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Computationally Efficient Method for 
Inclusion of Nonprismatic Member 
Properties in a Practical Bridge 
Analysis Procedure 

THOMAS E. FENSKE, Muzz YENER, DONGFA LIU, AND SUE MOORE FENSKE 

For purposes of bridge analysis, bridges typically are classified as either 
statically determinate or statically indeterminate. Continuous-span 
bridge structures, which generally are statically indeterminate, offer 
advantages over statically determinate, simply supported bridge sys­
tems, such as lighter weight, low_er cost, greater stiffness, and smaller 
deflections. Therefore, most multispan bridge structures are designed to 
be continuous. In the past, one of the simplifying assumptions generally 
made during the bridge analysis process was that the bridge superstruc­
ture members could be analyzed as prismatic members. This was 
primarily because of the computationally intensive nature of the calcu­
lations necessary to include consideration of nonprismatic member 
properties. However, the widespread proliferation of the digital com­
puter has eliminated the need for this particular analysis simplification. 
A comprehensive outline of a computer-based bridge analysis process 
that incorporates nonprismatic member behavior is prescribed. Appli­
cation of this bridge analysis procedure is shown to be remarkably reli­
able and accurate compared with theoretically exact analysis results and 
is considerably more accurate than utilizing a simple prismatic analy­
sis. The analysis procedure presented is economical in terms of 
computational time and computer memory requirements and is a prac­
tical alternative to currently used analysis methods that consider only 
prismatic member properties. 

Bridges can be classified in many ways: for example, by type of 
girders or by type of material. With respect to analysis, bridges typ­
ically are classified as either statically determinate, for which all 
reactions and internal forces can be obtained directly from static 
equilibnum equations, or indeterminate, which requires a more 
sophisticated analysis. Continuous-span bridge structures, which 
are statically indeterminate (assuming the absence of interior 
moment releases), offer advantages over statically determinate, 
simply supported bridge systems. These advantages include lighter 
weight, lower cost, greater stiffness, and smaller deflections, as well 
as greater overload capability caused by stress redistribution. 

In the past, analysis of indeterminate, continuous-span bridge 
structures has been performed by applying analysis methods that 
make use of several simplifications. These simplifications include 
the use of the AASHTO wheel load distribution factor, the 
AASHTO load impact factor, and the assumption of prismatic 
member section properties, among others. The use of any one of 
these analysis simplifications can cause an error in the analysis 
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results, and using all of these can yield a significant discrepancy 
between the results of the simplified analysis and the theoretically 
exact values. 

Steps recently have been taken to provide means by which to 
eliminate some of these simplifications from the analysis of inde­
terminate bridge structures. For example, NCHRP recently funded 
the development of a computer program to generate more accurate 
wheel load distribution factors. This program, LDFAC, calculates 
wheel load distribution factors using a finite element-based struc­
tural analysis, which extends the range of applicability of the wheel 
load distribution factors by a wide margin and allows more reliable 
and accurate analysis results to be obtained for cases such as bridges 
with skewed supports, continuous spans, and bridges for which geo­
metric parameters such as span length or girder spacing fall outside 
the range of simplified formulas (J). Additionally, in a study spon­
sored by the National Science Foundation, the dynamic influence of 
moving vehicular traffic was investigated (2). In this study it was 
shown that the AASHTO load impact factor yields results that can 
be significantly in error and it presented an alternative method for 
including the effects of impact on bridge structures. 

This paper focuses on the minimization of error introduced into 
girder bridge analysis results as a result of making the assumption 
that all of the structural members behave as prismatic members. The 
nonprismatic behavior of bridge structural members was ignored in 
the past primarily because of the computationally intensive nature 
of the mathematical calculations. However, the widespread prolif­
eration of the digital computer makes unnecessary a continuation of 
this analysis simplification. This paper presents the development of 
an analysis methodology that incorporates rapid and accurate dead 
and live load internal force evaluation for nonprismatic girder 
bridges. This analysis procedure is remarkably successful in signif­
icantly reducing the error between the results of the bridge analysis 
procedure and the theoretically exact solution. 

TYPICAL BRIDGE ANALYSIS METHODS 

Classical methods, approximation methods, and numerical methods 
are the three types of analysis methods generally applied to civil 
engineering systems, including bridge structures. Classical analysis 
methods are based on the exact solution of the governing differen­
tial equations of the system. However, the limitations of these meth­
ods, which are applicable only to systems that possess relatively 
simple geometry, loading, and boundary conditions, restrict the 
usefulness to a narrow range of problems. 
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More complex problems are typically solved using an approxi- , 
mation method or a numerical method. Approximation methods 
include energy methods, such as the principle of minimum poten­
tial energy; variational principles, such as the Galerkin method and 
the Ritz method; and perturbation methods. However, the applica­
tion of approximate methods are limited to uncomplicated bound­
ary conditions and si~ple variation of thickness. Also, it is impor­
tant to remember that the use of an approximation method will yield 
just that-an approximate analysis solution. 

The numerical methods of analysis are based on the principles of 
finite elements and finite differences. Numerical analysis allows for 
a more accurate analysis than can be achieved using the approxi­
mation methods and is applicable to a far wider range of problems 
than the other types of analysis methods. Numerical methods have 
been applied successfully to problems such as those that include 
tapered plates, circular plates, elements of varying thickness, and 
nonprismatic members. 

All three analysis procedures are currently being used in bridge 
analysis. A classical approach based on the flexibility method is 
used in most older programs with a constant flexural stiffness EI to 
generate influence lines. A numeric successive approximation 
method known as Newmark's method is used in several computer 
programs because of the ease and simplicity of implementation. A 
number of direct stiffness matrix analysis programs are available 
that use a moving load to generate influence diagrams. Several of 
these programs use the "transfer matrix" approach to reduce the 
demands on computer memory and computation time. The analysis 
approach introduced in this paper has proven to be more accurate, 
based on a one-dimensional analysis, and is significantly more effi­
cient in terms of computer storage requirements and execution time. 

DEVELOPMENT OF GIRDER BRIDGE 
ANALYSIS METHODOLOGY 

The bridge analysis approach developed in the computer program, 
terqied GBRIDGE, consists of three segments: structural analysis 
based on the direct stiffness method, influence line generation, and 
determination of maximum moments and shears. 

The direct stiffness method of structural analysis uses the princi­
ples of joint equilibrium and compatibility to solve for joint dis­
placements. These actions and displacements are related through 
the matrix equilibrium equation 

[A] = [S][D] 

where 

[A] = action matrix of applied forces and moments, 
[S] = global stiffness matrix assembled from the member stiff­

ness matrixes, and 
[D] = unknown displacement matrix. 

In a physical sense, the global stiffness matrix contains coefficients 
that represent the actions taking place at a node caused by a unit dis­
placement of a member end. This matrix, along with the appropri­
ate boundary conditions, is then used to calculate the actual dis­
placements caused by the actual dead load and live load forces and 
moments by the solution of simultaneous equations. After the joint 
displacements have been found, the forces, stresses, and displace­
ments at the internal analysis points and at material breaks can be 
calculated through application of superposition for the dead load 
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and superimposed dead load cases and through use of influence 
lines and superposition for the live load case. 

A unique feature of the GBRIDGE analysis procedure is the inclu­
sion of nonprismatic member behavior. Indeterminate bridge mem­
ber section properties vary as a function of the construction process. 
In the dead load condition, prismatic bridge girders, such as 
AASHTO prestressed beams, can be analyzed on the basis of pris­
matic section properties before the hardening of the roadway deck. 
However, in the case of the composite bridge system, which has both 
positive and negative moment areas, the concrete roadway deck can 
contribute to composite action only in the positive moment area 
because concrete is effective only under compressive stress. In the 
negative moment area, the reinforcing steel can be considered in sec­
tion property evaluation. Therefore, even in general continuous 
bridge systems with prismatic members, the bridge systems are com­
posed of nonprismatic members if composite construction is used. 

Incorporating nonprismatic member properties into the bridge 
analysis procedure presents particular problems when employing 
the direct stiffness analysis approach. The direct stiffness procedure 
assumes a continuous shape (displacement) function or interpola­
tion polynomial in formulating the element stiffness matrix. There­
fore, this method can lead to exact answers only when the displace­
ment of the member's neutral axis is continuous. The difficulty 
associated with using the direct stiffness method becomes apparent 
when it is recognized that virtually all girder bridges are composed 
of segmental, nonprismatic supportin'g girders. 

In the case of segmentally nonprismatic beams, any approximat­
ing shape function that represents the entire girder length must be 
discontinuous. This is explained through examination of the 
moment-curvature equation 

in which 

y = displacement of the neutral axis, 
x = location at any point on the member, 

Mx = moment at location x, 
Ix = moment of inertia at location x, and 
E = modulus of elasticity at location x. 

In this equation, y represents the displacements caused by bending 
of the beam member's neutral axis as a function of the member's 
length. However, on either side of a material change, the internal 
resisting moment Mx is the same but the member's neutral axis loca­
tion and moment of inertia are different, as shown in Figure 1. There­
fore, any analysis formulation must account for this discontinuity. 

This discontinuity problem can be overcome provided that the 
girder is modeled by a series of prismatic beam elements. Each pris­
matic segment can utilize a continuous shape function because, for 
each segment, the neutral axis location remains constant. This type 
of formulation requires the use of a large number of prismatic beam 
elements to obtain accurate analysis results. This segmental formu­
lation requires a large amount of the available computer random 
access memory and requires considerably longer execution time to 
solve the greater number of simultaneous equations that result. 
Even when using the "transfer matrix" approach, considerable cen­
tral processing unit time is required. This difficulty is overcome 
in the GBRIDGE analysis procedure by integration of classical 
beam theory employing numeric integration and the traditional 
displacement-based direct stiffness analysis. 
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FIGURE 1 Nonprismatic girder material change. 

Nonprismatic Stiffness Matrix 

The development of the nonprismatic element stiffness matrix can 
be divided into two parts: the flexural contribution and the axial 
contribution. The flexural contributions to the girder stiffness 
matrix assume that the girder is bent in a principal plane and the 
effects of shear deformations can be neglected. In addition, it is 
assumed that the angle change between two adjacent cross sections 
is small after bending has occurred. The nonprismatic element for­
mulation process employs the classical analysis approach of super·­
position in which the indeterminate structure is reduced to a stati­
cally stable and determinate structure by removing the redundant 
end moments ML and MR. Thes_e redundant end moments then are 
reapplied and the resulting member end rotations are related to the 
fact that the actual rotations at fixed ends are 0. Manipulating the 
solution of the resulting simultaneous equations will yield the non­
prismatic element stiffness matrix and the equivalent nodal forces. 
The flexural stiffness components are 

A 
BL 
-A 

(A-B)L 

where 

A = I I L(-1 ) dx 
L O Lfx 

B = ht(L~lx) dx 

BL 
CL2 
-BL 

(B-C)L2 

-A (A-B)L 
-BL (B-C)L2 

A -(A-B)L 
-(A-B)L (A -2B + C)L2 

and his the moment of inertia at the left end of the member, Lis the 
length of the member, and x is a variable location along the mem­
ber length. 

The nonprismatic stiffness coefficients caused by flexure have 
been derived as closed-form integrals in terms of natural or global 
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coordinates. The formal integration of these coefficients is tedious 
and susceptible to error and, because each new girder would require 
individual evaluation, formal integration is neither practical nor 
efficient for computer implementation. Instead, numerical integra­
tion is performed using Gaussian quadrature. The accuracy of this 
approach is shown via application to two illustrative problems 
shown in Figures 2 and 3; the results for each are given in Tables 1 
and 2, respectively. In the segmental nonprismatic beam problem, 
all of the results obtained by the various methods are identical; how­
ever, the segmental beam approach (using three beam segments) 
required twice the amount of computer memory space and execu­
tion time compared with the single nonprismatic element method. 
In the tapered nonprismatic beam problem, not only did the seg­
mental approach (15 segments) require eight times more memory 
and execution time, but it was also considerably less accurate. 

The axial contribution to the element stiffness matrix is based on 
the standard displacement-based direct stiffness approach by 
employing the assumption of centroid segment alignment. The con­
crete roadway system is neglected in considering axial effect, that 
is, only the supporting girders are considered to carry axial loads. 
Therefore, the axial stiffness components are 

ARE 1-1 -11 I Se=L 

I 
3.75' 

L 

FIGURE 2 Segmental nonprismatic 
beam example. 

FIGURE 3 Tapered nonprismatic beam example. 

TABLE 1 Solution Comparison for Segmental Beam 

Member 
End 
Left End 
Right End 

Theoretically 
Exact 
5.47 
5.47 

Member End Moments (ft-kl 
GBRIDGE Quadrature Traditional 
Solution FEM 
5.47 5.47 
5.47 5.47 
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TABLE 2 Solution Comparison for Tapered Beam 

Member 
End 
Left End 
Right End 

Theoretically 
Exact 
11.37 
10.28 

where A is the equivalent cross-sectional area, expressed as 

The complete element stiffness matrix is formulated by adding the 
two matrixes together. If the local element axes are not parallel to 
the global structure axes, the stiffness matrix coefficients must be 
adjusted to correspond to the global axes through the use of direc­
tion cosines. Then, the global stiffness matrix for the bridge struc­
ture is formulated by summing the element stiffness matrixes for 
each structural member. 

Structural Analysis 

Once the global stiffness matrix has been obtained and appropriate 
boundary conditions applied, the analysis is performed for each 
loading condition. These loading conditions, per AASHTO specifi­
cations, are dead load, superimposed dead load, and live load plus 
impact. For the conditions of dead load and superimposed dead 
load, only the member end actions need to be computed. Once these 
member end actions are determined, the internal shears and 
moments at any point along the member can be evaluated directly 
from superposition, given the assumption of a uniformly distributed 
loading. The actual shears and moments for each analysis point for 
the dead load and superimposed dead load conditions can be calcu­
lated using the following: 

(
Mn+ Mn+!) ( L ) 

Vap = Vx = L + w 2 - x 

Member End Moments (ft-kl 
GBRIDGE Quadrature Traditional 
Solution FEM 
11.39 11.74 
10.34 10.71 

which are developed from the illustrations indicated in Figure 4. Mn 
is the member end moment at the left end of the member, Mn+ 1 is 
the member end moment at the right end of the member, xis the 
location of the analysis point of interest, and Lis the member length. 

The analysis of the live load condition can be accomplished by 
using influence lines. An influence line shows the value of any 
action (shear, moment, deflection) as a result of a unit point load 
moving across the structure. (Note that the influence line unit load 
must represent the function sought at each analysis point, that is, a 
unit load for shear and a unit moment for moment.) In GBRIDGE, 
actual shear influence lines are used; however, the moment influ­
ence line used is actually an analogous end-moment distribution 
line generated for each girder analysis point. The use of this 
end-moment distribution line as the moment influence line is an 
important feature of GB RIDGE. 

To develop the GBRIDGE live load influence lines, it is neces­
sary only to obtain the end moments over the supports and apply 
distribution equations. The determination of member end moments 
can be accomplished by indirectly considering the effects of the 
fixed end moments for any specific unit loading. Final member end 
moment equations then can be developed for an arbitrary applica­
tion of a 1,000 ft-k joint moment to each unrestrained rotational 
degree of freedom. The resulting end moments divided by 1,000 are 
the coefficients that, when multiplied by the fixed end moments, 
result in the true member end force. The fixed end moments are 
computed numerically for a unit load placed successively at each 
analysis point. Utilization of this analysis technique significantly 
reduces the computation time required in the evaluation of final 
member end moments for the multitudes of loads that must be con­
sidered since only a relatively few analyses are performed on the 
basis of applied joint moments. Also, the required amount of com­
puter memory needed to accomplish the analysis is minimized 

FIGURE 4 Analysis point forces for uniform loads. 
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because only the member end moments are stored, not the individ­
ually calculated ordinate values for each influence line. Rather, the 
influence lines for each analysis point can be rapidly computed as 
needed. This approach is much less expensive in terms of compu­
tation time and memory requirements. 
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x>L 

where 
On the basis of this approach, the true member end forces can be 

obtained for any loading condition without actually analyzing that 
loading condition. The ordinates for the moment and shear influ­
ence lines can be easily evaluated using the following equations: Map and Vap = moment and shear ordinates at the analysis point 

of interest, 

x 
X ~ kL Mx =-Mn+ (Mn+I +Mn) L +(I - k)x 

x = location along the member length of the analysis 
point of interest, and 

kL = location of the applied load. 
Figure 5a and b shows examples of typical moment and shear influ­
ence lines for a three-span continuous bridge system that has been 
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FIGURE 5 (a) Moment influence lines, (b) shear influence lines 
(continued on next page). 
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FIGURE 5 (continued). 

developed using the approach outlined above. The nonprismatic 
fixed end moment equations used in the dead load, superimposed 
dead load, and live load cases are shown in Figure 6. 

In addition to the efficient method developed for generating influ­
ence lines, GBRIDGE also incorporates a technique for rapid inter­
nal force evaluation. When the analysis point location and t~e posi­
tion of the applied loading are in the same span, the internal force 
evaluation process is dependent on the analysis point position. If the 
analysis point is located farther than 0.2L away from the member 

x ~=-n 
x 

r=-~n. 
x 

6. 

ordlna. te loco. tlon 

ends, the maximum ordinate will be located at the location of the 
analysis point. However, if the analysis point is located within 0.2L 
of the member ends, then both positive and negative ordinate val­
ues will occur along the span and both the maximum positive and 
negative values must be determined. 

A significant detail can be observed through study of Figure 5a 
and b. The location of the maximum ordinate for spans other than 
.the loaded span will not vary, no matter where the load is applied 
on the loaded span. The magnitude of the ordinate value will vary, 
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FIGURE 6 Fixed end moment equations. 

but not the location. This is because, in elastic analysis, the distrib­
ution of loading is dependent only on the member properties. 
GBRIDGE makes efficient use of this phenomenon by storing the 
location of the maximum ordinates in the unloaded spans after the 
initial internal force evaluation. As a result, the maximum shears 
and moments in the unloaded spans can be calculated directly for 
each successive evaluation of the loaded span. 

The procedure for calculating maximum moments and maximum 
shears are identical to this point. In addition, both positive and neg­
ative shear effects must be examined for absolution maximum shear 
load. Also, fatigue and shear stud spacing both are dependent on 

[ 
-w1

2 l Mc.= . 2 [BD-C2] 
2 (AC-B ) 

[ 
-wl 2 l MR= [AC-B 2 +BD-c 2 -AD+BCJ 

2 (AC-8 2 ) I 

Pkl l [AC-B 2 +kC(F-E) -k 2B(G-F)] 
(AC-B 2 ) 

Pkl 
2 
l [k ( C-B) ( F-E+k 2 (A-B) ( G-F)] 
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x 3dx 
D=I f c. 1 L 4 I 

.x 

E=I f dx 
c. l (kl) I"' 

x dx 
F=I f c. 1 (kl) 2 I"' 

G=I f x 2dx 
c. l (kl) 3 I"' 

shear range (i.e., the maximum difference between positive and 
negative shear forces), which varies only slightly throughout the 
bridge system, as indicated in Figure 7. 

SUMMARY 

This paper has presented a comprehensive outline of an analytical 
bridge evaluation process that incorporates nonprismatic member 
behavior. This behavior is considered in the analysis through the 
development of nonprismatic element stiffness matrixes. Applica-
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FIGURE 7 Shear range. 

tion of this bridge analysis procedure is remarkably reliable and 
accurate, as shown in Figure 8, in which moment diagrams for a 
composite, two-span girder bridge are presented. These moment 
diagrams represent a comparison of the theoretically exact analysis 
results versus the results of the GBRIDGE analysis procedure plus 
a comparison of nonprismatic versus prismatic member analysis. 
The maximum percentage difference between the theoretically 
exact values and the GBRIDGE numeric solution is less than 1 per­
cent. In addition, the maximum difference between the results 
obtained from a prismatic analysis and those obtained from a non­
prismatic analysis is approximately 15 percent. This fact alone dra­
matically underscores the need to incorporate nonprismatic mem­
ber properties into the general bridge analysis process. 

CONCLUSIONS 

The GBRIDGE analysis procedure is a practical alternative to cur­
rently used bridge analysis methods that consider only prismatic 
member properties. The GBRIDGE computer program is fully 
implemented and operational. The authors believe that the perfor­
mance of the GBRIDGE program, in terms of accuracy of results 
and computation time, will impress the bridge designer when com­
pared with other available software. To that end, the authors/devel­
opers of GBRIDGE will be pleased to share a scaled-down version 
of GBRIDGE with any not-for-profit organization, such as a state 
department of transportation, which may be interested in testing 
GBRIDGE in practice. 
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