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Backcalculation of Flexible Pavement Moduli 
From Dynamic Deflection Basins Using 
Artificial Neural Networks 

ROGER W. MEIER AND GLENN J. RIX 

The falling weight deflectometer (FWD) test measures the response of 
a pavement system to a transient load applied at the pavement surface. 
A limitation of existing, widely used techniques for backcalculating 
pavement layer moduli from FWD results is that they are based on a 
static analysis of pavement response. Previous studies have shown that 
significant errors in moduli can accrue from the discrepancy between 
this static assumption and the dynamic nature of the FWD test. Dynamic 
solutions for pavement response are available, but their computational 
complexity makes them impractical for use in conventional backcalcu­
lation programs that use gradient search or data base techniques. This 
limitation has been overcome by applying artificial neural network tech­
nologies to the backcalculation problem. An artificial neural network 
has been trained to backcalculate pavement layer moduli for three-layer 
flexible pavement systems with synthetic dynamic deflection basins. 
The dynamic pavement response was calculated by using an elasto­
dynamic Green function solution based on a stiffness matrix formulation 
of the pavement system. The computational efficiency of the trained 
neural network means that moduli can be backcalculated with a speed 
that is several orders of magnitude greater than that which can be 
achieved by conventional gradient search and data base approaches. 
This is significant because it demonstrates the feasibility of backcal­
culating pavement layer moduli from dynamic deflection basins in 
real time. 

Falling weight deflectometer (FWD) tests are widely used to assess 
pavement layer moduli in a nondestructive manner. An FWD test is 
performed by applying an impulse load to the pavement via a cir­
cular plate and measuring the resulting pavement deflections at sev­
eral radial distances from the plate. The test data are usually sum­
marized as a deflection basin formed from the peak deflections at 
each measurement location. Pavement layer moduli are then back­
calculated from these experimentally determined deflection basins. 
This is usually accomplished by matching a theoretically calculated 
deflection basin to the experimental deflections. Most FWD users 
employ one of two approaches to match deflection basins: (a) a gra­
dient search approach (J) in which pavement layer moduli are iter­
atively adjusted until the theoretical and experimental deflection 
basins agree within a predefined tolerance and (b) a data base ap­
proach (2) that uses a combination of pattern searching and inter­
polation to calculate a theoretical deflection basin from exemplars 
within a predefined data base of basins. 

A limitation of conventional gradient search and data base ap­
proaches is that they are based on static deflection basins calculated 
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by using multilayer, linear elastic theory [e.g., WESLEA (3)]. The 
FWD test is inherently a dynamic test because of the impulse-type 
load applied to the pavement and the resulting inertial forces and 
resonances within the pavement system. Figure 1 illustrates the dif­
ference between static and dynamic deflection basins for a pave­
ment profile with varying depth to bedrock. This pavement profile 
has a 23-cm (9-in.) asphalt layer over a 30-cm (12-in.) granular base 
course. The elastic moduli of the asphalt, base, and subgrade are 
7 X 106, 7 X 105, and 7 X 1()4 kPa (106, 105, and 1()4 lb/in.2), respec­
tively. Notice that the static deflection basins [Figure l(a)] are 
strongly influenced by the depth to bedrock, whereas the dynamic 
deflections [Figure l(b)] are nearly independent of the depth to 
bedrock. The differences between the static and dynamic displace­
ments can result in significant errors in the backcalculated layer 
moduli if the backcalculation program uses static deflections ( 4-8). 

The computational expense of calculating dynamic deflections 
hinders their use in backcalculation programs that use either a gra­
dient search or data base approach. Meier and Rix (9) proposed the 
use of artificial neural networks as a fundamentally different 
approach to backcalculating pavement layer moduli from experi­
mental deflection basins. An artificial neural network is a highly 
interconnected collection of simple processing elements that can be 
taught to approximate any continuous functional mapping through 
repeated exposure to examples of that mapping. Meier and Rix (9) 
trained an artificial neural network to backcalculate pavement layer 
moduli for a three-layer flexible pavement system using synthetic 
static deflection basins generated by WESLEA. The trained neural 
network was able to backcalculate moduli more than 3 orders of 
magnitude faster than the conventional backcalculation program 
WESDEF (1), which also uses WESLEA. This significant increase 
in speed makes it possible to backcalculate pavement layer moduli 
in real time. · 

In this paper we extend the artificial neural network approach de­
scribed previously (9) to incorporate dynamic deflection basins. The 
objective is to develop a backcalculation procedure that is based on 
dynamic deflection basins but that still permits pavement layer 
moduli to be determined in real time. This is possible because the 
computational efficiency of the trained neural network is indepen­
dent of the computational complexity of the algorithms used to cre­
ate the training data (i.e., the dynamic deflections). 

ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks are a computational paradigm completely 
different from the conventional serial computing introduced by Von 
Neumann. Instead of the linear sequence of relatively complex tasks 
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FIGURE 1 Static (a) and dynamic (b) deflection basins as a function ofdepth to 
bedrock. 

that typifies most algorithmic procedures, artificial neural networks 
process information in parallel using a large number of opera­
tionally simple but highly interconnected processing units. The 
processing units themselves have certain functional similarities to 
biological neurons, and their organization bears at least superficial 
resemblance to the organization of neurons in the brain. This ex­
plains the terminology associated with neural computing. 

All artificial neural networks are essentially mappers (JO): for a 
given input they produce output in accordance with a mapping 
relationship encoded within their structure. The most common 
network architecture used for functional mapping (i.e., a unique 
mapping of real-valued inputs onto real-valued outputs) is the mul­
tilayer, feed-forward network. These networks consist of several 
layers of processing elements (Figure 2). The processing elements 
pass information; often equated with a signal pattern, from the input 
layer of the network through a series of hidden layers to the output 
layer. The signals travel between processing elements along con­
nections whose strengths can be adjusted to amplify or attenuate the 
signal as it propagates. Each processing element sums the imping­
ing signals to determine a net level of excitation. A noniinear acti­
vation function provides a graded response to that excitation. The 
element then passes on the response to each of the processing ele­
ments in the next layer (Figure 3). The distribution of connection 
strengths throughout the network uniquely determines the output 

signal pattern that results from a given input signal pattern. In that 
respect the connection strengths encode the mapping relationship. 

The neural network gains its knowledge through training. A su­
pervised learning methodis commonly used to train feed-forward 
networks. In supervised learning a set of training data (consisting 
of pairs of input-output patterns exemplifying the mapping to·be 
learned) is presented to the network one example at a time. For each 
example the input pattern is propagated through the network and the 
resulting output pattern is compared with the target output. A learn­
ing algorithm is used to incrementally adjust the connection weights 
to reduce the differences between the calculated and the target out-

Input Signal 

' Output Signal 

FIGURE 2 Architecture of a 
multilayer, feed-forward artificial 
neural network. 
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FIGURE 3 Basic processing element 
for a multilayer, feed-forward 
artificial neural network 

puts. This ability to self-adjust is an essential feature of neural com­
puting. It would be impossible to manually establish the connection 
weights needed to perform any but the simplest of mappings. 

Once it is trained the network will provide an approximate func­
tional mapping of any input pattern onto its corresponding output 
pattern. This process is extremely fast because the input pattern is 
propagated once through the network, a task that only involves 
passing weighted sums through the sigmoidal logistic function. 

CALCULATING DYNAMIC PAVEMENT 
RESPONSE 

The best way to train a neural network to map deflection basins onto 
their corresponding pavement layer moduli would be to use exper­
imentally determined deflection basins along with independently 
measured pavement layer moduli. Lacking sufficient quantities of 
such data over a broad range of layer moduli and thicknesses, syn­
thetic deflection basins can be obtained by solving the forward prob­
lem with many different combinations of pavement layer properties. 
A neural network can then be taught to map these synthetic deflec­
tion basins . back onto their corresponding layer moduli. The latter 
approach is taken in this paper. This use of synthetic deflection 
basins to train the artificial neural network is, in principle, analo­
gous to the use of synthetic deflection basins- in all conventional 
basin matching programs. The following sections describe . the 
inethodology used to generate the synthetic deflection· basins.· 

Fourier Superposition Analysis 

The dynamic response of a pavement system to the· transient loads 
imposed by the FWD can be analyzed by the principles of Fourier 
superposition. The first step in Fourier superposition is to decom­
pose the transient loading pulse p(t) into its frequency components, 
P(w), by means of a forward Fourier transform. The next step is to 
develop a transfer function, H(w), that establishes the steady-state 
response of the pavement system to a unit harmonic excitation at a 
specified frequency. For the purpose of FWD analysis the appro­
priate harmonic excitation is a vertical disk load applied at the pave­
ment surface and the required pavement response is the vertical de­
flection of the pavement surface at some radial distance r from the 
center of the Joad. This transfer function is multiplied by the Fourier 
transform of the applied loads to obtain the response of the pave­
ment in the frequency domain. Finally, the desired pavement de-
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flection history u(t) is obtained by performing an inverse Fourier 
transform on the calculated frequency-domain response. 

The computer implementation of this method requires that the 
transient loading pulse be discretized into a finite number of applied 
loads 

pj = pUAt),j = 0, 1, ... , N - 1 

separated by a constant time interval At. These loads can then be 
transf~rmed into an equivalent number of complex-valued har­
monic excitations 

Pn = P(nAw), n = 0, 1, ... , (N - 1)/2 

using a forward fast Fourier transform (FFT) algorithm. These har­
monic loads will be separated by a constant frequency interval 

Aw= 21T 
NAt 

where N is the number of points in the discretized loading pulse. 
The transfer function is evaluated for each discrete frequency and 

is multiplied by the appropriate frequency component of the load­
ing pulse to obtain the pavement response in the frequency domain: 

Un = H(nAw) X Pm n = 0, 1, ... , N - 1 

These displacement components are then transformed back into the 
time domain by using an inverse FFT: 

uj = u(jAt),j = 0, 1, ... , (N - 1)/2 

This piecewise-linear deflection history represents the deflection 
pulse measured in the FWD test. · 

Development of Discretized Loading Pulse 

The dynamic load imparted to the pavement by the FWD is gener­
ated by a free-falling mass hitting a steel plate. A rubber pad be­
neath the plate uniformly distributes the load to the pavement, and 
a series of rubber buffers above the plate decelerates the falling 
mass and conditions the loading pulse. Typical FWD loading pulses 
for a flexible pavement are illustrated by the light lines in Figure 4. 

For programming convenience and computational flexibility a 
functional analogue to the FWD loading pulse that could be easily 
varied in both amplitude and duration was desired. Foinquinos et al. 
(4) and Chang et al. (5) used a triangular approximation to the load­
ing pulse. Lukanen (J J) suggests the use of a haversine: 

p ( 21Tt) p(t) = 2 1 - cos r (1) 

where P is the peak amplitude and Tis the duration. Both functional 
approximations were investigated for use in generating synthetic 
deflection basins. 

The four measured loading pulses indicated by the light lines in 
Figure 4 were normalized to a unit load and were averaged to arrive 
at a sample FWD loading pulse (indicated by the heavy line in Fig­
ure 4). That sample pulse is compared with a triangle and a haver­
sine in both the time and the frequency domains in Figure 5. Both 
functional analogues were made to have the same duration (26.5 
msec) and peak amplitude (1.0) as the average measured pulse. 
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FIGURE 4 Measured FWD loading pulses and average pulse for 
four drop heights (11). 

Figure 5 shows that the frequency-domain magnitude plots for all 
three curves are remarkably similar (especially at frequencies below 
75 Hz, where all three curves essentially drop to zero) despite the 
fact that neither of the functional analogues captures the first peak 
in the time domain. Since all of the calculations in the Fourier su­
perposition ·analysis occur in the frequency domain, both analogues 
appear to be suitable surrogates for the measured pulse. Both the tri­
angle and the haversine have slightly lower DC (zero-frequency) 
values because the total impulse (the area under the force-:-time 
curve) is slightly less. The total impulse for the normalized mea­
sured pulse is 17.4 msec and the total impulse for the functional ana­
logues is 16.0 msec. To preserve the total energy of the measured 
FWD pulse, the peak amplitudes of the analogues have to be in­
creased by approximately 9 percent (17.4116.0 = 1.09). 

The haversine was chosen over the triangle for the present study 
because it better approximates (at least aesthetically) the shape of 
the sample load pulse and is slightly better behaved in the frequency 
domain. The perfectly straight sides of the triangular pulse and the 
sharp discontinuity at its peak result in spurious higher-frequency 

. components that do not exist in the haversine or the measured pulse. 
Figure 6 compares the measured FWD pulse with an adjusted 
haversine analogue given by 

( 27Tt) p(t) = 0.545 1 - cos --
. 26.5 

(2) 

Again, despite the apparent dlff erences in the time domain, there is 
very close agreement in the frequency domain over the range of 0 
to 75 Hz. At frequencies above 75 Hz the magnitudes of both pulses 
hover near zero, anyway, so any differences are immaterial. 

At a frequency of 0.5T- 1, which is equal to 75.47 Hz, the FFT of 
the haversine pulse has a magnitude identically equal to zero. It 
would be convenient to use this as a frequency cutoff to limit the 
bandwidth that must be considered in the Fourier superposition 
analysis. Because the computational costs incurred in the analysis 
vary in direct proportion to the number of frequencies that must be 
analyzed, it was important to either minimize the bandwidth or 
maximize the frequency interval. To show the feasibility of using a 
bandwidth-limited analysis, an FFT was performed on the haversine 
analogue, and all of the components at frequencies higher than 
75.47 Hz were set to zero. An inverse FFT was then performed to 
recover the time.,.domain loading pulse. The solid line in Figure 7 
represents the original haversine, and the symbols show the inverse 
FFT of the bandwidth-limited function. This shows that little is lost 
by limiting the bandwidth . 

The haversine shown in Figure 7, which was calculated at 32 dis­
crete points in the time domain by using Equation 2, was accepted 
as the functional analogue of the FWD loading pulse. As a result the 
Fourier superposition analysis was performed at 31 discrete fre­
quencies. Because the FFT of the haversine load pulse is zero at the 
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FIGURE 5 Typical load pulse and functional analogs in time (a) and frequency 
(b) domains. 

32nd point (which corresponds to the frequency of 75.47 Hz) there 
was no need to develop a solution for that frequency. 

Green Function Solution for Transfer Function 

The fundamental (Green function) solution for the propagation of 
waves in layered elastic media was first presented by Thomson (12) 
and was later corrected by Haskell (13). Their solution, which has 
since become known as the Haskell-Thomson formulation, is based 
on the use of transfer matrices in the frequency-wave number do­
main that relate the displacements and internal stresses at a given 
layer interface to those at neighboring layer interfaces. Kausel and 
Roesset ·(14) developed a complementary solution based on stiff­
ness matrices (analogous to those used in matrix structural analysis) 
that relate the external loads applied at the layer interfaces to the dis­
placements at the layer interfaces. Those stiffness matrices are a 
function of both frequency and wave number. Both formulations· 
are, however, computationally inefficient because the matrix ele­
ments involve transcendental functions. 

Kausel and Peek (JS) describe a Green function solution based 
on a discretization (sublayering) of the medium. That solution, de­
sctj.bed briefly below, is based on the premise that if the sublayer 
thickness is small relative to the wavelength of interest, it is possi­
ble to linearize the transcendental functions and reduce them to al­
gebraic expressions. For most problems the increased efficiency of 
the algebraic formulation more than compensates for the increased 
computational requirements of the discretized solution (in which 
the size of the stiffness matrices increases in direct proportion to the 
number of sublayers). 

Consider a horizo.ntally layered pavement system. The stiffness 
matrix for each layer is given by the quadratic expression 

K = Ak2 + Bk + G - w2M (3) 

where k is the wave number, w is the circular frequency, and the ma~ 
trices A, B, G, and M, which are given by Kausel and Roesset (14), 
are functions of the material properties A (Lame's constant), G 
(elastic shear modulus), and p (mass density) and the sublayer thick­
nesses h. 
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FIGURE 6 Comparison between typical load pulse and adjusted haversine 
analogue. 

The global stiffness matrix for the pavement system as a whole 
is obtained by overlapping the stiffness matrices of the various lay­
ers. A numerical expedient suggested by Hull and Kausel (16) can 
be applied at the bottom of the layered system to account for the 
presence of a half-space instead of rigid rock. The global displace­
ments U can then be related to. the global forces P through the as­
sembled global stiffness matrix: 

KU=P (4) 

The natural modes of wave propagation for the layered system 
are obtained by setting the load vector P equal to zero. This pro­
duces the following quadratic eigenvalue problem: 

(Ak2 + Bk+ G - w 2M) <!> = 0 (5) 

where the eigenvectors<!> are the displacement vectors for each nat­
ural mode of propagation. This problem yields 6L eigenvalues 
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where L is the total number of sublayers. Only 3L of the eigenvec­
tors correspond to waves that propagate away from the applied load. 
Of those, 2L correspond to Rayleigh waves and the remainder cor­
respond to Love waves. Since the latter do not contribute to the ver­
tical deflections produced by a vertical load they can be ignored. 
Thus, there are really only 2L modes of wave propagation of inter­
est here. For those modes of propagation the quadratic eigenvalue 
problem reduces to a linear problem (albeit with a nonsymmetric 
characteristic matrix) that can be solved by the inverse power 
method (17). The Green function solution for the vertical surface 
displacements is expressed in terms of the~e 2L mode shapes: 

2L 

H(w) = RL <!>!v<l>~/11 (6) 
l =I 

where R is the radius of the vertical disk load,<!>~ is the vertical com­
ponent of the Ith eigenvector, 

--original load pulse 
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FIGURE 7 Comparison between original and bandwidth-limited haversine 
analogues. 
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and 

I - 1T (2) 
11 -

2
ik/1(k1r)H0 (k1 r), for r > R 

The functions 10 and 11 are Bessel functions of the first kind and 
orders zero and one, respectively. The functions H62l and H~2l 
are Hankel functions of the second kind and orders zero and one, 
respectively. 

Computer Implementation 

Sanchez-Salinero (18) implemented the Green function solution 
described .earlier in a FORTRAN computer program. That program 
was modified to perform the Fourier superposition analysis of the 
FWD test to obtain the dynamic deflection basins needed to train an 
artificial neural network. The program performs the following com­
putations for each frequency of analysis: 

1. Determine the maximum depth of interest, 
2. Discretize the pavement system to the maximum depth of in­

terest, 
3. Assemble the global stiffness matrix (Equation 3), 
4. Solve the eigenvalue problem (Equation 5) to obtain the prop­

agation modes, 
5. Evaluate the transfer function (Equation 6) at each radial dis­

tance of interest, and 
6. Multiply the results by the FFT of the loading pulse to obtain 

the deflection components. 

For the present study the maximum depth of interest at each fre­
quency was assumed to be twice the length of the Rayleigh waves 
propagating at that frequency. The global stiffness matrix is assem­
bled by using the half-space approximation of Hull and Kausel (16) 
below that depth. As was shown in Figure 1, the deflection basins 
obtained from a dynamic analysis of the pavement response are in­
sensitive to bedrock depth for all depths in excess of approximately 
3 m (10 ft). As a result the deflection basins produced here will be 
valid for all but the shallowest depths to bedrock. 

Once the global stiffness matrix has been assembled, the eigen­
value problem (Equation 5) is solved by using the inverse power 
method to obtain the outward-propagating Rayleigh modes. The 
eigenvalues and their corresponding eigenvectors are used in the so­
lution of the Green function at each radial distance of -interest (i.e., 
each FWD sensor location). These solutions (given by Equation 6) 
are multiplied by the appropriate frequency component of the load­
ing pulse to obtain the deflection components in the frequency do­
main. An inverse FFT is then used to recover the deflection pulses 
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in the time domain. Finally, a synthetic deflection basin is assem­
bled from the deflection pulses by finding the peak deflection at 
each sensor location. 

TRAINING THE ARTIFICIAL NEURAL NETWORK 

Backpropagation neural networks are universal approximators, but 
training times increase rapidly with increasing problem complexity. 
This places some practical limits on the mapp_ings that can be 
learned. Instead of trying to train a network to handle a variable 
number of pavement layers, in the present study the choice was 
made to train a neural network to backcalculate moduli for a three­
layer profile. Each three-layer profile consisted of an asphalt con­
crete (AC) surface layer, an unstabilized granular base course, and 
a soil subgrade. The thicknesses and moduli of the AC and base lay­
ers and the modulus of the subgrade were randomly selected from 
uniform distributions within the limits given in Table 1. Because a 
half-space approximation was used in the Green function solution, 
the thickness of the subgrade is infinite. Synthetic deflection basins 
were calculated for a nominal dynamic load of 40 kN (9,000 lb) 
based on Strategic Highway Research Program-recommended sen­
sor spacings of 0, 20, 30, 45, 60, 90, and 150 cm (0, 8, 12, 18, 24, 
36, and 60 in.). For pavement profiles or sensor spacings that differ 
from these assumed conditions, additional neural networks could 
easily be trained by the same methodology presented here. 

The synthetic deflection basins in the training set are intended to 
represent deflection basins that would be measured in the field. Typ­
ical test specifications for the FWD test (19) require a systematic 
error no greater than 2 percent of the measured deflection and a re­
peatability error no greater than 2 µm (0.08 mils). As illustrated in 
a previous study (20), these potential inaccuracies can be accom­
modated by introducing random noise during training, a technique 
known as noise injection. The random noise was added to each of 
the seven deflections in each training example just before present­
ing it to the network. In this way, even though the training basins 
were constantly reused, the added noise was different every time. 
The random variates were drawn from uniform distributions whose 
limits were equal to the larger of :±:2 percent of the ideal deflection 
or :±:2.5 µm (:±:0.1 mils). The latter was made slightly larger than 
the test specification to permit some room for error. 

The study used the same network architecture used previously (9) 
for mapping static deflection basins with noise injection. Despite 
the increased fidelity of the model used to create the training data, 
both networks map_ nine-element vectors of pavement deflections 
and layer thicknesses onto three-element vectors of pavement mod­
uli. Since this complexity of the mapping task is essentially the 
same, the same network architecture, which uses two hidden layers 
with 15 neurons apiece, should suffice. 

TABLE 1 Pavement Layer Properties Used To Train the Neural Networks 

Layer 

Asphalt 
Base 
Subgra4e 

0 1 MPa = 0.145 ksi 
b1 cm= 0.394 in 

Layer Modulus (MPa)" 

1725 - 20,685 
35 - 1035 
35 - 345 

Layer Thickness (emf 

5-30 
15 - 75 
3050 

Poisson's Ratio 

0.325 
0.35 
0.35 
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Network training proceeded by iteratively presenting the training 
examples to the network. Each pass through the set of 10,000 ex­
amples constituted a training "epoch." During each epoch the first 
9,750 examples were used to train the network. The remaining 250 
examples were set aside to test the network at the conclusion of 
training. (Neural networks should never be tested with the same 
data that were used to train them. It is important that the network be 
able to generalize beyond the training examples instead of simply 
memorizing them.) At first the mean squared output error drops 
rapidly as the training epochs are completed [Figure 8(a)]. With 
further training the output error asymptotically approaches some 
minimum level. Network training continued until it was clear that 
the computational expense of continued training outweighed any 
further increases in network accuracy. 

At the conclusion of training the 250 deflection basins previously 
set aside were used to check the accuracy of the network. As with 
the other 9,750 deflection basins, random noise was added to these 
test basins to better simulate real measurements. Tests to determine 
the repeatability of FWD measurements (21) have shown that indi­
vidual transducers have a standard deviation of ± 1.95 µm. Because 
this error is random, it can be lessened by replicating the test and 
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averaging the results. Irwin et al. (21) recommend that three to five 
replicates be conducted for each test. The amount of noise added to 
each deflection was therefore established by averaging five random 
variates drawn from a Gaussian distribution with a mean of zero and 
a standard deviation that was rounded off to ±2 µm (0.08 mils). Be­
cause these random variates were drawn from a Gaussian distribu­
tion instead of the uniform distribution used to train the network, it 
is possible that some of these test basins contained more noise than 
was present in the training set. 

Figures 8(b), 8(c), and 8(d) compare the target and computed 
moduli for the asphalt, base, and subgrade layers, respectively, for 
the 250 test basins. The neural network clearly learned the mapping 
from deflection basins to subgrade moduli extremely well, despite 
the presence of noise. It also learned the mapping from deflection 
basins to asphalt moduli very well, although there was a slight ten­
dency toward underestimation for the stiffer pavements. Consider­
ing that the base moduli are always the hardest to backcalculate, the 
network has done a very good job with those, too. Figure 9(a) shows 
that the base modulus error is less than 15 percent for more than 80 
percent of the pavement profiles. Figures 9(b), 9(c), and 9(d) col­
lectively show that the 20 percent of the profiles with the greatest 
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base modulus error tend to have a relatively rigid (thin, stiff or both) 
asphalt layer and a relatively thin base course. The rigidity of the 
surface layer makes the thin base layer essentially invisible, a prob­
lem inherent to the FWD test itself. 

SUMMARY AND CONCLUSIONS 

A previous study (9) showed that an ·artificial neural network could 
be trained to backcalculate pavement layer moduli from FWD 
deflection basins. rµat study used synthetic deflection basins cal­
culated by using a ·static analysis of pavement response. In the 
present study an artificial neural network was successfully trained 
to backcalculate pavement layer moduli from synthetic deflection 
basins calculated by using a dynamic analysis of pavement 
response based on Green functions. Because the FWD test is 
inherently dynamic, these dynamic deflection basins are a signifi­
cantly better analogue for the experimental results that would be 
obtained in the field. 

Because the computational efficiency of the trained neural net­
work is independent of the computational complexity of the algo­
rithms used to create the training data, this neural network takes no 
longer to run than those in the previous study, and it still runs in real 

time. The authors know ·of no other method for backcalculating 
pavement layer moduli from dynamic deflection basins in real time. 
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