superior. 

*************************************************************** 

* OUTPUT STATISTICS FOR MATCH: sec 
* PASS: 1 
* 
* 

* 

* 

* 
* 

* 
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69072 
9395 

0 
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65795 
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0 
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4.6 
6786 
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537 

4144 
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Records on file A 
Records on file 8 
A residuals from previous pass 
8 residuals from previous pass 
A records read 
B records read 
Blocks processed 
OVERFLOW blocks 
Maximum A block size (including overflow) 
Average A block size (not including overflow) 
Maximum 8 block size (including overflow) 
Average B block size (not including overflow) 
Matched pairs 
EXACT matched pairs 
Clerical pairs 
A duplicates 
EXACT A duplicates 
B duplicates 
EXACT B duplicates 
A residuals (including skips & missing) 
8 residuals (including skips & missing) 
A records skipped 
B records skipped 

**************************************************************** 

FIGURE 2 Sample output statistics from Automatch. 
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The documentation is clearly written and provides enough for 
most users to start using the Automatch software, but the docu
mentation is thin (approximately 60 pages) and may not be enough 
for those who are doing records linkage for the first time. The pro
gram has been used several times, and the documentation now 
appears all the more clear and straightforward. The documentation 
falls short because no example is worked out all the way from start 
to finish with all inputs statements and screen outputs. The docu
mentation tends to be one-sided, as it provides fairly good instruc
tions in terms of statements and commands but leaves out the sys
tem responses, which, unless one has been through the entire 
matching procedure, are not the most informative. In using the sys
tem, the most common response was, "Now what?" In the spirit of 
DOS and Unix, in Automatch no response is a good response. 

Another area with some degree of mystery involves the genera
tion of program files and object files. Automatch generates several 
different files, so it would be useful to provide a more clear discus
sion of what files are created and how each is used in the system. 
The directory contents and watches were checked periodically to 
determine the effects of various programs and match runs to deter
mine what new files were being created and modified. One would 
also like to have more information about the actual matching algo
rithm. Although Jaro's work (5) provides a basic understanding of 
what is going within the program, the documentation does not 
rehearse the algorithm in the context of a worked-out problem. 
More discussion is needed about the various user decisions that 
influence the matching procedure. Here too, an_ example or two 
worked all the way through from beginning to end, replete with the 
determination of composite weights and cutoff scores, would help 
bridge the gap between documentation and implementation. The 
concerns about the documentation are minor because these appear 
easily correctable deficiencies. Jaro (5) provided excellent techni
cal support when needed. 

Areas in which there is more room for improvement are user 
interfaces, screen calls, and the transitions between one program 
and the next. Although the PC version, with its menu-driven format 
is more user-friendly than the Unix version used, user interface sup
port can be improved. It would be nice, for example, to have pull
down menus with program templates to serve as guides not only for 
writing individual programs but also for showing the sequence from 
one step to the next. Error messages could be improved so that 
debugging would be easier. Screen prompts emerge when submit
ting and executing commands, but many program files are prepared 
in batch format. When a program bombs, it is sometimes difficult 
for new users to figure out from error messages what went wrong. 
It would be useful to build a program editor into Automatch specific 
to the Automatch language so that illegal entries and inconsisten
cies would be flagged before compilation of the program. 

Once one has a basic understanding of the principles of records 
matching and how to interpret the information provided by 
Automatch, then the actual records linkage becomes more chal
lenging. One learns how to use Automatch by formulating blocking 
strategies, identifying matching variables, estimating the m and u 
probabilities, adjusting cutoff weights, and working the data bases 
to minimize the number of clerical reviews and retaining high con
fidence that the algorithm has done a good job of matching. 

Special care is required in any form of raw-data procedure in 
which the underlying data are thought of as variables or measure
ments and would normally be indexed by named variables in a sta
tistical analysis system or data base manager. This applies here as 
well. If the data sets to be merged are small and contain relatively 
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few distinct variables, it is possible to create files by merging that 
encompass entire records. If the records are large, however-100 or 
200 field records-it will be more efficient to extract a subset of 
variables that constitute the blocking, matching, and ID indicators 
for the set required to marry the subset back to the original records 
exactly. The user is tempted simply to use the sequence number of 
the record as the key for this purpose. This is not advisable for at 
least two reasons: (a) The order of the key is dependent on the order 
of the original file; if the file is transformed or, worse, sorted, the 
order is lost. (b) Any attempt to match the "unmatched" cases on a 
second pass, once the original matched records have been merged 
into a new, combined data set, is likely to define the "unmatched" 
cases as a subset of the original cases. The positional ID number of 
cases in the subset will be different from the ID number in the orig
inal file. (It is possible to execute successful matches on, say, 8,000 
of 64,000 records from File A to File B, then return to try to match 
the 56,000 unmatched records from File A. To bring the results of 
this second matching process back into the master data set and to 
marry the cases correctly, unique identifiers must be carried into the 
subset used in the matching procedure. 

It is easy to avoid the traps of this procedure by executing multi
ple blocking and matching steps within a single run of Automatch. 
In this way the criteria for matching can be upgraded on the basis 
of experience or new information, yet only one process will be used 
to merge the matched files back onto the master data base file. 

Though Automatch has some rough edges, the product is fairly 
easy to use. Most computer-literate individuals can master the pro
gram in a few hours, provided that they start with a simple match
ing problem (with many good fields for comparison) and then grad
uate to a more difficult and realistic matching exercise. The 
flexibility of the program allows matching of different types of data 
sets and includes many special features that emerge more as one 
interacts with it. It is likely that most data base managers would find 
Automatch to be something that, once used, would be difficult to 
live without. 

Other Applications and Uses 

Automatch was developed for postenumeration surveys conducted 
by the U.S. Bureau of the Census. Undercounting of certain groups 
(minorities, non~English speakers, etc.) is suspected in some areas. 
Follow-up surveys are typically conducted in these areas. 
Automatch enables the comparison of individual records (between 
the original and follow-up survey) to find out which people were not 
counted the first time but were enumerated the second time around, 
to produce an estimate of undercounting. 

Follow-up surveys, longitudinal questionnaires, and other appli
cations that involve matching pairs for study over time could bene
fit from the use of a program such as Automatch. This is particularly 
useful when errors in data entry or substantial changes in popula
tion characteristics over time are concerns (6). Automatch enables 
matching to go beyond merely the use of one or two identifiers and 
permits many different kinds of variables to be used in records 
matching. 

Another procedure in Automatch that identifies duplicate records 
would have many potential applications, from purging mailing lists 
of duplicates to removing duplicate records before updating a data 
base or performing statistical analyses on it. 

The geocoding applications involve matching a particular data 
file with a reference file. For example, one could match data on 
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crash locations (typically coded in terms of street name and mile 
marker or cross street) with latitude and longitude data from com
puterized street index files or geocoded reference files. As Geo
graphic Information System (GIS) technologies continue to expand, 
more reference files (e.g., Census 1992 TIGER map files, Census 
Summary Tape File data organized by ZIP codes, etc.) have become 
available in a variety of formats. Automatch can be used with GIS 
and mapping technologies to bring this sort of summary data into a 
format suitable for mapping. 

For data base management, Automatch may be particularly use
ful in those circumstances in which there is much transaction 
processing. Organizations with large data bases in which informa
tion is continually being updated and altered may find use for prob
abilistic matching for error detection and postaudit review. At 
present, Automatch is set up only for batch processing, yet one 
could imagine ways of applying the algorithms in a more interac
tive fashion. 

Other applications for Automatch may be in the field of criminal 
justice research, where one could examine the relationship between, 
say, traffic citations, traffic collisions, criminal activity, and other 
forms of deviant behavior (e.g., DUI, drug use, etc.). In the future, 
firms specializing in records linkage might emerge-similar to the 
emergence of tho~e that provide geocoding services in response to 
the growth of geographic information systems. Many different 
applications can be envisioned in urban and regional planning, for 
example, linking transportation data to land use and marketing stud
ies, social services data to census data, and environmental quality 
studies to data on land use and ownership. 

CONCLUSIONS 

Automatch does much to elevate the level of sophistication of data 
base managers and others who enter, clean, and match data. Too 
often, the business of data base management and records linkage 
has been kept in the dark ages-that is, although there is much sta
tistical, graphics, and presentation softwfil.e, really new tools in data 
base management have been rare. Automatch is an exception. It 
provides data base managers a new arsenal of programs for match
ing data, identifying duplicate records, and handling assorted prob
lems typically associated with geocoded data. 

Automatch also opens doors for researchers and statistical mod
elers looking for ways of combining data bases. Through records 
linkage, new and interesting analyses can be carried out. Gaps 
among agencies, disciplines, time periods, and data sources can be 
bridged through records linkage. The potential uses and abuses of 
this technology are great. The prospect of linking specific public 
record data bases (property ownership or voter registration files) to 
attitude survey, market research, health, or financial reporting data 
bases presents enormous ethical and political challenges. With this 
software and some understanding of probabilistic records linkage, 
even files in which many of the common identifiers (e.g., name, 
social security number, etc.) have been stripped can be linked to 
other public data files (which could contain names, addresses, and 
other person-level identifiers). Although this paper is meant to pro
vide an overview of the technology, there are also important ques
tions of what constitutes appropriate and legal data linkages and 
major questions about maintenance of confidentiality and the uses 
of data for purposes other than for what they were collected. Cer-
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tainly, one response to the technology may be to make it more dif
ficult than ever to gain access to computerized data. 

A more complete discussion of the ethics of records linkage must 
come before widespread application of this technology-although 
as often happens with innovation, progress often precedes policy
making. Records linkage is definitely on its way to becoming a more 
widespread practice. For planners to appreciate its potential and lim
itations more fully, more systematic discussion about appropriate 
plans, policies, and standards of practice for automatic records link
age must occur. Educators have an especially important role to play 
not only in teaching the technology of records linkage but also in 
conveying a critical understanding of ethical concerns as well. 

Because of the existence of probabilistic matching software, real 
data hounds will undoubtedly discover ways of improving the qual
ity and coverage of information that will only serve to improve and 
expand upon the nature and levels of analysis and model building. 
MatchWare Technologies, Inc., has already developed a small 
impressive set of clients, ranging from the U.S. Department of 
Transportation to various public- and private-sector organizations 
around the world. We predict that Automatch-in its present form 
and versions beyond-will become more widely used and that the 
practice of probabilistic records linkage, with all its opportunities 
and challenges, is here to stay. 
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