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Estimate of Static Track Modulus Using 
Elastic Foundation Models 

Z. CAI, G. P. RAYMOND, AND R. J. BATHURST 

A new method for calculating the track modulus by using elastic prop
erties of the individual track support components is developed. The 
properties include (a) the stiffness of the rail pad, (b) the vertical stiff
ness and bending rigidity of the tie treated as a beam on both a Winkler 
foundation and a two-parameter foundation, and (c) the Young's mod
uli and Poisson's ratio values of the soil layers underlying the track. 
Semi-infinite elastic foundation theories are used to estimate the equiv
alent ballast/subgrade stiffness distributed along the length of the tie. 
Track modulus charts and application examples are given for typical 
track support structures used in North America. A practical benefit of 
the new approach proposed is that it eliminates the need to carry out 
relatively expensive field tests. An overview of some existing methods 
to determine track modulus is also presented. The validation of the 
proposed method is currently in progress. 

Since the early days of railway engineering, the beam-on-elastic
foundation (BOEF) method, or the Winkler method, has been used 
to analyze track mechanics, as illustrated in Figure 1. In this method, 
the rail is considered as an infinitely long beam resting on an elastic 
foundation comprising continuous linear springs. The physical 
effects of all the structural components underlying the rail are thus 
represented by a single parameter, k, termed the track modulus. 
Although the Winkler method does not consider the individual 
structural features of all the track components, it involves simple 
calculations and has become widely accepted by the railway indus
try for use in track design (J). A survey of the development of track 
mechanics was presented by Kerr (2), and a detailed analysis of 
track responses under wheel loads has been given by Raymond (3). 

The Winkler method of analysis is based on the following differ
ential equation for the rail deflection under load: 

d4w(x) 
EI -- + kw(x) = q(x) 

dx4 

where 

(1) 

w(x) = vertical deflection of the rail at point x from the applied 
wheel load, 

EI = flexural rigidity of the rail beam, 
q(x) = distributed load equivalent to the wheel loads, and 

k = track modulus, which is the coefficient of proportionality 
between rail deflection and vertical contact pressure act
ing at the interface between the rail base and the track 
foundation. 
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For a single concentrated wheel load P applied vertically on the 
rail, Equation 1 yields the following rail deflection curve: 

fl! . Pl3 
w(x) = 

2
k e -13x (cos 13x + sm 13x) = 2k 11(x) 

and the corresponding bending moment is given by 

p 
M(x) = - e -13x (cos 13x - sin 13x) 

413 

where 

( 
k ).+ 

13 = 4 EI 

(2) 

(3) 

(4) 

The flexural rigidity of the rail, EI, is an easily determined quan
tity, and P is the specified wheel load. For any chosen value of k, 
the desired track response can be readily calculated. 

Determining a track modulus representative of the combined 
structural effects of the track support components is not easy, 
although the concept involved is relatively simple. The track mod
ulus is likely to vary substantially at different locations along the 
track due to variations in ballast/subgrade properties, uneven con
struction effects, and track service life. Some ballast properties
such as hardness, toughness, durability, and specific gravity--can 
vary enormously from one ballast to another (e.g., a limestone ver
sus a basalt or copper slag ballast). The track modulus can also be 
expected to vary seasonally, due to the effect of freeze-and.:.thaw 
cycles on ballast/subgrade. 

Methods to determine the track modulus have traditionally been 
based on the BOEF theory and the use of large-scale tests involving 
prototype axle loads and rail deflection measurements. Commonly 
used experimental techniques and corresponding analytical meth
ods have been described by Zarembski and Choros (4) and Kerr (5). 

The purpose of this paper is to present an overview of the exist
ing methods and propose a new method f C?r calculating the track 
modulus, based on elastic foundation models. A practical benefit of 
the approach proposed in this paper is that it eliminates the need to 
carry out relatively expensive field tests. The validation of the pro
posed method is currently in progress. 

EXISTING METHODS FOR DETERMINING 
TRACK MODULUS 

Vertical Equilibrium (or Deflection-Area) Method 

The vertical equilibrium method to calculate the track modulus k 
has been used by a number of researchers, including the ASCE
AREA Special Committee under the leadership of Talbot (6). The 
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(b) Winkler track foundation model 

FIGURE 1 Rail track formation modeled as a Winkler foundation. 

concept is based on the vertical equilibrium of an infinitely long rail 
beam under an applied load P, that is, 

f 
+oo 

P - _
00 

kw(x) dx = 0 (5) 

If the deflection curve w(x) is measured, then the track modulus 
k can be calculated as 

p 
k= -----r: w(x)dx 

(6) 

The integral denominator is the area formed by the deflection 
curve w(x) along the rail axis. In practice, the following approxi
mation is used: 

p 
k= -n--

LS;W; 
i=l 

(7) 

_where w; is the measured deflection at the ith location along the rail 
and S; is the distance between two adjacent measurement points. The 
number of deflection points will clearly influence the accuracy of k. 

To reduce the effect of slack (or free play) existing in the track, 
the field test can be performed in two steps, the first with a light 
wheel load, P 1, and the second with a heavy wheel load, P2• The 
parameter k is then calculated as follows: 

P1 -P2 k= _n ____ _ 

Is;(w; 1 _ w;2) 

i=l 

(8) 

where wil and w;2 are the corresponding measured rail deflections. 

Beam-on-Elastic-Foundation Method 

This method is derived directly from the solution of rail deflection 
using the Winkler's BOEF approach. If the deflection under a sin
gle wheel load is measured as Wo, then from Equation 2 with x = 0, 

k = _!_ (_!__)+ (_E_)t 
4 EI w0 

(9) 

The major advantage of this method over the vertical equilibrium 
method is that only one deflection measurement is required and the 
effect of rail-bending rigidity is cqnsidered explicitly. To apply this 
method, however, a special loading arrangement is required in the 
field, comprising a single load configuration. 

Zarembski and Choros (4) and Kerr (5) described a similar 
approach to determine the track modulus under multiple wheel 
loads that uses the measured deflection under one wheel load, cal
culated by adding the contribution of all the wheel loads multiplied 
by their corresponding influence coefficients given by Equation 2, 
that is, 

i__ n 

Wo = I P;T\; 
2k i=l 

(10) 

Here the influence coefficient 11; = e-13x;(cos 13x; + sin 13;x;), in 
which X; is the distance between the ith wheel load P; and the mea
surement point. Thus, an iterative procedure is needed to obtain the 
value of the track modulus k since 13 and 11; are both a function of k. 
Zarembski and Choros ( 4) suggested the following procedure based 
on Equation 10: 

lk - _IL I P; 11; I ::::;; E 
2wo i=l 

(11) 

where Eis a prescribed error of tolerance. Kerr (5) has proposed an 
alternative expression of Equation 10:. 

Wo 13 ~ P = 2k ;ft a; 11; (12) 

where a;= P;IP. Thus, the normalized deflection, w0/P, can be plot
ted as a function of k. The above equation has been used to gener
ate normalized deflection charts for three different rail sizes loaded 
by a standard freight car (5). 

Recent field measurement results of track modulus using the 
BOEF approach against predictions using a FEM track program 
were described by Stewart (7). A method that considers track non
linear effects on the track modulus has been given by Kerr and 
Shenton (8). 

In the above methods, the calculation of k using the measured rail 
deflection(s) involves an averaging effect over the entire length of 
the depressed track. This implicitly takes into account soil particle 
interactions and the vertical elasticity and flexural rigidity of the 
ties. However, the individual effects of the track components on the 
track modulus are not distinguishable in the results of these testing 
methods. Furthermore, field tests on tracks are time consuming and 
costly, and cannot be performed for a track before design. 

Pyramid Load Distribution (PLD) Method 

The PLD method is illustrated in Figure 2, and assumes that the 
pressure beneath the rail seat is distributed uniformly at each depth 
across the area of an imaginary pyramid-shaped zone spreading 



Cai et al. 

(a) Vertical stress distnbution through ballast 
(c) Equivalent spring constants 

for ballast/subgrade 

(b) Pyramid zone of stress distribution 

FIGURE 2 Pyramid load distribution method to calculate 
track modulus. 

downward through the ballast layer (9). Thus, the Poisson's ratio 
effect is nonexistent and subsequently replaced by the "angle of 
internal friction." From the theory of elasticity, the effective stiff
ness of the ballast layer expressed as an equivalent elastic spring is 
given by the following: 

Kb= 2Eb(d - b) tan <I> 

lo [d(b + 2h tan<!>)] 
g b(d + 2h tan <I>) 

where 

Eb = Young's modulus of the ballast, 
<I> = angle of internal friction of the ballast, 
d = length of loaded area, 
b = width of loaded area, and 
h = depth of the ballast layer. 

(13) 

The effective stiffness of the subgrade is calculated by multiply
ing the base area of the pyramid at the ballast/subgrade interface by 
the subgrade modulus k0 : 

Ks= ko(d + 2h tan <l>)(b + 2h tan<!>) (14) 

Thus, the effective stiffness of the entire rail support system can 
be calculated from the following: 

1 1 1 1 -=-+-+-
Ke KP K, aKbs 

where 

Ke = effective spring stiffness of the rail support system, 
KP = stiffness of rail pad, 
K, = vertical stiffness of tie, 

Kbs = combined stiffness of ballast and subgrade, and 

(15) 

a = experimental factor used to account for the continuity of 
the deflection of the track bed between adjacent ties. 
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Ahlbeck et al. (9) suggested, on the basis of experimental data, the 
use of a = 1/2. 

Thus, the distributed track modulus is simply calculated by 
k = K/s, wheres is the tie spacing. 

PROPOSED NEW METHOD FOR CALCULATING 
TRACK MODULUS 

As seen from the definition of the track modulus, the parameter kin 
the Winker beam-bending equation represents the gross compliance 
of the track subcomponents comprising the resilience of the rail pad, 
the vertical (or compressive) stiffness and bending rigidity of the 
tie, and the elasticity of the ballast/subgrade. The combined effect 
may be most properly determined from a loading test on field track. 
Field tests are time consuming and costly, and may not always be 
practical. The PLD method is one simple approach to obtaining a 
rapid estimate of the track modulus based on the physical proper
ties of individual track components. 

The following limitations, however, are inherent in the PLD 
method: (a) the flexural rigidity of the tie as a beam is not consid
ered, (b) the vertical stresses are assumed to distribute through an 
imaginary pyramid zone, the accuracy of which is questionable, and 
(c) the shear effects of the soil media are not considered, although 
an empirical factor of 1/2 (see Equation 15) is suggested by Ahlbeck 
et al. (9) to compensate for that effect. 

In the following sections, a new method is described for calcu
lating the track modulus. It considers the tie as a flexible beam rest
ing on an elastic medium described by both a Winkler foundation 
model and a two-parameter foundation model. The foundation mod
ulus parameters of both models are related to the elastic properties 
of the foundation represented as an equivalent semi-infinite soil 
medium. 

Tie as a Beam on Winkler Foundation 

Formulation 

In this method, the tie is described as a uniform beam resting on a 
Winkler-type foundation with a distributed across-track modulus, 
kso and subjected to two vertical loads Q, symmetrically applied at 
the ~ail seats, as illustrated in Figure 3. According to Hetenyi (10), 
the deflection of the tie at the rail seat is as follows: 

z = QJ3 H(ll D) 
s 2ks I-'• 

where 

a· 2q 

FIGURE 3 Equivalent spring stiffness 
of tie beam resting on elastic foundation. 

(16) 

(17) 
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in which ks is distributed spring stiffness beneath the tie beam and 
Eli is bending rigidity of the tie. H(13, D) in Equation 16 is a dimen
sionless transcendental function of the parameter 13 and tie dimen
sions represented by the symbol D. Figure 4 shows H(l3, D) plotted 
against 13 for two ties with lengths of 2.5 m (8 ft, 6 in.) and 2.70 m 
(9 ft), respectively. For 13 > 2, H(l3, D) = 1. 

Thus, the equivalent spring stiffness (per rail) offered by a tie 
lying on the track foundation is given by the following equation: 

K _ Q _ 2ks 1 
tf - Zs - 13 H(l3, D) 

(18) 

The only unknown in the above formula is the ballast/subgrade 
stiffness parameter, ks. Selvadurai (11) has described a number of 
methods to estimate the value of ks. An approximate method devel
oped by Galin in 1934 and later confirmed by Sivashinsky in 1975 
(1 J) treats the finite beam resting on an isotropic elastic continuum 
as equivalent to that of the Winkler foundation model. This yields 
the following expression for ks: 

k = nEs 
s 2(1 - µ;) ln(l/b) 

(19) 

where Es and µs are the effective elastic modulus and Poisson's ratio 
of the ballast/subgrade foundation, respectively, and b and l are, 
respectively, the width and length of the tie beam. 

Vesic and Johnson (12) suggested the following expression for 
calculating ks: 

k = 0.65 Es ( Esb
4 )+ 

s (1 - µ;) Eli 
(20) 

Thus, the parameter ks calculated as such is representative of the 
general elasticity of the track foundation. The major difficulty with 
Equations 19 and 20 lies in the determination of the effective mod
ulus Es of the layered ballast/subgrade foundation. A first approxi
mation to estimate Es may be to use Steinbrenner' s settlement solu-

5---+---+-+--+-1-+-+-tt Tie Length 
---- 2.70 m ( 9') 

~ \\ -- 2.50 m (8'6) 

- \1 
2 ~I 
1 \II \' Equivalent Spring Stiffness of Tie 
'.!• .._ _ _.____,___. on Elastic Foundation: 

n ~ ~ 
~ Jn \\\ K - s 1 ~ \1 1rpH(f3,D) 

>: i \ p~(&)"' 

\ 
5"'---4--'1'--1--1-1-1-1--1-+---l-~~-l-4-+---l--l-I 

\ 

n 

0.1 0.5 1.0 5.0 10.0 

f3 (l!m) 

FIGURE 4 Relationship between H (J3, D) 
and J3 for two example ties. 
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ti on ( 13) for a flexible base resting on a layered elastic soil medium. 
This yields the following expression for the effective elastic modu
lus of the layered track foundation: 

where 

(21) 

Es = effective elastic modulus of the equivalent elastic 
continuum; 

E; = elastic modulus of the ith soil layer; 
IP = displacement influence factor of the elastic half

space; 
Ip; = (/ - µ;;) F1; + ( 1 - µs; .:_ µ;;)F2; is the vertical dis

placement influence factor; 
µs; = Poisson's ratio for the ith soil layer; and 

Fli and F2; = dimensionless factors related to the depth/width 
ratio (Z/b) of the soil layer and the length/width 
ratio (lib) of the tie, as given in Figure 5. 

Soil elastic properties can be conveniently obtained from labora
tory tests (14). Tables 1 and 2 (15) give some typical ranges of val
ues of soil elastic modulus and Poisson's ratio for different types of 
soils. Other methods that may be used to estimate the effective elas
tic modulus of a layered soil foundation are given elsewhere 
(13,16,17). 

Thus, the equivalent track modulus is obtained from the follow
ing equation: 

(22) 

where Ktf is calculated from Equation 18 and Kv represents the com
bined vertical stiffness of the tie and the rail pad. 

0.76o-t--+----+---+--+--t--t----+--+--+--,,~ 

0.72:+----+--t--l---+--+----+--t-----;__,.,c..~l-~"7'"'--I/ 
l/b=JO AV// 

0.61~&1--+----+--+----+--+--..---+--7¥+-7"'"-+--t I\ /~,,..r 
o.~· 

lib=\ f.0/ 
0.60tH--l---+---l---+--+->....+~'-l--+----l----I 

0.5o+-:';--t--+---t--+--Vg...,,~._,,./'+K---+--+---+--+-----t 
0 52 Fi ~ './ l/b=oo 
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or ff JWL. -
F2 0 on '// Layer 1 I -,v ~~- z 
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Depth to Width Ratio: Z,lb 

FIGURE 5 F 1 and F2 values versus depth
to-width ratio. 
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TABLE 1 Typical Range of Values of E, for Selected Soils {15) 

Type of Soil 

Very soft clay 
Soft clay 
Medium clay 
Hard clay 
Sandy clay 
Glacial till 
Loess 
Silt 
Silty sand 
Loose sand 
Dense sand 
Loose sand and gravel 
Dense sand and gravel 
Shale 

Ballast 

Application Example 

To demonstrate the use of the above method, an example track with 
wooden ties or concrete ties spaced at 0.6 m (24 in.) is assumed to 
rest on a foundation soil profile with elastic properties shown in 
Figure 6. The bottom clay layer is considered to extend to a depth 
of 5 times the tie width, where the displacement of the soil can be 
considered to be negligible. 

Step 1. Calculate (a) IP values for each layer according to the 
corresponding depth/width ratio and Poisson's ratio, (b) IP for an 
infinite soil medium (assuming a Poisson's ratio of 0.1 ), and 
(c) Es according to Equation 21 (in this example, Es =98 MN/m2

). 

Step 2. Calculate (a) ks using Equation 19 (ks = 64 MN/m/m) 
and (b) ~according to Equation 17 and H (~, D) from Figure 4. For 
the wooden tie,~ = 1.91 and H(~, D) = 1.03. For the concrete tie, 
~ = 1.17 and H(~, D) = 1.44. 

Step 3. Calculate Kif using Equation 18 and finally the track mod
ulus k from Equation 22. For the wooden tie, Kif = 65 MN/m, and 
assuming Kv = 100 MN/m, Equation 22 yields k = 65 MN/m/m. 
For the concrete tie, Kif = 78 MN/m, and assuming Kv = 750 
MN/m, Equation 22 yields k = 116 MN/m/m. 

Tie as a Beam on Two-Parameter Foundation 

The Winkler foundation model simplifies the soil medium to an 
assemblage of a series of independent elastic springs. In order to 

E1 (MN/m2) 

0.3 - 3 
2-4 

4.5 - 9 
7 - 20 

30 - 42.5 
10 - 16 
6 - 15 
2 - 20 
5 - 20 

10 - 25 
50 - 100 
50 - 140 
80 - 200 

140 - 1,400 

200 - 280 
(after Ahlbeck et al, 1975) 

105 - 245 
(after Stewart, 1985) 

account for shear interaction effects within the soil mass, many two
parameter foundation models have been developed(/ I,I8,I9). In 
recent years, the use of two-parameter foundation models have 
become increasingly popular (20-23). 

The governing differential equation for the deflection, z(x), of the 
tie as a uniform beam on a two-parameter elastic foundation, is 
given by the following: 

EI d4z(x) - k d1z(x) + k ( ) = ( ) 
r dx4 g dx2 s z x q x (23) 

where ks is the first parameter (Winkler's modulus) and kg is the 
second parameter, which is a generalized quantity used to compen
sate for shear continuity in the foundation soil. A detailed explana
tion of kg for various two-parameter models is given elsewhere 
(/ 1,19). 

To obtain the equivalent spring stiffness of the two-parameter 
tie/foundation system, the matrix method incorporating the exact 
stiffness of the tie is used to solve Equation 23. Many authors have 
derived in various forms the exact stiffness of a uniform beam on a 
two-parameter foundation (19,22,24). By using this approach, the 
nonuniforrnity of both the tie cross-section and the distributed foun
dation modulus can be taken into consideration. Note that if kg = 0, 
Equation 23 reduces to the original Winkler model. Therefore, the 
following formulation also applies to a tie beam on a Winkler foun
dation. 

Consider the half-tie shown in Figure 7. It is herein assumed that 
the tie consists of two different uniform segments resting on two 

TABLE 2 Typical Range of Values ofµ, for Selected Soils {15) 

Type of Soil · µ.. 

Clay, saturated 0.4-0.5 
Clay, unsaturated 0.1-0.3 
Sandy clay 0.2-0.3 
Silt 0.3-0.35 
Sand (dense) 0.2-0.4 

Coarse (e = 0.4-0. 7) 0.15 
Fine-grained (e = 0.4-0. 7) 0.25 

Rock 0.1-0.4 
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different sets of uniform springs. This is a reasonable assumption 
since most concrete ties comprise a uniform center segment and two 
approximately uniform shoulder segments, and ballas.t tamping is 
usually within the rail seat area resulting in a stiffer track founda
tion within that area. An empirical formula is given elsewhere (1,3) 
to calculate the length of tamped area. 

The solution of Equation 23 at the four nodes of the three ele
ments shown in Figure 7 can be obtained from the following matrix 
equation: 

[K] {5} = {P} (24) 

where 

[K] = overall stiffness matrix (8 X 8) of the three elements, 
{5} = [Zi, 0" Z2, 02, z3, 03, Z4, q4y is the displacement vector (in 

which 04 = 0), and 
{P} = [0, 0, Q, 0, 0, 0, 0, MY is the nodal force vector. 

Solving Equation 24 for the rail seat deflection, z2, the following 
is obtained: 

Z2 =QA_ 
Sss 

(25) 

where ~s = S33 X Sss - S38 X S83 • The terms Sii (i, j = 3, 8) are the
corresponding elements of the inverse matrix of the 8 X 8 general 
stiffness matrix [K] formulated in Equation 24. 

Thus, from Equation 25, the equivalent spring stiffness of the tie
foundation system is inferred to be the following: 

(26) 

The track modulus can be calculated by substituting this result 
into Equation 22. A Fortran program has been written to implement 
this solution procedure. Note that Equation 18 is a special case of 
Equation 26. 

The number of nodes (or elements) used to discretize the tie can 
be increased to account for further variations in the tie cross-section 
and track bed stiffness. However, the two-segment beam approxi-

. + 
~ O.Om 

Ballast E1 = 155 MN/m2, J'sl = 0.1 

Sub ballast 

Dense Sand E3=72 MN/m2,J's3=0.15 

Compacted E4=14 MN/m2,Jls4=0.45 
Clay 

Tie Parameters: 

0.3m 

0.6m 

0.75m 

l.2m 
(SB) 

Wooden tie: 180x230x2600 mm (7x9x102 in) 
EI,= 1.2 MNm2. K;, = 100 MN/m 

Concrete tie: 210x240x2500 mm (CN 60G) 
EJ,=8.4 MNm2.K;,=750 MN/m 

Tie spacing: 0.6 m (24 in) 

FIGURE 6 Example track and 
soil profile. 
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mation given in Figure 7 has been shown to yield adequate results 
for most concrete ties. For wooden ties, only variations in the track 
bed stiffness are considered. 

Application Example 

Case I-Winkler Foundation Model 

Using the same ballast/subgrade soil profiles given in Figure 6, 
Equations 24, 26, and 22 are solved for the following: 

1. A wooden tie having a vertical stiffness of kv = 100 MN/m 
and a bending stiffness of E/1 = 1.2 MNm2

; and 
2. A nonuniform concrete tie (CN 55 A type) with a SYN pad 

CS-grooved synthetic rubber) of stiffness kv = 180 MN/m, or an 
EV A pad of stiffness kv = 750 MN/m. 

For both ties, the distributed Winkler stiffness beneath the rail seat 
area is assumed to be 1.5 times that beneath the center portion of the 
tie to account for the more intense tamping applied to the rail seat 
area. The calculated track moduli for the above cases are as follows: 
for the wooden tie track, k = 63 MN/m/m; for the concrete tie track 
with SYN pads, k = 84 MN/m/m; and for the concrete tie track with 
EV A pads, k = 107 MN/m/m. 

The modulus value of the concrete tie track with the EV A pads 
is nearly 30 percent higher than that with the softer SYN pads, and 
nearly 80 percent higher than that of the wooden tie track. 

To consider variations in the ballast/subgrade stiffness, the track 
modulus k is plotted in Figure 8 as a function of ks. Figure 8 clearly 
illustrates the marked effects on track flexibility of using different 
types of ties and pads. For example, a concrete tie track has a con
siderably stiffer track modulus than a wooden tie track lying on the 
same track foundation. The difference between the track modulus 
values for the three cases examined increases substantially as ks 
increases. This is clearly a result of the interaction between the 
bending rigidity of the tie as a beam and the compliance of the soil 
foundation. For example, with a lower ks value (for example, <20 
MN/m/m), the track modulus values are not significantly different 
since the bending effect of the tie may not be appreciable when a soft 
subgrade is present. With a ks value over 100 MN/m/m, however, 
the concrete tie track with EV A pads has a track modulus more than 
twice the track modulus of the wooden tie track, and is more than 
1.4 times that of the concrete tie track with the softer SYN pads. 

The steepness of the modulus curves illustrate the importance of 
the ballast/subgrade stiffness on the track modulus. The track mod-

FIGURE 7 Discretization of half-tie 
beam for determination of equivalent 
spring stiffness. 
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FIGURE 8 Track modulus versus ballast/ 
subgrade stiffness for different types of track 
support. 

ulus of the concrete tie track increases more rapidly with the bal
last/subgrade stiffness than the wooden tie track, especially when a 
harder pad (e.g., an EVA pad) is used. A practical consequence of 
this observation is that a concrete tie track is expected to experience 
higher increases in wheel/rail impact loads than a wooden tie track 
during the winter, when the ballast/subgrade is frozen. 

Case 2-Two-Parameter Foundation Model 

The principal difficulty involved in using the two-parameter model 
lies in the proper estimate of the two elastic parameters, ks and kg, 
particularly the second parameter. To demonstrate the general rela
tionship between the track modulus and these two parameters, 
Equations 24, 26 and 22 are solved for the same wood and concrete 
ties (with EVA pad only) in Case 1. The results using three ks val
ues are presented in Figure 9. 

For each case, it is observed that the variation in the track modu
lus with parameter kg is insignificant up to a threshold value identi
fied on each curve. Therefore, the track modulus within this range 
can be estimated with acceptable accuracy using the Winkler model 
(kg = 0). Beyond that limit, however, the track modulus decreases 
substantially as kg increases. This trend is more pronounced for the 
wooden tie track than for the concrete tie track. 

The determination of the elastic parameters, ks and kg, has been 
addressed by many authors ( 11, 21, 25) and is not repeated here. For 
the problem given in Case 1, with ks = 64 MN/m/m, and assuming 
kg= 13 MN, the track modulus of the wooden tie track is calculated 
to be k = 57.8 MN/m/m, approximately an 8 percent change from 
the value (63 MN/m/m) obtained using the Winkler model. For the 
concrete tie track, with the same kg value, the Winkler model solu
tion is satisfactory. 

In most situations, the second parameter is usually not large 
enough to introduce any appreciable deviations in the track modu
lus. However, this may not be the case for slab tracks or other types 
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parameter kg on track modulus. 
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of track support where the shear interaction effect of the underlying 
track support medium is significant. 

CONCLUSIONS 

A new method has been presented to estimate the track modulus by 
using available elastic properties of the individual track support com
ponents. These include the stiffness of the rail pad, the compressive 
(or vertical) stiffness and bending rigidity of the tie as a beam on 
either a Winkler foundation or a two-parameter foundation, as well 
as the Young's moduli and Poisson's ratio values of the ballast/sub
grade soil layers. Thus, the seasonal variations of these parameters 
can be taken into consideration when evaluating track performance. 

Numerical examples have demonstrated that the modulus of a 
concrete tie track increases more rapidly with increasing ballast/sub
grade stiffness than that of a wooden tie track. With the same bal
last/subgrade stiffness, a concrete tie track can be twice as stiff as a 
wooden tie track. This results directly from the higher bending rigid
ity provided by the concrete tie, which is not explicitly considered in · 
other methods. Soft rail pads are shown to provide an important 
means of increasing the compliance of concrete tie tracks. 

For most applications, the Winkler theory is sufficient to model 
the tie as a beam on an elastic foundation. The method proposed in 
this paper can be used to establish the relationship between the track 
modulus and parameters of a two-parameter foundation model, and 
determine the threshold value of the second parameter above which 
the two-parameter model will yield a different estimate of the track 
modulus from the Winkler model. 
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