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Statistical Assessment of Vehicular Carbon 
Monoxide Emission Prediction Algorithms 

SIMON WASHINGTON AND RANDALL GUENSLER 

Increased concern about the ability to accurately model and predict 
emissions from motor vehicles prompted this research. The ability of 
the mathematical algorithms contained in version 4 of the CALINE line 
source dispersion model (CALINE4) developed by Caltrans to accu­
rately predict carbon monoxide (CO) emissions from a fleet of motor 
vehicles is assessed. The CALINE4 model contains algorithms that pre­
dict CO emissions from discrete modal events of idle, cruise, accelera­
tion, and deceleration. A BASIC computer program is used to assess 
and compare the performance of the CALINE4 algorithms with those 
incorporateq in version 7F of the EMFAC model (EMFAC7F), which 
is used and developed by the California Air Resources Board. The sta­
tistical assessment includes comparisons of mean prediction bias, 
Theil's U-Statistic, and the linear correlation coefficient. The analyses 
demonstrate that the currently used CALINE4 algorithms perform sim­
ilarly to those contained in EMF AC7F, but when modified to use indi­
vidual emission rates (instead of fleet average emission rates), the 
CALINE4 algorithms generally outperform the EMF AC7F algorithms. 
For short- to medium-term microscale model improvements, it is rec­
ommended that the CALINE4 model be revised to (a) incorporate indi­
vidual emission rates into its emission estimation algorithms, (b) update 
its statistically derived model coefficients, and (c) update the modal 
activity algorithms to cover all modeling scenarios. For long-term mod­
eling improvements, it is recommended that a more robust modal model 
be estimated based on second-by-second data and additional causal 
variables, and true vehicle simulation models be used to estimate vehi­
cle activity. 

The Clean Air Act (CAA) requires metropolitan regions in non­
attainment with National Ambient Air Quality Standards (NAAQS) 
for carbon monoxide (CO) to demonstrate timely reductions in 
regional CO emission inventories and zero increases in CO hot 
spots for project level air quality impact analyses (1). When 
regional and local planners are faced with making transportation 
growth and investment decisions, they are constrained to select only 
those projects that will decrease CO emission inventories and the 
severity and number of CO hot spots. Because these decisions often 
involve millions and sometimes billions of local, state, and federal 
dollars, there is a need for planners to conduct accurate, precise, and 
meaningful analyses. Accurate and precise estimates of CO inven­
tories and CO hot spot impacts require statistically and theoretically 
robust CO estimation algorithms. The model California is using to 
estimate CO emission inventories is EMFAC7F-BURDEN, devel­
oped by the California Air Resources Board (CARB). A project­
level CO impact analysis model commonly used in California is 
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CALINE4, developed by the California Department of Transporta­
tion (Caltrans). 

There are important differences between EMF AC and CALINE. 
First, CALINE is primarily a pollutant dispersion model used to 
estimate the CO impacts of transportation projects-it is intended 
for microscale applications. EMF AC, on the other hand, is an emis­
sion inventory model (when coupled with BURDEN and regional 
motor vehicle activity data) and estimates inventories of CO, nitro­
gen oxides (NOx), and hydrocarbons (HC). In practice, EMF AC and 
CALINE emissions predictions are never directly compared 
because they operate under entirely different frameworks. The com­
mon thread between these two models, and the central focus of this 
paper, is that the EMFAC and CALINE models contain mathemat­
ical algorithms that predict CO emissions given vehicle activity 
estimates. 

This paper examines how well these algorithms predict CO emis­
sions. There are two motivations for this research. First, concern 
over the ability of CARB 's EMFAC7F emissions model to estimate 
accurately modal emission inventories from motor vehicles 
(2,3,4,5,6) has prompted the need to statistically quantify the per­
formance of the mathematical algorithms. In addition, the CO emis­
sion prediction algorithms contained in the CALINE4 model use 
modal correction factors, which correct the baseline emission rate 
employed in EMF AC (or MOBILE) based on estimates of acceler­
ation, deceleration, cruise, and idle activity. This is in contrast to the 
EMF AC model algorithms, which use speed correction factors to 
correct baseline emission rates based on average speed estimates. 

Second, the CO-emission prediction algorithms that are embed­
ded in the CALINE4 model and that are used when the intersection 
option portion of the model is selected have never been statistically 
verified using real emissions data. Because Caltrans uses these 
models to perform project-level CO emission analyses, Caltrans 
staff wanted to verify the CO emission prediction algorithms by 
comparing their predictions to those predicted by the EMF AC 
model--expecting that the CO-emission predictions between 
models would be consistent. 

This paper presents the results of a technical and statistical assess­
ment of the ability of the CALINE4 and EMFAC7F mathematical 
algorithms to adequately predict measured CO emission rates from 
motor vehicles tested on numerous laboratory testing cycles. The 
algorithms are dissected to determine where prediction errors are 
likely to originate and how the algorithms could.be improved. The 
statistical assessment uses measures of performance such as mean 
prediction bias, Theil's U-Statistic, and the linear correlation coeffi­
cient to compare predicted CO emissions with measured CO emis­
sions. These performance tests use the CO emission test results from 
14 standardized testing cycles (2). To aid in the analyses, a BASIC 
computer program was developed to reproduce the internal algo­
rithms for both the CALINE4 and EMFAC7F models (7). 
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DESCRIPTION OF STANDARDIZED TESTING 
CYCLES USED TO ASSESS CALINE4 
ANDEMFAC7F 

Summary statistics on the standardized testing cycles contained in 
the speed correction factor (SCF) data set are shown in Table 1. The 
table shows some of the pertinent characteristics unique to each the 
cycle, such as the distance of the test cycle and the duration of the 
cycle. The table also depicts modal attributes of each cycle. For 
example, almost half of Low Speed Test Cycle #3 is spent with 
vehicles in the idle mode of operation. The age of the vehicles tested 
on these cycles ranged from 1977 model years to 1990 model years. 
About half of the cycles have emission results for 464 vehicle tests, 
while a couple of the tests (High Speed Test Cycles #1 and #2) have 
only 25 vehicle test results. These emissions test results represent 
the current data set used by CARB and the Environmental Protec­
tion Agency (EPA) to develop their emission factor models, 
EMFAC7F and MOBILE5A respectively. The data are currently 
the most comprehensive and quality-controlled U.S. emissions data 
available over a variety of testing cycles. 

The modal activity data shown in the table represent the percent­
age of time the total cycle spent in a particular mode of operation. 
For example, 21 percent of the 505 sec of the Federal Test Proce­
dure (FTP) Bag 1 is spent with the vehicles accelerating. Accelera­
tion (A) conditions are defined as increases in velocity (V) over two 
consecutive seconds of operation and can last any number of sec­
onds. Derivation of deceleration (-A), idle (A ~ 0, V = 0), and 
cruise operations (A = 0, V * 0) are derived in a similar straight­
forward manner. 

The 14 test cycles shown in the table represent unique profiles of 
modal activity. Each cycle was developed to approximate driving 
behavior under different conditions. For example, the New York 
City cycle approximates driving in New York City, which is char­
acterized by a low mean speed (11.4 km/hr) and a lot of modal activ­
ity. The FTP Bags 1 through 3 are important fundamental compo­
nents of the MOBILE and EMFAC emissions models. In the 
EMF AC7F model, for example, FTP Bag 2 test results are used as 
the base emission rate, which are then "speed corrected" to derive 
emissions at average speeds other than 16 mph (the FTP Bag 2 cycle 
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average speed). FTP Bags 1 and 3 contain emission contributions 
from cold and hot starts, respectively, and FTP Bag 2 contains hot 
stabilized emissions only. The importance of these test cycles is 
evident later in the paper. 

THEORETICAL BASIS OF EMISSION 
PREDICTION ALGORITHMS 

CALINE4 Line Source Dispersion Model 

The CALINE4 line source dispersion model has been developed 
over many years by Caltrans. The CALINE4 line model estimates 
CO, NOx, and suspended particulate concentrations. It uses the 
Gaussian diffusion equation to distribute air pollution over and 
along modeled roadways ( 8). EPA has approved the model as a tool 
to assess impacts from CO hot spots. The model is used primarily 
for local project analyses in areas where its use was established 
before July 1993. The model contains algorithms that estimate CO 
emission contributions from modal events of idle, acceleration, 
deceleration, and cruise, and therefore contains a modal emissions 
model component. This modal emission model component is used 
only when the intersection link option is used when running the 
CALINE4 model; otherwise for main line sections, MOBILE- or 
EMFAC-derived average emission rates are used. 

CALINE4 has undergone three revisions since the original ver­
sion in 1972, and it uses the Gaussian dispersion equation to distrib­
ute estimated emissions along a roadway. When the intersection link 
option is used, CO emissions are estimated on a modal basis; that is, 
equations or algorithms are used to predict CO emissions from each 
modal event (idle, cruise, acceleration, and deceleration). Informa­
tion required to derive the modal events are intersection specific and 
require information about acceleration and deceleration times (from 
link endpoint to intersection stop line), minimum and maximum idle 
times, traffic volumes, and the number of vehicles delayed. The pro­
gram uses these inputs to generate the modal activity occurring at an 
intersection (8). When the intersection option is not chosen, CO 
emission predictions are based on the speed-corrected baseline emis­
sion rates provided by EMFAC or MOBILE (8). 

TABLE 1 Summary Statistics on Standardized Testing Cycles Used in Analyses 

MEAN 
TIME DIST. SPEED % % % % 

................... £X~!:-.;'. ... ~.~ ....................... .<~L ........ ~>. ................. <!P.~2... ............... W.~; .......... ~£.~;~: ....... P.~.~;~: ........ 9.~Y.!~~ ... . 
Federal Test Procedure - Bag 1 505 6.65 41.2 19.6 21.0 20.4 39.0 
Federal Test Procedure - Bag 2 866 7.15 25.8 18.6 25.3 19.3 36.8 
Federal Test Procedure -Bag 3 505 6.65 41.2 19.6 21.0 20.4 39.0 
Highway Fuel Economy Test 765 19.00 77.7 0.7 14.1 11.8 73.4 
High Speed Test Cycle# 1 474 10.98 72.5 1.1 13.3 9.9 75.7 
High Speed Test Cycle# 2 480 12.59 82.1 1.0 13.8 10.4 74.8 
High Speed Test Cycle# 3 486 14.44 93.0 1.0 14.2 10.9 73.9 
High Speed Test Cycle# 4 492 16.32 103.7 1.0 15.3 11.4 72.3 
Low Speed Test Cycle #l 624 1.30 6.5 36.5 24.2 25.6 13.7 
Low Speed Test Cycle #2 637 l.18 5.9 38.8 23.4 24.3 13.5 
Low Speed Test Cycle #3 616 0.96 3.9 47.7 16.2 17.9 18.2 
New York City Cycle 598 2.18 11.4 34.9 23.9 24.2 17.0 
SpeedCyclel2 349 2.17 19.4 27.2 26.1 24.1 22.6 
·Speed Cycle 36 996 18.37 57.7 6.5 19.0 16.0 58.5 
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The latest version of the algorithms used in the CALINE4 model 
is similar to those in the Colorado Department of Highways 
(CDOH) model released in 1980. The data used to estimate the 
CDOH models were derived from 37 discrete modes driven by 
1,020 light-duty vehicles ranging from 1957 model year to 1971 
model year (9). A subset of 62 vehicles representing California cars 
for model years 1975 and 1976 was used to estimate the coefficients 
employed in ihe CALINE4 algorithms (8). In the Caltrans and 
CDOH model development efforts, the modal acceleration speed 
(AS) product demonstrated good explanatory power for CO emis­
sions estimation. Consequently, the AS product, defined as the 
product of the average acceleration and average speed for the accel­
eration event, is one of the explanatory variables used in the 
CALINE4 model (8). For a more detailed description of the 
CALINE4 model, see the work by Benson ( 8). 

The CALINE4 modal emission algorithms can be written as 

(1) 

where 

TEik = total CO emission estimate for vehicle i on cycle k in 
grams, 

Eiik = CO emissions from idle events for vehicle i on cycle k in 
grams, 

EAik = CO emissions from acceleration events for vehicle i on 
cycle k in grams, 

ECik = CO emissions from cruise events for vehicle i on cycle k 
in grams, and 

EDik = CO emissions from deceleration events for vehicle .i on 
cycle kin grams. 

The emission contributions from the discrete modal events can 
be defined as 

(2) 

where IR is measured idle emission rate and ti is time spent in the 
idle operating mode. 

EA;k = [(FTPB2[gtmini) *(Cl)* EXP (C2 *AS)]* ta[sec] 
* 1 [min/60[sec] 

where 

(3) 

FTPB2 =measured emission rate on FTP Bag 2, 
Coefficients Cl = 0.75 and C2 = 0.0454 for acceleration condi­

tion 1, 
Coefficients Cl = 0.027 and C2 = 0.098 for acceleration condi-

tion 2, 
Acceleration condition 1 is for vehicles starting at rest and accel­
erating up to 45 mph (72.42 km/hr), 
Acceleration condition 2 is for vehicles starting at 15 mph (24.14 
km/hr) or greater and accelerating up to 60 mph (96.56 km/hr), 
AS = acceleration speed product based on average speed and 

average acceleration rate of the accel mode in mi2/hr2/sec, 
and 

t0 = time spent in the acceleration mode. 

ECk = (FTPB2rg1mi0 i) * [(0.494 + .0.000227 * Srkmlhr1)
2

] 

* Ctc [sec] * 1 [min/60[seci) ( 4) 

where 

FTPB2 =measured emission rate on FTP Bag 2, 
tc = time spent in the cruise event, and 
S = average speed of the vehicle in the modal event 

in mph. 

ED;k = (/R[g/sec]) * (td(secJ) * 1.5 
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(5) 

where IR is measured idle emission rate and td is time spent in the 
deceleration operating mode. 

It is critical to note that the FTP Bag 2 emission rate and the IDLE 
emission rate used in the CALINE4 model program are estimated 
average values for the on-road fleet of motor vehicles. The 
CALINE4 algorithms do not contain emission factors that differen­
tiate between technology groups or model year. The result is that the 
CALINE4 modal emission prediction algorithms predict equivalent 
modal contributions of emissions for all modeled vehicles, the aver­
age emission rate over a given driving segment. In other words, a 
1980 Cadillac Seville is predicted to emit the same as a 1993 Geo 
Metro, the Seville's emissions being underpredicted and the 
Metro's emissions being overpredicted using the fleet mean value. 

EMF A C7F-California Regional Emissions Model 

The EMFAC7F emissions model developed by CARB operates dif­
ferently from CALINE4. Instead of taking a modal approach, 
EMFAC7F uses average operating speed and fuel delivery technol­
ogy and model year as explanatory variables in the model. For each 
of four technology group classifications based on fuel delivery tech­
nology and model year, EMFAC7F predicts a modal emission ratio, 
based on the ratio of emissions on the FTP to emissions at other 
cycle average speeds. The resultant ratios are called SCFs and are 
used to estimate emissions at speeds other than 16 mph (at 16 mph 
measured emissions are predicted). For a complete description of 
the operating characteristics and analyses of the recent EMF AC7F 
model, see the work by Guensler (2). 

The regression form of the EMF AC7F model for predicting CO 
emissions can be written as 

TEmn = {BAG2n *[EXP (Bl,,* SADJl) + (B2n * SADJ2) 
+ (B3n * SADJ3) + (B4n * SADJ4)]} +error 

where 

(6) 

TEmn = total CO emissions for vehicle m from technol­
ogy group n, 

BAG20 =average measured Bag 2 result for technology 
group n vehicles, 

SADJl = (16 - average prediction speed), 
SADJ2 = (16 - average prediction speed)2, 
SADJ3 = (16 - average prediction speed)3, 

SADJ4 = (16 - average prediction speed)4
, 

Bln•· ... ,B4,, = least squares estimated coefficients, and 
error = the disturbance term. 

As noted previously, four models are estimated based on CARB­
defined technology groups. The technology groups are shown in 
Table 2. 

Also, somewhat similar to CALINE4, EMFAC7F derives an 
average emission factor, in grams per mile, for an entire fleet of 
on-road vehicles. This average emission factor will result in over-
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TABLE 2 Technology Groups Used in EMFAC7F SCF Model 

CARB Technology Group 

1 
2 
3 
4 

Model Year 

1985 or earlier 
1985 or earlier 
1986 or later 
1986 or later 

prediction of emissions for "clean" vehicles and under-prediction of 
emissions for "dirty" vehicles. 

CARB' s model has been criticized for statistical and theoretical 
reasons. Among the statistical criticisms are non-normal error dis­
tributions, high multicollinearity among the explanatory variables, 
biased parameter estimates, and wide confidence .intervals around 
the SCF curves (2). The theoretical criticisms are primarily con­
cerned with the exclusion of causal explanatory variables, a non"' 
representative sample fleet of vehicles, and nonrepresentativeness 
of driving cycles as compared with real driving behavior. 

MODEL PERFORMANCE EVALUATION 

This research compares the ability ofCALINE4 and EMFAC7F co­
emission prediction algorithms to adequately predict measured 
emissions from a standardized and large data ·set. Using the SCF 
data base as the validation data set, the ability of both models to 
accurately predict measured emissions obtained from vehicles 
under numerous testing cycles is assessed. EMFAC7F has a slight 
advantage over CALINE4 because its emission algorithms were 
estimated using the SCF data set, while the CALINE4 model algo­
rithms were estimated using a subset of the CDOH data set dis­
cussed earlier. 

In practice, the CALINE4 and EMF AC7F model algorithms 
operate using fleet average FTP Bag 2 and idle rates (the CALINE4 
user inputs values derived from EMFAC7F or MOBILE). In other 
words, the emission input data are aggregate data for a fleet of vehi­
cles. For the analyses presented here, aggregate Bag 2 and idle rates 
were obtained by computing the average values for these variables 
for all vehicles contained in the SCF data set. 

Using individual vehicle Bag 2 and idle rates, on the other hand, 
represents a significant modification to the way in which the model 
algorithms are used. Using individual vehicle test results, or disag­
gregate data, the model algorithms are allowed to capture the effect 
of alg.orithm prediction differences between vehicles, a degree of 
prediction flexibility not possible when aggregate data are used. 
Disaggregate analyses are performed here to investigate algorithm 
improvement possibilities. 

Comparison of Mean Predicted Emissions 

A desirable emission prediction algorithm will not be biased in its 
prediction of CO emissions. One indicator of bias in a model is the 
difference between true average emissions and estimated average 
emissions. Ideally, the mean value of the predicted emissions 
should be the same as the mean value of actual emissions. This is 
especially true when considering the current application of 
CALINE4 and EMFAC7F, which operate using average fleet emis­
sion rates. A great discrepancy in means over a large sample sug­
gests that the model is consistently over- or underpredicting the 
actual emissions and that model predictions are biased. 

Fuel Delivery Technology 

Carbureted and Throttle Body Injection 
Port Fuel Injection 

Carbureted and Throttle Body Injection 
Port Fuel Injection 

To quantify biases for the CALINE4 and EMF AC model algo­
rithms, estimated emissions were summed over a test cycle and then 
averaged according to the number of vehicles in the test cycle. As 
an example, the predicted emission estimates for vehicles tested on 
High Speed Cycle #2 are summed and then_divided by 25 vehicles 
to compute the average emission estimate. The average emission 
estimate is then compared with the average observed emission 
result for the vehicles tested on that cycle to determine the mean 
bias. The formula for mean bias is given by 

where 

MPB1 = mean prediction bias on all vehicles on cycle j, 

2:; = summation over i vehicles, 

(7) 

Yu = predicted emissions for vehicle ion cycle j in grams, 
'11';1 = observed emissions for vehicle i on cycle j in grams, and 

n1 = number of vehicles tested on cycle j. 

The mean prediction bias for the CALINE4 and EMF AC emis­
sion predictian algorithms is shown in Table 3. The table shows 
both the aggregate and the disaggregate model assessments. Disag­
gregate refers to the use of individual vehicle Bag 2 emission rates 
in model emission prediction algorithms, and aggregate refers to the 
use of average fleet Bag 2 emission rates, which is consistent with 
the manner in which the model algorithms are used in practice. 

Note that EMFAC7F CO-emission prediction algorithms gener­
ally outperform the CALINE4 algorithms when mean prediction 
bias comparisons are studied. This suggests that when average fleet 
emission rates (aggregate) are used, EMFAC7F algorithms in gen­
eral perform better than CALINE4 algorithms. (Recall, however, 
that model results are never compared in practice because of their 

·distinctly different purposes.) The difference is not drastic, how­
ever, and the CALINE4 model algorithms have less prediction bias 
on several cycles. Furthermore, EMF AC7F CO-emission prediction 
algorithms. have smaller biases for disaggregate model analyses. 
These findings are not surprising, because the coefficients embed­
ded in the CALINE4 model were estimated using an older fleet of 
vehicles, whereas EMF AC7F coefficients were estimated using the 
SCF data base vehicle test results. Because the comparison provides 
an unfair advantage to the EMF AC7F model; whether the modal 
components embedded in the CALINE4 model are performing well 
cannot be adequately assessed. It can be speculated, however, that 
given the comparisons depicted in the table, if the coefficients in the 
CALINE4 emission model were updated using the SCF data base 
vehicles, CALINE4 would likely outperform EMFAC7F. 

CALINE4 and EMF AC7F model algorithms generally underpre­
dict CO on the low-speed test cycles. CALINE4 underpredicts on 
the two highest high-speed cycles and overpredicts on the two low­
est high-speed cycles. EMF AC7F tends to overpredict on all high-
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TABLE 3 Comparison of Mean Model Prediction Bias (in grams) 

Mean MPB MPB MPB MPB 
Aggregate Dis-aggregate Dis-aggregate Aggregate Aggregate 

............................. £Y.£~~ ....................................... 9..Q: ........................ 9..~~~ .............. !;~~~ZE .................. 9.~~~ ......... ~~9.F. ... . 
Highway Fuel Economy Test 51.40 -6.2 -3.3 -6.2 _-2.9 
High Speed Test Cycle# 1 4.24 2.4 3.9 2.4 4.0 
High Speed Test Cycle# 2 4.55 3.9 5.4 4.0 5.4 
High Speed Test Cycle# 3 11.60 -2.4 2.2 -2.3 2.3 
High Speed Test Cycle# 4 38.26 -25.3 12.1 -25.3 13.7 
Low Speed Test Cycle #1 24.99 -9.5 -3.2 -9.9 -3.0 
Low Speed Test Cycle #2 24.47 -9.8 -2.5 -10.3 -2.4 
Low Speed Test Cycle #3 22.34 -8.6 -3.3 -8.8 -3.2 
New York City Cycle 29.20 -0.9 0.3 -2.0 0.8 
Speed Correction Factor 12 16.65 0.0 -0.3 0.0 -0.2 
S~ Correction Factor 36 63.68 2.3 4.6 3.0 2.4 

Bold = Smallest absolute mean bias in emission estimate in Dis-aggregate or Aggregate comparison 
8 Mean aggregate CO determined by computing the arithmetic mean of Bag 2 test results of vehicles in SCF data base 

speed cycles. It is important to note that model algorithms are not 
performing consistently across testing cycles with varying charac­
teristics. This suggests that there still may be cycle-related variables 
not included in model algorithms that may help to explain these 
emission variations. 

Theil's U-Statistic Comparisons 

A proposed measure of model performance that is not subject to the 
scaling problems of the previous measure is Theil's CT-Statistic 
(10,J J).Theil's CT-Statistic is related to R-Square but is not bounded 
by 0 and 1. Large numbers of U reflect poor fit to the data, and small 
values of U indicate good fit. The CT-Statistic formula is given by 

where 

U1 = Theil's CT-Statistic for all vehicles on cycle}, 

.L; = summation over i vehicles on cycle}, 
YiJ = predicted emissions for vehicle i on cycle j in grams, 

(8) 

'I' iJ = observed emissions for vehicle i on cycle j in grams, and 
n1 = number of vehicles tested on cycle j. 

Theil's CT-Statistic results are shown in Table 4. The table shows 
that, for disaggregate comparisons, Theil' s U is consistently smaller 
for CALINE4 than for EMFAC7F. Under aggregate model appli­
cations, however, the emission prediction algorithms in the 
EMFAC7F model are superior. These results suggest that the 
CALINE4 model works well when the values input for IDLE and 
FTP Bag 2 are allowed to vary simultaneously with vehicles but, 
when constrained to fleet average values, it is no better than 
EMF AC7F. In fact, because algorithm coefficients for CALINE4 
were derived from a much older fleet, the EMFAC7F model per­
forms better under contemporary model applications. 

Linear Correlation Coefficient Comparisons 

As a final useful statistical comparison of the two models, the lin­
ear correlation coefficient is used (12,13). The linear correlation 
coefficient reflects the degree of probability that a linear relation-

ship exists between observed and predicted emissions. If a model 
can predict observed emissions well, then the linear correlation is 
expected to be high, whereas if a model predicts poorly, the linear 
correlation coefficient will be low. The formula for the correlation 
coefficient is given by 

r1 = ~;['l'u - lj(ave)][Yu - lj(ave)] I {~;['l'u - lj(ave)]2 

X ~;[Yu - lj(ave)]2}0
·
5 

where 

r1 = correlation coefficient between observed and pre­
dicted emissions for i vehicles on cycle j, 

~; = summation over i vehicles on cycle j, 

(9) 

'l'iJ = observed emissions for vehicle i on cycle j in grams, 
Yj(ave) =average observed emissions for all vehicles on cycle} 

in grams, and 
Yu = predicted emissions for vehicle i on cycle j in grams. 

The correlation coefficients for the two emission prediction algo­
rithms are compared in Table 5. The table shows that CALINE4 
model algorithms generally outperform EMFAC model algorithms 
for disaggregate comparisons. Comparisons are not valid under 
aggregate conditions because the CALINE4 model predicts a con­
stant value; thus the computation of the correlation coefficient 
yields 0. That the correlation coefficient varies over cycles with 
characteristically different modal activity suggests that a large-pro­
portion of modal activity is not explained by CALINE4's modal 
algorithms. This finding is magnified when it is considered that a 
great deal of observed modal activity is not represented in any of the 
test cycles contained in the SCF data set. For example, the greatest 
acceleration rate contained in the SCF data set is 3 .3 mph/sec, 
whereas accelerations as high as 8.0 mph/sec have been observed in 
real world driving. 

DISCUSSION OF RESULTS 

This research effort has identified modeling deficiencies inherent in 
the algorithms contained in the CALINE4 and EMF AC7F emis­
sions models. The CALINE4 model is used primarily for project­
level analyses and is intended for microscale emission impact 
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TABLE 4 Comparison of Theil's U-Statistic (in grams) 

Cycle Name 
Highway Fuel Economy Test 
High Speed Test Cycle # 1 
High Speed Test Cycle # 2 
High Speed Test Cycle # 3 
High Speed Test Cycle # 4 
Low Speed Test Cycle # 1 
Low Speed Test Cycle# 2 
Low Speed Test Cycle # 3 
New York City Cycle 
Speed Correction Factor 12 
Speed Correction Factor 36 

Dis-aggregate 
CALINE4 
(Grams) 

0.605 
1.107 
1.524 
0.799 
0.921 
0.689 
0.655 
0.702 
0.389 
0.413 
0.533 

Bold= Smallest U-Statistic in emission estimate 

assessment. It is often used to determine worst-case CO impact 
assessments of transportation projects. The CALINE4 model, fur­
thermore, is not used for emission inventory purposes. 

EMFAC7F, on the other hand, is primarily used for performing 
regional analyses. Used with transportation network models (UTPS 
type models), EMF AC7F estimates CO emission rates applied to 
activity in the air basin. Although both models are used to satisfy 
air quality modeling requirements stipulated in the Clean Air Act, 
their purposes are different. This distinction is important when con­
sidering recommendations for improving the models and technical 
improvements. 

Several important deficiencies in the current modeling method­
ologies were illustrated, including the impact of errors in predicting 
mean emission rates on regional inventories, the use of fleet aver­
ages instead of individual vehicle emission rates, and the lack of 
causal variables in model formulations. 

TABLES Comparison of Correlation Coefficients (r) 

r 

Dis-aggregate 
EMFAC7F 

(Grams) 

Aggregate 
CALINE4 
(Grams) 

Aggregate 
EMFAC7F 

(Grams) 

r 

0.537 
1.524 
1.930 
0.935 
1.054 
1.019 
0.964 
1.035 
0.549 
0.424 
0.554 

0.967 
0.760 
0.922 
0.752 
0.940 
0.930 
0.943 
0.942 
0.919 
0.932 
0.952 

0.966 
0.968 
1.125 
0.720 
o.936 
0.911 
0.923 
0.922 
0.917. 
0.933 
0.950 

Statistical comparisons between the two models' algorithms 
included comparisons of mean prediction bias, Theil's U-Statistic, 
and the linear correlation coefficients between predicted and 
observed emissions. The assessment looked at both the aggregate 
model algorithms using average fleet emission rates and a disaggre­
gate version of the algorithms using individual vehicle emission rates. 

When making across-the-board comparisons between aggregate 
EMF AC7F and CALINE4 algorithms, it can be seen that 
EMF AC7F performs slightly better on almost all performance mea­
sures. This is not surprising, however, because the data set used to 
compare algorithms was also used to estimate the EMF AC7F algo­
rithms, and the CALINE4 algorithn:is were estimated using a much 
older and smaller data set. Considering emissions algorithms using 
disaggregate data, however, CALINE4 algorithms predict emission 
rates better than do EMFAC7F algorithms. This difference is attrib­
utable to the inclusion of the idle variable in the CALINE4 model, 

r r 
Dis-aggregate Dis-aggregate Aggregate Aggregate 

CALINE4 EMFAC7F CALINE4 EMFAC7F 

Cycle Name (Grams) (Grams) (Grams) a (Grams) b 

Highway Fuel Economy Test 0.792 0.835 0 0.006 

High Speed Test Cycle # l 0.843 0.836 0 0.126 
High Speed Test Cycle # 2 0.786 0.774 0 0.028 
High Speed Test Cycle # 3 0.310 0.361 0 0.328 
High Speed Test Cycle # 4 0.201 0.266 0 0.149 

Low Speed Test Cycle # l 0.702 0.635 0 0.128 

Low Speed Test Cycle # 2 0.734 0.634 0 0.141 
Low Speed Test Cycle # 3 0.684 0.515 0 0.161 

New York City Cycle 0.911 0.878 0 0.092 

Speed Correction Factor 12 0.900 0.913 0 0.102 

se Correction Factor 36 0.832 0.828 0 0.068 

Bold = Greatest correlation coefficient between observed and predicted emissions 
a The correlation coefficient for the CALINE4 model is 0 since the prediction uses the constant FTP Bag2 fleet average rate, th~ 
constant fleet average idle rate, and coefficients that are detennined by cycle modal characteristics. The result is no variation 
in emissions predictions within a cycle (see Washington, Guensler, and Sperling, 1994). 
b Tue correlation coefficient for EMF AC7F is non-zero since different within-cycle predictions result from the differences 
brought about by different. vehicle technology groupings and their associated unique model coefficients. 
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which varies independently of the FTP Bag 2 emission rate and 
therefore captures more of the variation in emissions performance 
between vehicles. 

The use of individual vehicle emission test results in the model 
algorithms brings about drastic improvements in overall perfor­
mance of both models' algorithms. This improvement can be seen 
in Tables 3, 4, and 5, where theoretical modifications using disag­
gregate data result in greatly improved statistical performance over 
models· using aggregate data. This improvement is attributable to 
the algorithms' ability to predict the wide fluctuation in emissions 
between clean and dirty vehicles, largely reflected in their FTP Bag 
2 emission test results. 

CALINE4 emission prediction algorithm performance is perhaps 
more impressive when it is noted the EMF AC7F model algorithms 
were estimated using the SCF data base, but CALINE4' s algorithms 
were estimated using a much older and smaller data set. Both sta­
tistical and practical factors were taken into account, and the 
improved CALINE4 algorithms represent a more powerful 
approach for estimating CO emissions for individual vehicles, pro­
vided that the algorithms are based on comprehensive testing of a 
representative sample fleet. Note, however, that the CALINE4 
modal model still does not capture the effect of different modal 
activity reflected in the different testing cycles, as evidenced by the 
vast differences in correlation coefficients across cycles. This sug­
gests the transportation air quality modeling community still needs 
an improved modal model. 

CONCLUSIONS AND RECOMMENDATIONS 

To put the research findings presented in this paper to effective and 
productive use, the transportation community must consider the 
current regulatory framework. The transportation community must 
also consider the current direction that complementary modeling 
efforts are taking and how simultaneous modifications will benefit 
future air quality analyses. Finally, the findings must be considered 
with respect to both short- and. long-term solutions to current air 
quality analyses problems. 

Research/Modeling Arena 

In the short to medium term, the next CALINE4 model revision 
effort should include an upgrade to its modal emission algorithms. 
Among its improvements should be the addition of individual vehi­
cle Bag 2 and idle emission rates and the recalculation of the modal 
model co~fficients. 

Incorporating individual vehicle Bag 2 and idle rates into model 
algorithms would require several steps. As an example of how this 
could be done, consider the following. A sample of tested vehicles 
(e.g., an expanded SCF data set) would need to be broken down into 
subsamples by emitter class. For example, four or five subsamples 
could separate vehicles by emission results on testing cycles, with 
classes of ultra-high emitters, high-emitters, normal emitters, low 
emitters, and ultra-low emitters. These subsamples of. vehicles 
would constitute the sample bins from which local vehicle fleets 
could be approximated. Support files would be included with the 
CALINE4 software containing local or regional fleet characteristics 
necessary for subroutine calls from the main program. The subrou­
tine would randomly sample vehicles from the five bins of emitters 
in the correct proportion to represent the local or regional fleet. 
These support files constituting the five bins would contain indi-

67 

vidual vehicle Bag 2 and idle test data (and additional variables 
needed in the model). 

To obtain local or regional fleet characteristics, local or state 
DMV and BAR records could be used to determine critical deter­
minants of the vehicle fleet composition. The end user could then 
select default fleet characteristics (a dirty vehicle fleet for worst­
case analyses) or enter local or regional fleet characteristics for 
more accurate analyses. This formulation would require careful 
classification of emitter subsamples listed in the previous step. This 
improvement to CALINE would avoid, to the extent possible, mis­
computation of average fleet FTP Bag 2. rates and subsequent 
emission impacts. 

The coefficients contained in the CALINE4 model's algorithms 
were estimated using an older and smaller data set. These coeffi­
cients could be verified against a new data set (i.e., the SCF data set) 
to see whether they still characterize emissions behavior of these 
vehicles. Using mathematical search procedures, the coefficients 
could be simultaneously adjusted to minimize the mean squared pre­
diction error and therefore optimize modal algorithms to the current 
vehicle fleet. Of course, there still remciin questions of how repre­
sentative the SCF data base is of the current vehicle fleet and whether 
the functional form of the CALINE4 model is the best available 
modal model formulation. There is reason to believe that improving 
the coefficients could improve the robustness of CALINE4's 
explanatory power, providing better estimates of CO emissions from 
.modal events. With updated model coefficients, the modal model 
could be reassessed to determine whether it captures the emissions 
variations associated with the range of modal activities. 

The CALINE4 modal model algorithms should be used during all 
assessments, not just those incorporated with intersections (assum­
ing coefficients have been updated and prediction improvements 
follow). Because average emission outputs from current EMFAC7F 
and MOBILE models are questionable, their use will increase the 
uncertainty ~ssociated with cruise-related emissions on roadway 
segments. The cruise emission factor incorporated in the CALINE4 
model is likely to yield more accurat~ results than the method now 
used, although this should be verified. 

In the long term, CALINE's vehicle activity algorithm's should 
be upgraded to use traffic simulation algorithms for all vehicle 
activity estimation (not just intersections). In addition, a new, more 
robust modal model derived from second-by-sec.ond emissions data 
should be used. These upgrades, in addition to the dispersion com­
ponent of CALiNE4, would allow a more accurate assessment of 
project-level CO emission impacts under worst-case conditions. 

Any new model development effort should explore the impact 
and role of high-emitters in the vehicle fleet. Research of this nature 
would involve random testing from vehicle fleets in various regions. 
Factors such as tampering rates, average condition of vehicles, aver..: 
age age of vehicles, accrued mileage, and types of vehicles will 
likely play a large role in the results. These influential factors are 
likely to help characterize a local or regional fleet of vehicles and 
help determine the discrepancies between a regional fleet and the 
fleet used to estimate models now in use. Research currently under 
way is assessing the differences between the true vehicle fleet and 
the fleet used to estimate regional emissions models (Smith et al., 
unpublished draft research report, Institute of Transportation Stud­
ies, University of California at Davis). 

Finally, new model development efforts should include outputs 
that provide uncertainty bounds associated with predictions. 
Although providing more information to decision makers will make 
their task more difficult, it will aid in more effective policy deci-
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sions. It will also provide policy makers the information with which 
to devise more sensitive and reasonable policies, which explicitly 
account for technical uncertainty. Monte Carlo techniques could be 
used in this sort of model development effort to estimate confidence 
bounds around predicted values (14); or repeated random sampling 
and model runs to develop long-run average impacts with a measure 
of confidence could also be used. In either case, the technical uncer­
tainty currently associated with emission impact assessment should 
be quantified and provided as part of standard assessment outputs. 

Policy/Regulatory Arena 

For there to be an incentive to develop more robust project-level 
impact models, regulators must demonstrate that they are willing to 
commit resources to develop improved models, commit resources 
to run models, maintain in-ho~se expertise, and approve model 
improvement efforts for future conformity analyses. Although there 
is motivation for new model development from a theoretical and 
academic standpoint, new models are of no use to practitioners if 
they are not allowed to use them. Regulatory agencies such as 
CARB and EPA should be urged to remain flexible, yet rigorous, 
when considering new models for the extremely timely and difficult 
air· quality analyses now predominant in nonattainment regions 
throughout the United States. 

In addition, many of the benefits and methodologies developed 
for improved project-level modeling are lik~ly to benefit regional 
modeling improvements as well. Regional models are perhaps in 
more critical need of improved emission estimation procedures than 
are project-level models, and therefore a model development effort 
should keep both modeling arenas in mind. · 

As a final and critical note, the link between evolving transporta'." 
tion activity models (microsimulation and regional) and evolving 
air quality models (local impact and regional) must be considered. 
Currently, the outputs from transportation activity models are seri­
ously deficient for inputs into air quality i:nodels and have con­
tributed to emission estimation uncertainties (2, 15). The link 
between these two models is absolutely critical to the accurate 
assessment of emission inventories. If an overall improvement to 
local and regional air quality models is not accompanied by paral­
lel improvements in transportation.activity and simulation models, 
then few accuracy and precision gains in air quality analyses will be 
realized. The evolution of these models is likely to take an interest­
ing and exciting path. 
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