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Rutting Analysis From a 
Different Perspective 

AMYL. SIMPSON, JEROME F. DALEIDEN, AND WILLIAM 0. HADLEY 

Rutting is a common distress in pavements with asphalt concrete sur­
faces. For many agencies the magnitude of rutting plays a .significant 
role in their rehabilitation decision process. As a result many different 
approaches have been taken to address the prediction of rutting and its 
causes. As more agencies shift to the collection of transverse profiles in­
stead of rutting to provide greater repeatability of the measurements and 
to avoid debates regarding the appropriate straightedge length, addi­
tional analytical possibilities are being identified. One such analytical 
opportunity explored in the present investigation suggests that the area 
under the transverse profile can be used to hypothesize the origin of the 
rutting from within the pavement smicture. This in tum allows for 
greater prediction capabilities when the cause of the distress can be fur­
ther isolated in this fashion. With the benefit of the numerous transverse 
profiles collected as part of Long-Term Pavement Performance Pro­
gram monitoring, investigations have been conducted to sort the test 
sections into data subsets based on the areas described above. Neural 
networks were developed to model these data subsets. The models are 
in tum compared with other previously developed models to evaluate 
the impact of sorting by areal magnitude on the prediction of rutting. 

Rutting in pavements with asphalt concrete surfaces is commonly 
used as an indicator of needed rehabilitation. As such many studies 
have been conducted to analyze the causes of rutting and to predict 
its development. Many of these studies, however, have been im­
peded by one or more of the following deficiencies associated with 
this important perfomiance indicator. First, and probably foremost, 
rut depth~ in and of themselves provide very little, if any, indication 
of the origin of the rutting. That is, it is difficult to establish which 
layer within the pavement structure contributed the most to the de­
formations that are measured at the pavement surface. The second 
drawback of this particular performance indicator revolves around 
the lack of standardization in the collection of rut depth data. The 
common use of a 4-ft straightedge in the past (as at the AASHO 
Road Test) to obtain these measurements and the resulting limita­
tions with repeatability have made it relatively unreliable for satis­
factory pavement performance modeling needs. In addition, wider 
wheel bases are being used in trucks. These two events introduced 
large amounts of variation in 4-ft rut depth measurements. 

With continuing advances in pavement monitoring technology, 
such deficiencies no longer need to be tolerated. Most automated 
units that collect pavement data are now capable of recording trans­
verse profile measurements that minimize or eliminate most (if not 
all) of the past limitations associated with the collection of rut depth 
data. Automated collection of transverse profile data has now be­
come one of the more standardized and repeatable operations for the 
collection of pavement data. Standards under development by 
ASTM will improve the level of data quality achievable. 
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The point yet to be investigated fully is the insight into the orig­
ination of rutting within a pavement structure than can be provided 
by a transverse profile. Boussinesq (J) and Burmister Theory (2-4) 
indicate that an analyst should be able to establish weaknesses 
within a given pavement structure on the basis of the shape and di­
mensions of deformations at the pavement surface. Although these 
theories apply to elastic deformation, it is the continued application 
of the load that causes both the elastic deformation and the plastic 
deformation. It is assumed that the plastic deformation follows a 
trend similar to that of the elastic deformation. Although several 
studies have been conducted in an attempt to pursue this theory fur­
ther, sufficient data were never available to thoroughly investigate 
and support studies of this type until the recent efforts of the Long­
Term Pavement Performance (L TPP) Program. 

With the data available from LTPP test sections this paper eval­
uates the use of transverse profile data for distinguishing rutting 
modes to facilitate performance predictions and model develop­
ment. In addition, the capabilities of neural networks in data analy­
sis are demonstrated. 

Neural networks are a form of artificial intelligence that has been 
quite useftil in many areas of robotics and other applications and 
that has come to the attention of other engineering disciplines in re­
cent years. They provide a very confident means of identifying pat­
terns. In the past they have often been used for handwriting recog­
nition, hand-eye coordination in robots, and many other areas of 
robotics technology. More recently, these networks are being used 
by financial analysts to predict the stock market or the winner of 
Saturday's ball game. 

ANALYSIS 

The first step in conducting these analyses was to assemble and 
process all of the transverse profiles. For the LTPP Program trans­
verse profiles were reduced from projections of a hairline at an 
angle onto the pavement and were photographed from above. The 
presence of rutting is recorded on the film as departures from a 
straight line, and the magnitudes of the ruts are directly proportional 
to the magnitudes of the departures from a straight line. A PASCO 
Road Recon Unit projects the hairline onto the pavement surface 
and records the projections on film at 15.24-m (50-ft) intervals. 
These film projections were later processed to identify the distance 
between the string line projection and the string line itself. Mea­
surements were taken every 0.30 m (12 in.) across the monitored 
lane [typically 3.7 m (12 ft) in width]. This series of measurements 
then makes up the transverse profile. 

As noted earlier the shape of the transverse profile is theoretically 
indicative of where the rutting originated within the pavement struc­
ture. As noted in Figure 1 the transverse profiles generally fit into 
one of four categories representing (a) subgrade rutting, (b) base 
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a. SUBGRADE 

c. SURFACE 

d.HEAVE 

FIGURE 1 Rutting properties. 

rutting, (c) surface rutting, or (d) heave (from increases in soil 
volume because of environmental conditions). 

To identify into which of these four categories the various trans­
verse profiles fit, the algebraic area between the transverse profile 
and the straight line connecting its end points was calculated (Fig­
ure 1). The diagrams in Figure 1 indicate that sections from within 
the deep rutting category will be entirely negative and sections from 
within the heave category will be entirely positive. Sorting out the 
distinctions between base rutting and surface rutting are somewhat 
more involved. In this process it is generally perceived that the mar­
ginally positive areas would be considered surface rutting and that 
the marginally negative areas would be perceived as base rutting. 

The area or distortion term was used to determine where in the 
pavement structure the rutting occurred. If the total distortion was 
less than -4500 mm2 and the ratio of the positive area to the nega­
tive area was less than 0.4, the rutting was hypothesized to have oc­
curred in the subgrade. If the total distortion was between -4500 
and 700 mm2 and the ratio of the positive area to the negative area 
was between 0.4 and 1.25, the rutting was hypothesized to have oc­
curred in the base layers. If the total distortion was between 700 and 

TABLE 1 Rut Origin Sorting Criteria 

II Type Total Distortion 

Subgrade < -4500 

Base -4500 < x < 700 

Surface 700 < x < 5000 

Heave > 5000 
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5000 mm2 and the ratio of the positive area to the negative area was 
between 1.25 and 3.0, the rutting was hypothesized to be primarily 
due to the lateral migration of the asphalt concrete surface layer. If 
the total distortion was greater than 5000 mm2 and the ratio of the 
positive area to the negative area was greater than 3.0, the rutting 
was hypothesized to be primarily due to frost heave. Table 1 demon­
strates the criteria used and the actual number of sections in each 
group. The dual classification method did not agree for six sections. 
These sections were left out of the analysis. Cross-profile data were 
not available for 18 test sections. 

The data used in this effort were the same as those used in the 
early analysis of the LTPP data base (5) for analysis of hot-mix as­
phalt concrete (HMAC) pavements with granular bases. This data 
set includes 152 sections from the LTPP General Pavement Studies 
1 and 2 experiments. Two datum points in time were available for 
each section: the first was the 0 boundary condition (0 rutting after 
0 traffic) and the second was the first measured cross-profile. The 
cross-profile measurements were analyzed by using RUT (6), a pro­
gram created by the Texas Research and Development Foundation. 
This program determines the rut depth by using a 4-ft straightedge, 
a 6-ft straightedge, and the areal distortion of the roadway from the 
string line described previously. After the data set was sorted by rut­
ting origin (as described above) modeling was initiated by using the 
6-ft straightedge values as the dependent variable. Because the 4-ft 
straightedge has. limitations in repeatability, only the 6-ft straight­
edge was used for the purposes of modeling. Each of the four data 
sets described was modeled by using neural network technology. 

NEURAL NETWORKS 

The data were then analyzed by using neural networks. Neural net­
works are a computational form that loosely models the human 
brain. The following definition provides some explanation: 

Neural networks are rough models of the mental processes their name 
implies. Because of their massive parallelism, they can process infor­
mation and carry out solutions almost simultaneously. They learn by 
being shown examples and the expected results. Or, they form their 
own associations without being prompted and rewarded. They are 
good at pattern-matching types of problems. Because the kinds of 
things neural nets can do address many of today's problems, a new 
industry is emerging. This is happening on several continents and 
involves a wide variety of disciplines (7). 

They learn by example and are very good at recognizing patterns 
and modeling data that had been quite difficult to emulate by stan-
dard regression techniques. . 

Each neural network was made up of at least three layers. Figure 
2 illustrates a pictorial representation of neural networks. Each layer 
~s made up of one or more nodes. These nodes, or processing ele-

Ratio of Distortion Number of Sections 
(Positive/Negative) 

< 0.4 61 

0.4 < x < 1.25 24 

1.25 < x < 3.0 15 

> 3.0 28 
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FIGURE 2 Pictorial representation of neural networks. 

ments, take in information and sum it, and if it passes a certain 
threshold value it will be passed to the next layer. The first layer of 
the network is the input layer. Each node of this layer is an input 
value. These values are automatically passed to each of the nodes 
in the next layer via a weighted connection. This second layer is a 
hidden layer, which is analogous to the interactions of independent 
variables in conventional statistical analyses. It is hidden because 
one normally does not see what comes directly out of this layer. It 
is possible to have more than one hidden layer, but usually, only the 
most complicated of networks have more than one hidden layer. 
The values in the nodes of the hidden layer are passed to the output 
layer, or the third layer, on the basis of whether or not those values 
meet some acceptance criterion. Again, the connections between 
the hidden layer and the output layer are weighted. The output layer 
is, for example, the result that one would see from an equation. The 
network learns in an iterative process whereby it makes changes to 
the weights of the conn·ections on the basis of how close the value 
is to the required output. 

To apply neural network analyses fr is necessary to obtain soft­
ware that is called a shell. When data are provided to the shell for 
as many observations as possible, the shell creates a neural network 
by using the hidden layers described earlier to model interactions 
between the variables. The analyst has some control over the result 
through selection of independent variables to be included and their 
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format [e.g., equivalent single axle loads (ESALs) or log ESALs], 
selection of the rate of learning, specification of the percentage of 
test sections to be used only for testing, specification of tolerances 
between predicted and measured values, and ordering of input data. 
For this analysis, the shell used was BrainMaker (8). 

The result after hundreds or thousands of iterations of learning 
(or study of the available data) is not an equation, such as that which 
is normally produced from statistical regressions. Instead, it is a 
small computer program that can receive input and provide predic­
tions. This program can then be used in design procedures or for 
pavement management systems instead of an equation that one 
might get by standard regression techniques. Although this may ap­
pear to be strange because most analysts are accustomed to having 
equations to look at and think about, it makes little difference 
as long as the network has been thoroughly checked out and its 
capabilities have been thoroughly evaluated. 

One of the difficult things about standard regression techniques is 
finding the right forms of the equation that provide a quality fit to the 
data. It would be much easier if the operation were in three dimen­
sions, in which everything could be plotted and the functions could 
be determined visually. However, analysts are virtually always op­
erating inn-space when they are developing predictive distress mod­
els, so the resultant models are often more approximate than one 
would wish. One advantage of neural networks is that the analyst 
does not have to experiment with equation forms until a suitable one 
is found. The neural network generally sorts that out with its itera­
tive studies of the data and continuing modifications of the network. 

RESULTS 

For comparative purposes a neural network was developed by using 
the entire data set to assess distinctions in the dependent variables 
needed for modeling the various data sets and to compare summary 
statistics with the other models that have been developed. Compar­
ing the neural network for the entire data set against the linear model 
developed from the early analyses of the LTPP data base (Strategic 
Highway Research Program Contract P-020), it is fairly apparent that 
the neural network concept is capable of computing models with con­
siderably less residual error than the residual error from the standard 
linear models. The neural network had a coefficient of determination 
(R2

) of 82 percent and a root mean square error (RMSE) of 0 .05, ver­
sus values of 49 percent and 0.12, respectively, for the P-020 model. 
It should be noted here that the P-020 equation was formed with log 
rut depth as the dependent variable; therefore, RMSE is a multi­
plicative error term rather than an additive term like the other RMSEs 
presented in this paper. As can be seen from Table 2 both models 
were a function of essentially the same independent variables. 

TABLE 2 · Independent Variables Included in P-020 Model and "All" Network 

I Model I Independent Variables 

P-020 log(HMAC Aggregate< #4), log(Air Voids), log(Base Thickness), 
Subgrade < #200, Freeze Index, log(HMAC Thickness), Cumulative 
KESALs 

"All" Network Asphalt Thickness, Air Voids, Asphalt Viscosity@ 140°F, Annual 
Precipitation, Average No. of Days> 90°F, Average Freeze Thaw 
Cycles, PI, Subgrade Moisture, Subgrade < #200, Base Thickness, 
log(Cumulative KESALs) 
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TABLE 3 · Summary Statistics for All Models 

Data Set R2 

P-020 (Entire Data Set) 45% 

Network (Entire Data Set) 82% 

Subgrade Rutting Data ·set 94% 

Base Rutting Data Set 90% 

Surface Rutting Data Set 98% 

Heave Data Set 96% 

By using the guidance described earlier, sections were then redis­
tributed into one of the four data sets on the basis of the anticipated 
source of rutting associated with that section. For the most part these 
distinctions were fairly clear-cut and straightforward. 

By using the data sets distinguished by anticipated rutting origin, 
separate neural networks were created for each data set. As can be 
seen from Table 3, the summary statistics for these neural network 
models are again considerably better than those for previously de­
veloped linear models. These networks also show a considerable 
improvement over the network formulated for the entire data set. 
Each has an R2 in the 90th percentile range, with RMSEs of 0.04 on 
average versus the R2 of 82 percent and RMSE of 0.07 for the net­
work formulated from the entire data set. The predictive capabili­
ties of the networks are illustrated in Figures 3 to 7. Figure 3 illus­
trates the predicted versus the actual rut depths for the neural 
network created for the entire data set. The lines in the graphs are 
the 45 degrees that would describe a perfect prediction. Figures 4 to 
7 show the same graphs for each of the data subsets. These graphs 
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show that much better networks can be obtained when the data are 
separated into the four categories of rutting. One could argue that 
these improvements could be the result of the relatively smaller data 
sets used in the analyses; however, considering the levels of im­
provement shown, it is difficult to accept that this is the entire ex­
planation for the difference. 

One result that is particularly unique is the limited number of in­
dependent variables required to formulate rutiing origin-specific 
networks. As can be seen from Table 4 the independent variable sets 
for each of these models are considerably more refined and are ori­
ented toward the form or origin noted. Figures 8 to 11 graphically 
compare the various models developed for each of the rutting ori­
gin data sets. Note that the network (entire data set) and P-020 
model graphs are plots of those models obtained with the entire data 
set applied to these data subsets. All of the parameters in each model 
except traffic.were held at their means for Figures 8 to 11. Figure' 8 
also includes the results from a linear regression on this data set 
(Equation). This equation had an R2 of 32 percent and an RMSE of 
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FIGURE 3 Predicted versus actual rut depths for the neural network created with entire data set. 
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FIGURE 4 Predicted versus actual rut depths for subgrade rutting data set. 

CONCLUSIONS 
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0.35 in the log of rut depth. This RMSE is a multiplicative error 
term, just as the error terms for the P-020 model analysis are also 
multiplicative. The regression analysis was limited and did not ex­
tend to nonlinear regression, but it will give the reader a chance to 
examine the kinds of improvements that can be made when using 
the neural network for analysis purposes. 

From the analyses described here two conclusions can be made. Al­
though application of neural networks for pavement performance 
modeling is still a fairly new concept, it does appear that they are 
capable of predicting pavement performance considerably better 
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FIGURE 5 Predicted versus actual rut depths for base rutting data set. 
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FIGURE 6 Predicted versus actual rut depths for surface rutting data set. 
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FIGURE 7 Predicted versus actual rut depths for heave data set. 

TABLE 4 Independent Variables Included in Each Model 

Model Independent Variables 

Entire Data Set HMAC Thickness, Air Voids, Asphalt Viscosity@ 140°F, Annual 
Precipitation, Avg. No. of Days > 90°F, Avg. Freeze Thaw Cycles, Pl, 
Subgrade Moisture, Subgrade < #200, Base Thickness, log(Cumulative 
KESALs) 

Subgrade Annual Precipitation, Avg. No. of Days> 90°F, Avg. Freeze Thaw 
Rutting Data Cycles, PI, Subgrade Moisture, Subgrade < #200, log(Cumulative 
Set KESALs) 

Base Rutting Annual Precipitation, Avg. No. of Days> 90°F, Base Thickness, Base 
Data Set Compaction, log(Cwnulative KESALs) 

Surface Rutting HMAC Thickness, Asphalt Content, Air Voids, HMAC Aggregate< 
Data Set #4, Viscosity@ 140°F, Avg. No. of Days> 90°F, log(Cumulative 

KESALs) 

Heave Data Set Annual Precipitation, Avg. No. of Freeze Thaw Cycles, PI, Subgrade 
Moisture, Subgrade < #200, log(Cumulative KESALs) 
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FIGURE 8 Predicted rut depths using various models on subgrade rutting data set. 

FIGURE 9 Predicted rut depths using various models on base rutting data set. 
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FIGURE 10 Predicted rut depths using various models on surface rutting data set. 

12 

10 

8 

6 

4 

2 

II Network 

A P~020 (Entire Data Set) 

8 Network (Entire Data Set) 

a--~~~~~~~~~~~~ .......... ~~~~~~~~~~~~ ......... ~~~~~~~~~~~~_. 
0 

Thousands 
KESALs 

2 3 

FIGURE 11 Predicted rut depths using various models on heave data set. 

than the linear models of the past. It will be necessary to experiment 
with those networks and check the models to ensure that all of the 
trends are logical. 

The second conclusion is that the division of sections by rutting 
origin does allow for the development of more refined and specific 
models, which also appear to be more accurate as a result. 
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