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Creep Analysis of Hybrid Integral Bridges 

K. A. SIROS AND C. C. SPYRAKOS 

A state-of-the-art three-dimensional (3-D) model is developed and uti­
lized for nonlinear creep analysis of composite (steel stringer-concrete 
slab) integral bridges. The results of the analysis are evaluated and com­
pared with results of an equivalent two-dimensional (2-D) linear creep 
analysis. The rate of creep method and the age-adjusted effective mod­
ulus method are employed for the 3-D and the 2-D analysis, respec­
tively. Two typical structural systems are analyzed: a single-span bridge 
(15.24 m) and a two-span bridge (2 X 34.75 m). Change of stresses with 
time at critical points of the bridges are shown and comparisons of the 
2-D and the 3-D analyses are included. Evaluation of the results with 
respect to the behavior of integral bridges is presented. 

Comparison between the two major forms for highway bridges, 
integral (or jointless) versus jointed, has shown that the former pre­
sent several important advantages, including reduced construction 
and maintenance cost, as a result of elimination of joints. This is 
because bridge joints are expensive to purchase and install, and con­
tinuous maintenance is needed to keep them working properly (J). 

The first integral bridges were designed after 1956. At the begin­
ning, they were short in length and designed with precautions. Until 
1985, the maximum length for integral concrete bridges had 
increased to 282 m and for those with steel superstructure to 127 m. 
In Tennessee it has become policy that "all bridges shall be contin­
uous from end to end, and there shall be no intermediate joints 
introduced in the bridge deck other than cold joints required for 
construction" (2). 

Bridges are subjected to various loading conditions, such as self­
weight, temperature, and creep. The stresses caused by such load­
ings result in different total stresses for the jointed and the integral 
bridges. For example, a simply supported bridge develops higher 
stresses at midspan than does an indeterminate frame-type structure 
caused by dead and live loads, whereas stresses caused by thermal 
expansion or contraction in a simply supported bridge are much 
smaller (if at all) than those developed in the indeterminate system. 

Several integral bridges have been built during the last few years 
in many states. Nevertheless, there is still no final and complete 
answer to what makes those bridges work efficiently and survive 
the high stresses that are supposed to develop. In a comparison of 
integral and jointed bridges Siros and Spyrakos (3) have shown that 
the change of bending moments because of creep in an integral 
bridge can be up to three times smaller than that in a jointed bridge. 
This fact, possibly being part of the answer, was the motivation for 
further investigation of creep stresses that develop in an indetermi­
nate composite bridge. 

A three-dimensional (3-D) model was developed and the rate of 
creep method (RCM) formulation was utilized in a step-by-step 
computer analysis. The age-adjusted effective modulus method 
(AEMM) was also used in a linear two-dimensional (2-D) analysis. 
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Stresses at the top of the concrete slab and at the bottom of the steel 
stringer were calculated for several critical points along the bridges. 
Stress versus time plots are shown, and comparisons are presented 
between the 3-D and the 2-D analysis. 

STRESS-STRAIN RELATIONSHIP 

A concrete member that is subjected to a constant load exhibits con­
tinuous change of strain over time at each point because of creep. 
The creep law that describes this behavior is a function of time, 
strength of the material, and stress at each time. 

One of the most widely accepted methods ( 4) for the calculation 
of creep in concrete, the RCM, is utilized here for the 3-D analysis. 
This method is mathematically attractive because it formulates the 
creep problem as a simple first-order differential equation, and 
therefore a step-by-step analysis can be easily carried out. 

Gilbert (5) has utilized both the RCM and the AEMM to calcu­
late creep stresses for a composite cross section, when the internal 
forces acting on the section at a certain time are known. When the 
structure is indeterminate, however, creep causes change of the 
reactions and the internal forces in the structure with time. Ghali ( 6) 
presents a methodology for 2-D creep analysis of indeterminate 
structures, which is also employed here for the 2-D analysis. 

Bazant (7) discusses the multiaxial stress case for the AEMM. 
The analysis of bridges as 3-D structures is performed with the 
RCM. The formulation as it is given in the literature cannot be used 
directly with FEM analysis packages, and therefore a conversion is 
required. 

In finite element analysis, the 3-D state of stress is taken into 
account by calculating the equivalent total strain at each time step 
as follows (8): 

(1) 
3 ( )2 3 ( )2 3 ( )2] in + 2 '"Yx.v + 2 '"Y.vz + 2 "vzx 

where ex, ey, and ez are the axial strains in the x, y, and z directions, 
respectively, and 'Yx>" 'Yyz• 'Yzx are shear strains in the respective 
planes and directions. 

According to the RCM, the rate of creep strain at time t is a func­
tion of the stress, rr(t), the creep coefficient derivative, <!>' (t,t0 ), and 
the modulus of elasticity of concrete at the present time, Ee (t0 ), that is 

(2) 

In this creep formulation, the aging of the concrete is ignored. 
Therefore creep may be overestimated for old concrete, but when 
the load starts acting soon after casting the concrete, the method 
gives good results. 
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The modulus of elasticity Ee(t) of concrete varies also with time 
according to Equation 3 but should be taken as constant equal to 
E(28) to arrive at a procedure that is computationally manageable. 
Note that in 28 days the concrete has gained about 90 percent of its 
strength. Ee (t) is computed from 

Ee(t) = E(28) 
(4 + 0.85t) 

(3) 

The American Concrete Institute (9) Committee 209 suggests 
that <!>(t) for t0 = 7 days be taken as 

[ 
t0.6 ] 

<!>(t) = <!>u 10 + t0.6 (4) 

with <l>u = 2.35ge and ge = g,a gh gvs 

where g1a- gh, and gvs are constants that depend on age of loading, 
humidity, and ratio of volume to surface of the member, respec­
tively. For constant humidity of 40 percent, age of loading of 7 days, 
and ratio of volume to surface of 1.5, ge is equal to 1 For practical 
applications the estimation of this factor involves many uncertain­
ties because humidity and temperature in the air change continu­
ously with time. 

NONLINEAR ANALYSIS 

The analysis starts with the application of the self-weight or any 
equivalent sustained load on the structure. The time of application 
of the load t0 is assumed to be at 7 days. The duration of the load­
ing is taken as 100,000 days. This time is required until the creep 
coefficient reaches the assumed ultimate value <!>u = 2.5. 

According to Equation 4, <!> = 2.4 fort= 10,000 and<!>= 2.475 
for t = 100,000. From Figure 1 it is clear that the change of<!> after 
the 100,000 days is slow and therefore the predicted creep will be 
small. From the same figure it can be seen that the change of strain 
is fast during the first 500 days and consequently a small time step 
is needed for the first period to reach convergence. 

In finite element analysis, the creep formulation is based on the 
constitutive law (JO): 

(5a) 

where Ci. c2, and c3 are constants. Therefore, Equation 2, corre­
sponding to the RCM, must be converted into this form. 
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FIGURE 1 Creep coefficient versus time. 
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For each interval, as defined between the squares in Figure 1, 
Equation 4 can be expressed as 

(5b) 

where a and N are constants calculated by linear regression analy­
sis (1 I). The constants N and a depend on the duration of each 
interval, which should be small enough so that the coefficient of 
variation r 2 is close to 1 (J 2). 

The first derivative of this equation with respect to time is given 
by 

<!>' = NatN-i (6) 

Substituting Equation 6 into Equation 2 the following is obtained: 

I ( ) - cr(t) M N-1 
Ber t,t0 - Ee(to) 1vat (7) 

or 

, (t t) = Na (t)tN-1 
Ber , o Ee(to) CT 

(8) 

and finally, 

(9) 

where 

C3 = N- 1 (10) 

The constants Ci. c2, and c3 describe the creep low for a given<!>, 
t°' and Ee(t0 ) and can be incorporated into well-documented finite 
element analysis programs such as AN SYS (13) and ABACUS (14 ). 

The creep strain increment ~Ber = e;r * ~t is then calculated and 
added to the elastic strain. The new stress level is calculated at each 
point, and the procedure is repeated by calculating the next creep 
strain change. At each step the ~ee,/eer is calculated and the time 
step size is increased when the ratio is smaller than a predefined cri­
terion, which for most practical applications can be taken as 0.25 
(8). During the initial period though, when the creep strain rate is 
high, this ratio should be kept below 0.10 by increasing the number 
of iterations or decreasing the time step size. 

THREE-DIMENSIONAL ANALYSIS 

In the process of developing the 3-D model, many modeling aspects 
were considered, such as size and aspect ratio of elements, and com­
bination of various types of elements (15). The model utilizes four 
node isoparametric plate elements with 6 degrees of freedom ( dof) 
per node to simulate the concrete deck and the bridge abutments. 
Beam elements with six dof per node model the steel stringers and 
are connected to the plate elements of the slab with small and stiff 
fictitious beam elements (Figure 2). Close to the abutments and 
intermediate supports, more elements are used as a result of the 
anticipated higher stress gradient. At those regions, triangular ele­
ments are also used for gradual element size increase. A model with 
the minimum number of elements is essential in nonlinear analysis 
because of the substantial processing time. Therefore modeling 
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PLATE ELEMENTS 

FIGURE 2 Detail of the 3-D model: abutment and deck. 

rules and various alternative modeling schemes were employed 
toward this goal with minimum loss of computational accuracy. The 
number of the stiff fictitious connectors as well as their stiffness had 
to be kept at a minimum to avoid numerical instability. The size of 
the elements was also properly chosen at each point to satisfy size 
and aspect ratio requirements. A detailed discussion of the model­
ing considerations is given by Spyrakos (16). Special emphasis has 
been given to proper modeling of the boundary conditions. Simula­
tion of the boundary conditions that is not accurate may result in 
small errors in a linear analysis. However, in nonlinear analysis 
caused by the multiple steps the error is accumulated. 

A small creep (practically 0) was given for the time 0 to 7 days 
because nonzero values are required by the iterative algorithm. 

The ultimate creep coefficient varies from 1.35 to 4.15 (9), but 
for most practical applications it ranges from 2 to 2.5. The aging 
coefficient (X) varies from 0.774 to 0.8 for<!> = 2.5 and variable Ee 
and from 0.839 to 0.899 for constant Ee (7). 

EXAMPLES 

Example 1 

A single-span bridge is analyzed first. Figure 3 shows the geometry 
of the structure. The material and geometric properties correspond­
ing to one stringer are given as follows: 

Steel: 

Est= 200 GPa lsr = 0.00278 m4 

20.32cmI 

38.95 cm I 
38.95cm I 

Ast = 0.02806 m2 

228.6 cm 

cg 

Concrete: 

Ee= 30 GPa loco/ = 0.03487 m4 Abutment thickness = 0.5677 m 

<f>(oo,7) = 2.5 X( oo, 7) = 0.8 Self-weight= 18919 Nim 

The 2-D analysis is carried out according to Ghali and Favre (6), 
and the results are shown in Table 1. Results from the 3-D analysis 
are shown in Figure 4a and b. Stresses are calculated at midspan and 
the end of the deck. Negative stresses are compressive, whereas 
positive ones are tensile. 

Example2 

The second example is a two-span bridge built in Iowa. The middle 
support is simulated here as a hinge. The total self-weight of the 
structure per stringer is 21 315 Nim. The dimensions and the geom­
etry of the bridge are shown in Figure 5. The material and geomet­
ric properties are as follows: 

E,t = 200GPa 1st = 0.008625 m4 Ast= 0.03129 m4 

Ee= 23.255 GPa le0 1 = 0.28525 m4 Abutment thickness = 1.0668 m 

<f>(oo,7) = 2.5 X( oo, 7) = 0.8 Self-weight= 21 315 Nim 

Results for three sections are listed for the first span of the bridge, 
the end of the deck, the midspan, and the center of the bridge (hinge 
location). Because the structure is symmetric the results are identi­
cal for the second span _(see Figure 6 and Table 2). 

FIGURE 3 Geometry of the single-span bridge. 



TABLE 1 Creep Analysis for Single-Span Bridge: 2-D versus 3-D 
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FIGURE 4 Stresses versus time, single-span bridge: (a) at the top of the concrete slab; (b) at 
the bottom of the steel beam. 
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FIGURE 5 Geometry of the two-span bridge. 
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FIGURE 6 Stresses versus time, two-span bridge (a) at the top of the concrete slab; (b) at the bottom of 
the steel beam. 
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TABLE 2 Creep Analysis for Two-Span Bridge: 2-D versus 3-D 

LOCATION CREEP2D CREEP3D DIFFER. DIFFER. 
<MPa) lMPa) (MPa) (O/o) 

TOP OF CONCRETE 
ABUTMENT -0.9724 -1.2000 0.2276 19 

MIDSPAN 1.1655 1.4552 0.2897 20 
HINGE -1.3379 -1.1517 0.1862 14 

BOTTOM OF STEEL 
ABUTMENT -13.3034 -11.3172 1.9862 15 

MIDSPAN 6.0620 5.1103 0.9517 16 
HINGE -12.4414 -12.3517 0.0897 1 

RESULTS AND DISCUSSION 

Two indeterminate composite structural systems are analyzed 
for creep: a single-span bridge (15.24 m) and a two-span bridge 
(2 X 34.75 m). The geometric and material properties are varied. 
Static and creep analysis are carried out with 2-D and 3-D models. 
Two creep analysis methods are used: the RCM and the AEMM. 
For the nonlinear analysis with the 3-D models the time step is 
varied. At the beginning, when creep was large, the step was small 
but was increased with time. 

Tables 1 and 2 show that despite the various approaches used 
(RCM and AEMM), the differences between the 3-D and 2-D analy­
sis range from 4 to 26 percent for the first example and from 15 to 
20 percent for the second example. Usually the concrete stresses 
show higher differences because the comparison is between small 

numbers. From the results it is obvious that when the high stresses 
of steel are compared, the difference in percentage is smaller. 

Results from 3-D analysis are not always smaller than those from 
the 2-D analysis. Tables 3 and 4 show the relative significance of 
creep with respect to dead load stresses. Creep stresses in concrete 
are as high as 26 to 55 percent of the dead load stresses and in steel 
creep stresses are as high as 2 to 21 percent. 

In bridge design, dead load, live load, differential settlements, 
temperature, shrinkage, creep, and other effects are considered. It is 
understood that a fraction of the allowable stress of the material 
should be assumed to withstand the creep stresses. Therefore, a 
comparison of the creep stresses with the allowable stresses of steel 
and concrete provide an insight into how important creep is for 
jointless bridges. The creep stresses are only 1 to 9 percent of the 
allowable for the steel and 3 to 42_ percent for the concrete (Tables 

TABLE 3 Relative Significance of Creep With Respect To Dead Load Stresses: 
Single-Span Bridge 

LOCATION DEADLOAD3D CREEP3D CREEP/DL 
a MP a % 

TOP OF CONCRETE 
ABUTMENT 1.4965 -0.5724 38 

MIDSPAN -1.4069 0.6965 49 
BOTIOM OF STEEL 

ABUTMENT -26.3586 -5.4689 21 
MIDSPAN 25.6689 0.5931 2 

TABLE 4 Relative Significance of Creep With Respect To Dead Load Stresses; Two­
Span Bridge 

WCATION DEADLOAD3D CREEP3D CREEP/DL 
(MPa) (MPa) (%) 

TOP OF CONCRETE 
ABUTMENT 3.6827 -1.2000 32 

MIDSPAN -2.6483 1.4551 55 
HINGE 4.3724 -1.1517 26 

BOTIOM OF STEEL 
ABUTMENT -111.1448 -11.3172 10 

MIDSPAN 58.9724 5.1103 9 
HINGE -133.1931 -12.3517 9 
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5 and 6). It is clear that the steel stresses caused by creep are 
insignificant, but the concrete stresses can be large. Notice though 
that the concrete stresses decrease as a result of creep. 

As discussed by Siros and Spyrakos (3), the moment change 
caused by creep is negative at all points along the deck, which 
implies that negative moments (supports) as a result of dead 
load will increase, but positive moments (midspans) will decrease. 
This was further verified with the present work, although moments 
are not shown but rather stresses are presented in the tables and 
figures. Also, the axial forces caused by creep should not be over­
looked because they contribute to the formation of the total stresses 
at each point. 

The results in Tables 1 and 2 demonstrate that stresses at the bot­
tom of the steel stringers increase as a result of creep, but stresses 
at the top of the concrete slab decrease. It should be noticed that this 
happens at all points along the superstructure-for example at 
points of negative moment (support) and at points of positive 
moment (midspan). 

Consequently, we can summarize that creep is additive to the 
dead load effect for the bottom of the steel but is acting beneficially 
at the top of the concrete by reducing both negative and positive 
stresses. Sometimes, however, the reduction of negative (compres­
sive) stresses can be large enough to even change the sign and even­
tually produce tensile stresses (17). In such cases reinforcing of the 
top surface of the concrete deck would be necessary. Even though 
creep stress in concrete can be as high as 49 percent of the dead load 
stress and theoretically may cause reversal of the sign of the initial 
stress, it has not been observed in the analysis of several bridges of 
various span lengths and geometries (18). 
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SUMMARY AND CONCLUSIONS 

Three-dimensional and two-dimensional analyses are performed to 
assess the creep effect on hybrid bridges with integral abutments. 
Two typical bridges with different dimensions and geometric and 
material properties are analyzed. Creep stresses at the top of the 
~oncrete slab and the bottom of the steel stringer are calculated for 
various ages with a 3-D nonlinear analysis. The results can be 
summarized as follows: 

1. The two types of analysis (2-D and 3-D) arrived at results that 
differ by 1 to 29 percent. Comparisons of steel stresses usually show 
smaller differences (1 to 24 percent) than do concrete stresses (11 
to 29 percent). 

2. Creep stresses as a fraction of the dead load stresses range from 
2 to 21 percent for the steel and 26 to 49 percent for the concrete. 

3. Compared with the allowable stresses of the materials, creep 
stresses consist of 1 to 9 percent for steel and 3 to 42 percent for 
concrete. 

4. Creep causes a small increase in positive and negative stresses 
at the bottom of steel stringers and a reduction in the tensile and com­
pressive stresses at the top of the concrete deck. Designers should be 
alert because such reduction of compressive stresses may reverse 
them to tensile, in which case steel reinforcement is necessary. 

ACKNOWLEDGMENT 

This work is sponsored by the West Virginia Department of 
Highways and FHW A. 

TABLE 5 Creep Stresses Versus Allowable Stress of Each Material: 
Single-Span Bridge 

LOCATION CREEP3D ALLOWABLE CREEP/ALL. 
a MP a O/o 

TOP OF CONCRETE 
ABUTMENT -0.5724 3.6827 16 

MIDSPAN 0.6965 18.0689 4 
BOTTOM OF STEEL 

ABUTMENT -5.4689 140 4 
MIDSPAN 0.5931 140 

TABLE 6 Creep Stresses Versus Allowable Stress of Each Material: 
Two-Span Bridge 

LOCATION CREEP3D ALLOWABLE CREEP/ALL. 
(MPa) CMPa) (%) 

TOP OF CONCRETE 
ABUTMENT -1.2000 2.8552 42 

MIDSPAN 1.4552 10.8621 13 
BINGE -1.1517 2.8552 40 

BOTTOM OF STEEL 
ABUTMENT -11.3172 140 8 

MIDSPAN 5.1103 140 4 
BINGE -12.3517 140 9 
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