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DIPLOMAT: Analysis Program for 
Bituminous and Concrete Pavements 

LEV KHAZANOVICH AND ANASTASIOS M. lOANNIDES 

Burmister' s layered elastic theory is extended to accommodate an inte
rior loading of a multilayered pavement system incorporating an arbi
trary sequence of elastic plates and spring beds, in addition to isotropic 
layers. The formulation is coded into a new computer program, called 
DIPLOMAT, thereby allowing for the first time direct comparisons . 
between the distinct analytical approaches conventionally used for so
called rigid and flexible pavements. The new program is as user friendly 
and computationally efficient as the widely used layer~d elastic analy
sis program BISAR. In addition to permitting multiple-wheel loads, 
DIPLOMAT may be used to investigate the effects of a variety of inter
face and boundary conditions, including that of a rigid base. When con
sidering a plate on grade, DIPLOMAT reproduces the closed-form solu
tions by Westergaard (dense liquid foundation) and by Losberg (elastic 
solid foundation). On the other hand, for a pavement section consisting 
of up to five isotropic layers, the new program reproduces the BISAR 
solutions for bonded or unbonded layers. A number of applications of 
the program are presented, including an assessment of the structural 
contribution of compressible (granular or bituminous) bases under a 
concrete pavement slab, and determination of the interface spring stiff
ness that accounts for constructed layer compressibility. Some implica
tions of program results to pavement design are also discussed. 

In determining the structural response of highway and airport pave
ments, one of two fundamentally different hypotheses has been tra
ditionally used to idealize the properties of the subgrade. For port
land cement concrete (PCC) pavement systems, the simplest of 
these theories is used: the supporting soil medium is considered a 
bed of closely spaced, independent, linear springs. Each spring 
deforms in response to the stress applied directly to it, and neigh
boring springs remain unaffected. The spring stiffness, k, is called 
the modulus of subgrade reaction and is assumed to be spatially 
independent. This idealization is commonly called a "dense liquid" 
and is almost universally ascribed to Winkler (1). 

For asphalt concrete (AC) pavements, on the other hand, a sec
ond support characterization theory is conventionally used, in 
which the soil is regarded as a linearly elastic, isotropic, homoge
neous solid, of semi-infinite extent. The terms "elastic solid," "elas
tic continuum," or "Boussinesq's half-space" are often applied to 
this idealization (2). It is regarded as a more realistic representation 
of actual subgrade behavior than the dense liquid model, inasmuch 
as it takes into account the effect of shear interaction between adja
cent subgrade support elements. 

In a parallel fashion, two distinct theoretical models have been 
traditionally used in idealizing the constructed layers in the pave
ment system. For PCC pavements, medium-thick plate theory is 
conventionally used (3). This approach is again the simpler of the 
two and proceeds from the assumption that the constructed layer, 
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typically a PCC slab, resists the applied loads by bending alone, 
experiencing no compression through its thickness in the process. 
A more realistic representation of in situ behavior of constructed 
pavement layers may be obtained by assu_ming that they behave as 
linearly elastic, homogeneous, and isotropic materials not su.bject to 
the restrictive assumptions of plate theory. In view of the relatively 
higher compressibility of asphalt. concrete, the . layered elastic 
approach has been adopted in current analysis procedures for AC 
pavements (4,5). 

These conventional choices may lead to the impression that the 
elastic solid foundation is inextricably associated with layered elas
tic analysis. It has been recently demonstrated not only that is this 
not the case but also that a formulation based on the isotropic 
layer-dense liquid subgrade combination might in fact: have 
numerical advantages over conventional applications of layered 
elastic analysis (6). A literature survey conducted recently (7) 
revealed that similar ideas had also been promulgated in the former 
Soviet Union (8). 

This paper describes the development of a new structural analy
sis program, code-named DIPLOMAT, which can be used for both 
PCC and AC pavement systems. Much like conventional layered 
elastic analysis programs, DIPLOMAT can accommodate multi
layered pavement sections, loaded by multiple-wheel loads. In addi
tion, however, it allows the user the option to specify that the last 
layer in the pavement system be a bed of springs and that one or 
more of the constructed layers be treated as plates. Such a structural 
model is interesting from theoretical as well as practical perspec
tives. For the first time, it allows analyses of both PCC and AC 
pavement systems based on the same assumptions and can facilitate 
comparisons between the behavior and performance of these two 
heretofore distinct pavement types. In this respect, the formulation 
in DIPLOMAT constitutes an extension and generalization of Bur
mister' s layered elastic theory. 

FORMULATION OF 
BOUNDARY VALUE PROBLEM 

The 'formulation of the boundary value problem (BVP) posed by a 
multilayered pavement system involves four major components: the 
equilibrium equations, the strain-displacement relationships, the 
constitutive law, and the boundary and initial conditions. Complete 
details of this formulation are provided in a work by Khazanovich 
(9). Only the highlights are presented herein, with emphasis placed 
on the boundary (or interface) conditions used. 

The equilibrium equations, constitutive laws, and strain
displacement relationships for a uniform, isotropic (Burmister) 
layer have been presented elsewhere (10). For an axisymmetric 
problem, it is convenient to use the cylindrical coordinate system 
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(r, <I>, z). In this coordinate system, some components of the dis
placement vector and stress tensor are identically equal to zero due 
to axisymmetry. The remaining stress and displacement compo
nents can be rewritten in terms of the biharmonic stress function, <I> 
(11). The fact that function <I> is biharmonic, that is, 

V4 <I>= 0 (1) 

provides satisfaction of the equilibrium condition in this case. Fol
lowing Burmister ( 4,5), the biharmonic function <I> for isotropic 
layer i is expressed in the following form: 

<I>;= f0 

[A;(m)emz - B;(m)e-mz + C;(m)zemz 

- D;(m)zemz]J0 (m r) dm (2) 

where 

In = Bessel function of nth order, 
z = local vertical coordinate, 

which in contrast to Burmis
ter' s convention is measured 
here down from top surface 
ofeachlayeri,and 

A;(m), B;(m), C;(m), and D;(m) = unknown functions that do 
not depend on coordinates. 

These constants are evaluated by satisfying the boundary conditions. 
The governing equilibrium equations, strain-displacement rela

tionships, and constitutive law for a uniform Kirchhoff plate are 
given elsewhere (12). Accordingly, the plate deflection profile is 
given by 

q* 
V4 w= -

D 
(3) 

where q* is the net (total) pressure applied to top and bottom sur
faces of plate, and D is plate flexural stiffness, defined as 

D= Eh3 
12(1 - µ2) 

(4) 

Here h, E, andµ denote the plate thickness, modulus of elasticity, 
and Poisson's ratio, respectively. Note that for a general multilay
ered system, the applied pressure, q*, is unknown and is determined 
from the boundary conditions for the adjacent layers, above and 
below the plate. The deflection profile for a plate, w;, can be pre
sented in a form similar to that used by Losberg (13): 

. Loo W;(m) 
w' = --- J0(m r) m dm 

o E; 
(5) 

where function W;(m)IE; is the zero-order Hankel transform of the 
deflection profile and is the only function to be determined for a plate. 

The governing equilibrium equations, strain-displacement rela
tionships, and constitutive law for a bed of springs can be derived 
from the corresponding equations for the isotropic layer, if the hor
izontal displacements u and v are set to zero, along with the two 
transverse shear strains and the layer's Poisson's ratio,µ (14). Thus, 
the following equation can be written for the spring bed: 

(6) 
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where 

az = vertical stress in springs, 
w1 and wb = vertical displacements of top and bottom ends of 

springs, and 
k = spring stiffness. 

It should be noted that the presence of spring beds does not intro
duce additional unknown functions. The response of these springs 
can be expressed in terms of the responses of the adjacent layers, 
above and below the_springs. 

To complete the formulation of the BVP for a multilayered sys
tem, it is necessary to specify boundary conditions between the lay
ers. The presence of different layer options makes formation of the 
BVP in this case more difficult than for the original Burmister (4) 
problem. Here, the boundary conditions for each layer depend on 
the kind of model adopted for its adjacent layers (above and below 
it). To reduce the number of possible combinations, the following 
restrictions have been accepted: (a) a plate cannot have a common 
border with another plate, and (b) a spring bed cannot have a com
mon border with another spring bed. 

These restrictions impose no reduction in the generality of the 
proposed approach. Two plates resting on one another can be 
replaced by an equivalent plate with parameters as defined by loan
nides et al. (15). At the same time, n spring beds in series can also 
be replaced by one equivalent spring bed with effective spring stiff
ness, keff 

1 
keff= _n_l_ 

I-
i=I k; 

(7) 

where k; is stiffness of each individual spring bed. Stresses in 
every spring bed are equal to the corresponding stress in the equiv
alent bed. 

In what follows, the boundary conditions for the BVP will be 
formulated for different combinations of isotropic layers, plates, 
and spring beds. It is assumed that all layers are numbered sequen
tially from top to bottom as 1 to n, with the nth layer being an elas
tic solid half-space, or a finite isotropic layer or spring bed resting 
on a rigid base. The case of the pavement surface layer being a 
spring bed is trivial and is not considered below. 

Boundary Conditions at Interface 
Between Two Isotropic Layers 

Following Burrnister (4,5), two kinds of boundary conditions at the 
interface between two isotropic layers are usually considered: a 
rough interface or a smooth interface. Both kinds of conditions 
assume continuity of vertical displacements and of vertical stresses 
across the interface, whose normal is in the z direction. Thus, the 
following continuity conditions are always satisfied: 

(8) 

(9) 

where q?and a~+ 1• 
1 are vertical stresses at the bottom surface of the 

upper layer and at the top surface of the lower layer, respectively; 
w;· b and w; + 1. 1 are vertical displacements at the bottom surface of 
the upper. layer and at the top surface of the lower layer, 
respectively. 
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The rough interface condition also assumes continuity of hori
zontal displacements and of shear stresses across the interface. This 
assumption can be written in the following form: 

ui· b = u; +1.1 

(10) 

(11) 

where T~b and T,~+1 .r are shear stresses at the bottom surface of the 
upper layer and at the top surface of the lower layer, respectively; 
ui,b and u;+i,r are radial displacements at the bottom surface of the 
upper layer and at the top surface of the lower layer, respectively. 

The smooth interface condition does not require continuity Of 
horizontal displacements or of shear stresses across the interface, 
but allows free slip of one layer with respect to the other in the hor
izontal direction. Therefore, this kind of interface leads to the fol
lowing conditions: 

(12) 

(13) 

One can note that either Equation 12 or Equation 13 can be 
replaced by Equation 10. 

Boundary Conditions at Interface Between 
Isotropic Layer and Rigid Base 

The interface between an isotropic layer and a rigid base can also 
be rough or smooth. Both types of interface conditions require zero 
vertical displacement at the bottom of the isotropic layer, n, above 
the rigid base: 

w"·b = 0 (14) 

The rough interface condition requires that radial displacements 
also vanish at the bottom surface of the isotropic layer: 

(15) 

The smooth interface does not resist horizontal displacements 
along the bottom of the isotropic layer and leads to the condition of 
vanishing shear forces at this interface: 

(16) 

Boundary Conditions for Elastic Solid Half-Space 

In this case, displacements should vanish as depth tends to infinity, 
that is, 

w=u=O as z -7 00 (17) 

It may be verified that satisfaction of these conditions also leads 
to vanishing stresses at infinite depth. 

Boundary Conditions at Interface 
Between Isotropic Layer and Plate or Spring Bed 

If an isotropic layer, i, has a common boundary with a plate or a 
spring bed, this interface is always smooth and free of shear stresses 
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(18) 

where superscripts denotes tor b (top or bottom surface, respec
tively), depending on which surface of the layer is considered. 

If the adjacent layer is a plate, then its vertical deflections are 
· equal to the corresponding layer vertical deflections at the interface: 

(19) 

where wP is the adjacent plate deflection. 
If the adjacent layer is a spring bed, then normal stresses in the 

isotropic layer at the interface are equal to the vertical stresses in the 
spring bed, a~ 

(20) 

Boundary Conditions for Plate 

As mentioned earlier, to specify boundary conditions for a plate 
means to specify equations for the applied net (total) pressure, q*, 
in Equation 3. If plate i is not the surface layer of the multilayered 
pavement system, then this pressure is the difference between the 
vertical stress at the top surface of the layer right below the plate 
and the vertical stress at the bottom surf ace of the layer right above 
the plate, as follows: 

(21) 

If either adjacent layer is a spring bed, then the normal stress in 
the springs can be written in terms of the plate deflection and of the 
deflection of the other end of the spring bed, in a manner similar to 
Equation 6. 

Boundary Conditions for Uppermost Surface 
of Multilayered System 

It is assumed in this study that the applied loading is normal to the 
uppermost surface of the multilayered system. Therefore, if the first 
layer is an isotropic layer, then two boundary conditions should be 
satisfied at this surface: equality of normal stress to the applied pres
sure, p, and presence of no shear stresses. These conditions can be 
presented as follows: 

(22) 

(23) 

If the first layer is a plate, then the following equation should be 
satisfied: 

(24) 

where a~·1 is the vertical stress at the top surface of the second layer. 
Equations 8 through 24 allow the formation of a complete system 

of equations for a BVP for any combination of isotropic layers, 
plates, and spring beds. In solving these equations., the Hankel trans
forms of the boundary conditions are first obtained, and then these 
transforms are rewritten in terms of the unknown functions A;, B;, 

C;, D;, and W;. If the multilayered system consists only of NL 
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isotropic layers, then the stress and deflection distributions are 
described by four NL unknown functions. NL layers have NL - 1 
shared interfaces, which give rise to four (NL - 1) equations. The 
boundary conditions for the uppermost surface of the multilayered 
system gives two more equations. The final two equations necessary 
are obtained from the boundary conditions at the bottom surface of 
the last member of the multi layered system. If this member rests on 
a rigid base, the pertinent conditions are zero vertical displace
ments, and either zero horizontal displacements or zero shear 
stresses, depending on the nature of the interface (rough or smooth). 
If the last member of the multilayered system is a semi-infinite half
space, the pertinent conditions are vanishing displacements, u and 
w. Thus, the complete system consists of four NL equations with 
four NL unknown functions. 

It should be noted that every time an additional plate is inserted 
into a multilayered system consisting of NL isotropic layers, the total 
number of equations increases by one. It should also be noted that 
introduction of a spring bed at any existing interface does not 
change the total number but only the form of the equations. There
fore, the total number of equations in the system is equal to ( 4NL) + 
Np, which is also the number of unknown functions. Solution of 
the linear system of equations with NT unknown functions leads to 
the determination of the responses for the multilayered pavement 
system. 

VERIFICATION OF PROGRAM DIPLOMAT 

The formulation presented has been coded in FORTRAN into pro
gram DIPLOMAT (9). The program is capable of analyzing up to 
five layers over a rigid base or up to four layers over an elastic solid 
half-space. To accommodate multiwheel loading, superposition is 
used, and Cartesian coordinates (x, y) are adopted, instead of polar 
coordinates (r, cf>). To verify the program, several series of runs 
were performed. Some of the results obtained will be presented 
below where they will be compared with solutions obtained from 
other programs when appropriate. 

Comparison With BISAR 

If all layers in the multilayered system are isotropic, such a system 
may be analyzed using any.of the conventional computer programs 
for layered elastic systems. In this study, results obtained using pro
grams DIPLOMAT and BISAR (16) were compared. The follow
ing multilayered system, representing a typical AC pavement sys
tem, was analyzed: 

Layer 1-127-mm-thick (5-in.) AC layer with modulus of elas
ticity E 1 = 5 517 MPa (800,000 psi), Poisson's ratio µ1 = 0.25; 

Layer 2-152-mm-thick (6-in.) base layer with modulus of elas
ticity E2 = 207 MPa (30,000 psi), Poisson's ratio µ2 = 0.3; 

Layer 3-508-mm-thick (20-in.) subbase layer with modulus of 
elasticity E3 = 103 MPa (15,000 psi), Poisson's ratio µ3 = 0.45; and 

Layer 4-Subgrade with modulus of elasticity E .. = 34.5 MPa 
(5,000 psi), Poisson's ratioµ .. = 0.45. 

All layers were assumed to be unbonded. The radius of the 
applied load was set at 150 mm (5.9 in.) (falling weight deftec
tometer load), and the applied pressure at 689 kPa (100 psi). Cal
culations were performed for the following locations: 

55 

Point A-AC layer, top surface, under the center of applied load. 
Point B-AC layer, top surface, 305 mm (12 in.) from the center 

of applied load. 
Point C-AC layer, top surface, 610 mm (24 in.) from the center 

of applied load. 
Point D.-AC layer, top surface, 914 mm (36 in.) from the center 

of applied.load. 
Point E-AC layer, bottom surface, under the center of applied 

load. 
Point F--.:.Base layer, top surface, under the center of applied 

load. 
Point G-Base layer, bottom surface, under the center of applied 

load. 
Point H-Subbase layer, top surface, under the center of applied 

load. 
Point I-Subbase layer, bottom surface, under the center of 

applied load. 
Point J-Subgrade layer, top surface, under the center of applied 

load. 

The results of these calculations are presented in Table 1. It can 
be observe.ct that BISAR and DIPLOMAT produce identical results 
for this system. Equally satisfactory coincidence between BISAR 
and DIPLOMAT has been obtained for sections with bonded layers 
as well. 

Plate Over Isotropic Elastic Solid Half Space 

A series of runs was performed involving a plate resting on an 
isotropic elastic solid half-space, to compare the maximum plate 
bending stresses obtained by DIPLOMAT with the closed-form 
solution presented by Losberg (13). The modulus of elasticity and 
Poisson's ratio for the plate were set equal at 27 .6 GPa ( 4 Mpsi) and 
0.15, respectively. The modulus of elasticity, Es, and Poisson's 
ratiq, µ.., for the elastic solid half-space were set equal to 276 MPa 
(40,000 psi) and 0.45, respectively. The plate thickness varied from 
102 mm (4 in.) to 406 mm (16 in.). The total applied load was 178 
kN (40,000 lb) and the applied pressure was 2 759 kPa (400 psi). 
Table 2 presents the maximum plate bending stresses obtained by 
using DIPLOMAT and Losberg's closed-form solution 

u= -6 P(l + µ) [ ( a ) h2 0.1833 Log 10 f": - 0.049 

-0.012( ;e )2 + 3.537 10-3
( ;e )3 - 5.012 10-4

( ;e rJ (25) 

where ee is the radius of the relative stiffness of the plate-on-elastic 
solid system, defined as follows: 

3 2 D(l - µ}) ee = (26) 
Es 

Again, excellent agreement is observed between results obtained 
using DIPLOMAT and Losberg's closed-form solution. Near
perfect agreement has also been obtained between DIPLOMAT and 
Westergaard's closed-form solution. 

Isotropic Layer Over Spring Bed 

This problem was analyzed by Glazyrin (8) and by van Cauwelaert 
(6). In this study, a series of runs for an isotropic layer with modu-
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TABLE 1 Stresses and Displacements in Four-Layered AC 
Pavement System 

(a) Using BISAR 

Point w u cry crx crz 
mm mm MPa MPa MP a 

A 1.097 0.000 -2.522 -2.522 -0.689 
B 0.899 -0.050 -0.978 2.990 0.000 
c 0.660 -0.042 -0.346 0.137 0.000 
D 0.485 -0.030 -0.004 0.160 0.000 
E 1.087 0.000 2.411 2.411 -0.115 
F 1.087 0.000 -0.118 -0.118 -0.115 
G 1.021 0.000 0.076 0.076 -0.085 
H 1.021 0.000 -0.105 -0.105 -0.085 
I 0.815 0.000 0.051 0.051 -0.026 

J 0.815 0.000 -0.025 -0.025 -0.026 

(b) Using DIPLOMAT 

Point w u cry crx Oz 

mm mm MPa MPa MPa 

A 1.0965 0.0000 -2.5238 -2.5238 -0.6890 
B 0.8987 -0.0500 -0.9784 -2.9882 0.0000 
c 0.6612 -0.0422 -0.3462 0.1371 0.0000 
D 0.4844 -0.0302 -0.1417 0.1600 0.0000 
E 1.0876 0.0000 2.4115 2.4115 -0.1151 
F 1.0876 0.0000 -0.1178 -0.1178 -0.1151 
G 1.0206 0.0000 0.0760 0.0760 -0.0854 
H 1.0206 0.0000 -0.10.50 -0.1050 -0.0854 
I 0.8164 0.0000 0.0511 0.0511 -0.0265 

J 0.8164 0.0000 -0.0252 -0.0252 -0.0265 

Notes: E1 = 5517MPa (800,000 psi); µ 1 = 0.25; h1 = 127 mm (5 in.); 
~ = 207 MPa (30,000 psi); µ2 = 0.30; h2 = 152 mm (6 in.); 
E3 = 103 MPa (15,000 psi); µ3 = 0.45; h3 = 508 mm (20 in.); 
E4 = 34.5 MPa (5,000 psi); µ4 = 0.45. 
Load= 44.5 kN (10,000 lbs); pressure = 689 kPa (100 psi); 
Unbonded interfaces. Tension is positive. 
(w, u): Displacements in z and x directions, respectively. 
(cry, crXI crz>: Stresses in y, x, and z, directions, respectively. 

lus of elasticity equal to 27 .6 GPa ( 4 Mpsi) and Poisson's ratio equal 
to 0.15, resting over a spring bed with stiffness, k, of 54.3 kPa/mm 
(200 psi/in.) was performed .. The isotropic layer thickness varied 
from 102 mm (4 in.) to 408 mm (16 in.). The total applied load was 
44.5 kN (10,000 lb) and the applied pressure was equal to 689 kPa 
(100 psi). The solution obtained using DIPLOMAT was compared 
with van Cauwelaert's solution evaluated using the commercial 
software MATHEMATICA (17). The results of calculations are 
presented in Table 3. Excellent agreement is observed in the results 
obtained using these two different numerical solutions. 

APPLICATIONS OF PROGRAM DIPLOMAT 

Using DIPLOMAT To Obtain 
Interlayer Spring Stiffnesses 

In a previous paper (18), the authors presented a finite-element for
m~lation that accommodates through-the-thickness compressibility 
and separation of the constructed layers in a multilayered PCC pave
ment system. Accordingly, a bed of springs is inserted between con
secutive plates, as proposed by Totsky (19). The interface spring stiff
ness, k1, is an important parameter to be determined. DIPLOMAT is 
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TABLE 2 Maximum Bending Stresses in 
Plate on Elastic Solid Foundation Under 
Interior Loading 

Bending Stress, MPa 
h 
mm Losberg (13) DIPLOMAT 

102 7.655 7.655 
203 4.901 4.902 
254 3.392 3.394 
305 1.919 1.918 
356 1.526 1.525 
406 1.246 1.246 

Notes: E1 = 276 GPa (4 Mpsi); µ1 = 0. 
15; Es = 207 MPa (30,000 psi); 
1ls = 0.45; 

Load = 178 kN (40,000 lbs); 
pressure= 689 kN (100 psi). 

a good tool for this purpose. Determination of k1 using DIPLOMAT 
involves the following steps: 

1. Consider a multilayered system consisting of isotropic layers 
resting on a dense liquid foundation. The elastic parameters of the 
isotropic layers and their thicknesses are equal to the corresponding 
elastic parameters and thicknesses of the constructed layers in the field. 
The stiffness of the dense liquid foundation is equal to the field mod
ulus of subgrade reaction. Using computer program DIPLOMAT, find 
the maximum bending stress in each of the layers in this system under 
interior loading. 

2. Consider another multilayered system consisting of alternat
ing plate and spring beds. The elastic parameters of the plates and 
their thicknesses are equal to the corresponding elastic parameters 
and thicknesses of the constructed layers in the field. Using a trial
and-error approach and computer program DIPLOMAT, find the 
values of the spring interlayer stiffnesses, which lead to maximum 
bending stresses in the plates close to the corresponding maximum 
bending stresses in the isotropic layers, obtained in Step 1. 

To establish the validity of this suggestion, predictions for the 
maximum bending stresses at the bottom of the constructed layers 
in multilayered pavement systems obtained using different models 
have been compared. The following models were used in analyzing 
two unbonded constructed layers resting on a dense liquid founda
tion: "(a) isotropic layers, (b) plates separated by a Totsky spring 
interlayer, and (c) plates resting on one another. All three of these 
models can be accommodated in DIPLOMAT. For Model b, the 
interlayer spring stiffness, kb may be calculated using the afore
mentioned DIPLOMAT-based iterative procedure, or using one of 
two equation-based approaches. The first of these, involves the fol
lowing equation originally presented by Totsky (19): 

(27) 

where subscripts j and j + 1 denote the plates just above and just 
below the springs, respectively. The constant K is set at 2.461, per 
Totsky's own recommendation. An alternative simple mathemati
cal expression, which results in a good first estimate of k1; has been 
derived by the authors (18): 
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where 

and 

TABLE 3 Maximum Tensile Bending Stresses in 
Isotropic Layer on Dense Liquid Foundation 
Under Interior ·Loading 

Bending Stress, MPa 
h 
mm van Cauwelaert (6) DIPLOMAT 

102 4.588 4.587 
152 2.383 2.383 
203 '1.469 1.469 
254 0.994 0.994 
305 0.713 0.713 
356 0:535 0.535 
406 0.415 0.415 

Notes: E1 = 276 GPa (4 Mpsi); µ1 = 0.15; 
k = 54.3 kPa/mm (200 psi/in.) 
Load = 44.5 kN (10~000 lbs); pressure = 
689 kPa (100 psi). 
Tension is positive. 

2£2(1 - µz) k2= ~~-=--~-'-'"'----
hz(l - µ2 - 2µ}) 

(28) 

(29) 

(30) 

with subscripts 1 and 2 denoting the upper and lower plates, respec
tively. Model c can be considered a special case of Model b, in 
which k1 becomes extremely large. In this study, the plate theory 
closed-form approach presented by Ioannides et al. (J 5) was used 
for Model c. 

Eight pavement sections were considered. Three of these repre
sent a concrete slab resting on an unbonded stabilized base of vari
able thickness. Four others model an unbonded concrete overlay 
over an existing concrete slab of variable thickness. The final sec
tion represents a thick unbonded AC overlay on an existing concrete 
slab. 

Table 4 indicates that the maximum bending stresses obtained 
using the plate theory closed-form approach can differ from those 
obtained by employing the more realistic model of two unbonded 
isotropic layers resting on a dense liquid foundation, especially for 
relatively thin unbonded concrete overlays. At the same time, for all 
cases considered, the iterative DIPLOMAT-based approach results 
in estimates of the stiffness parameter for the spring interlayer in the 
Totsky model that achieve closer maximum bending stresses in the 
corresponding plates and isotropic layers than either of the two 
equation-based approaches. 

Spring interlayer stiffnesses from the two equation-based 
approaches produce similar results for all cases ~onsidered. For the 
slab-on-stabilized-base cases, these solutions are close to the cor
responding isotropic~layers-on-dense-liquid solutions. For the 
unbonded concrete overlay cases, the equation-based approaches 
produce solutions that overestimate the upper layer stresses, yet are 
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in better agreement with the isotropic-layers-on-dense-liquid solu
tions than the predictions of the plate theory closed-form approach. 
Therefore, they may serve in obtaining a first approximation of the 
interlayer stiffness. Moreover, in the actual pavement, the PCC 
overlay is often separated from the existing concrete slab by a bond
breaker layer. This layer is neglected in this analysis but can 
increase overlay stresses (E. J. Barenberg, personal communication, 
1992). Therefore, using Equation 28 may be more appropriate. 

Consider, for example, a typical airport pavement section con
sisting of a 203-mm (8-in.) unbonded PCC overlay over an existing 
406-mm (16-in.) PCC slab, resting on a dense liquid foundation 
[k = 27.l kPa/mm (100 psi/in.)]. The radius of the applied interior 
load is 150 mm (5.9 in.), and the applied pressure is 689 MPa (100 
psi). Both constructed layers have Young's modulus values of 27.6 
GPa (4 Mpsi) and Poisson's ratios of 0.15. Assume that the overlay 
and the existing slab are separated by a bituminous interlayer with 
a thickness (hh) of 51 mm (2 in.), a modulus of elasticity (Eb) of 
5517 MPa (800 ksi), and a Poisson's ratio (µb) of 0.35. For this case, 
the three isotropic-layers-on-dense-liquid model predicts that the 
maximum tensile stresses in the overlay and existing slab are 
510 kPa (74 psi) and 347 kPa (50.4 psi), respectively. These values 
are close to those predicted by the Totsky model with k1 defined by 
Equation 28, which ignores the bituminous interlayer. If the bitu
minous interlayer modulus of elasticity were only 2 759 MPa 
(400,000 psi), the isotropic-layers-on-dense-liquid maximum ten
sile stresses in the overlay and existing slab would be 568 kPa (82.4 
psi) and 341 kPa (49.5 psi), respectively. In this case, it is prefer
able to use the following equation for the spring interlayer stiffness: 

(31) 

with k1 and k2 as given by Equations 29 and 30 and 

(32) 

Equation 31 leads to a k1 value equal to 54.3 MPafmm (200,000 
psi/in.) in this case. For this interlayer stiffness, the Totsky model 
predicts maximum tensile stresses in the overlay and the existing 
slab equal to 568 kPa (82.4 psi) and 341 kPa ( 49.5 psi), respeetively, 
that is, the same values as predicted by the isotropic-layers-on
dense-liquid solution. 

Estimation of Base Layer Contribution 
to Stress Reduction 

In a previous paper (J 5), the authors presented a method for assess
ing the structural contribution of base layers in PCC pavement sys
tems in a manner that accounted for the through-the-thickness com
pressibility of both constructed layers. This entailed adjusting the 
value of the maximum bending stress in the upper layer obtained on 
the basis of plate theory, by calculating a correction increment. An 
equation for the latter was derived using layered elastic analysis 
results, which used the elastic solid idealization. Application of the 
same correction increment to dense liquid cases was cautiously rec
ommended at that time, pending the development of more appro
priate numerical analysis tools. DIPLOMAT provides an opportu
nity to assess the validity of the correction increment, while 
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TABLE4 Comparison Between Totsky Model and Isotropic Layers on Dense Liquid Models for 
Three-_Layered System (a) Model Parameters, (b) Maximum Bending Stresses in Layers 1 and 2 

(a) 

E1 µ1 h1 E2 µ2 hz Interlayer Spring Stiffness, k1, 

from 
Eq. (27) Eq. (28) DIPWMAT 

GP a mm GP a mm MPa/mm MPa/mm MPa/mm 

CASE 1 276 0.15 203 13.8 0.45 152 20.3 55.3 135.6 
CASE 2 276 0.15 203 13.8 0.45 203 15.5 43.4 27.1 
CASE3 276 0.15 203 13.8 0.45 254 12.5 35.8 135.6 
CASE4 276 0.15 203 276 0.15 203 162.8 143.2 . 271.3 
CASES 276 0.15 . 203 276 0.15 254 144.6 127.2 257.7 
CASE 6 276 0.15 203 276 0.15 305 130.2 114.5 244.1 
CASE7 276 0.15 203 276 0.15 406 108.5 95.5 230.6 
CASE8 55.2 0.30 152 276 0.15 203 38.2 41.5 263.i 

(b) 

MODEL Isotropic Plate Totsky Model with k1 from 
Layers Theory Eq. (27) Eq. (28) DIPLOMAT 

LAYER 1 2 1 2 1 2 1 2 1 2 

CASE 1 1.571 0.089 1.536 0.090 1.543 0.082 1.543 0.086 1.543 0.088 
CASE2 1.530 0.103 1.495 0.116 1.509 0.099 1.502 0.106 1.502 0.103 
CASE 3 1.481 0.112 1.426 0.138 1.461 0.110 1.447 0.120 1.454 0.111 
CASE4 0.889 0.772 0.841 0.841 . 0.944 0.744 0.951 0.737 0.923 0.765 
CASES 0.696 0.653 0.593 0.744 0.751 0.637 0.765 0.631 0.717 0.662 
CASE 6 0.563 0.537 0.414 0.621 0.625 0.528 0.636 0.523 0.573 0.551 
CASE 7 0.415 0.362 0.214 0.429 0.490 0.360 0.504 0.356 0.417 0.378 
CASES 0.171 1.447 0.138 1.516 0.358 1.406 0.347 1.412 0.172 1.495 

Notes: No curling; interior loading; radius of applied load = 150 mm (5.9 in.); 
pressure= 689 kPa (100 psi); k = 27.1 kPa/mm (100 psi/in.). 

retaining the conventional dense liquid subgrade idealization. For 
each of the two conditions for the interface between the two con
structed layers (unbonded or bonded), eight runs were conducted, 
selected to correspond to a wide variety of practical cases. The 
results are shown in Table 5. It is observed that for the unbonded 
interface condition, retaining the elastic solid-based correction 
increment equation yields results that are in very reasonable agree
ment with DIPLOMAT. On the other hand, DIPLOMAT indicates 
that the corrected plate theory solution for bonded layers may result 
in bending stress overestimation by about 25 percent. 

DESIGN IMPLICATIONS 

With the increasing popularity of multilayered concrete pavement 
systems in recent years, DIPLOMAT can contribute toward bridg
ing an apparent gap in the pavement engineering tool chest. The 
new program provides the ability to analyze a concrete pavement 
system as a truly multilayered one. Individual layers in the system 
may be assumed to be incompressible through their thickness (e.g., 
PCC slab or stabilized base) or compressible (e.g., AC overlay or 
granular base). This new capability will be particularly useful in the 
area of maintenance and rehabilitation of concrete pavements. 
Although at the first design stage it is feasible-and even desir
able~to treat base and subbase layers as nonstructural layers, 

placed only for construction expediency and drainage purposes, 
their structural function cannot be ignored in forensic studies aimed 
at realistic characterization of in situ pavement properties and the 
concomitant design of overlays. DIPLOMAT provides the oppor
tunity to establish more conclusively the structural contribution of 
base and subbase layers, without the need to resort to questionable 
empirical concepts, such as "bumping-the-k-value" or establishing 
correlations between k and the soil Young's modulus, Es (15). In 
addition, the algorithm developed may be easily incorporated in a 
unified multilayered pavement moduli backcalculation scheme, 
whose absence is a severe inhibitor to current rehabilitation efforts. 
The development of a unified backcalculation procedure is particu
larly called for following the FAA's adoption of a unified design 
procedure based on layered elastic analysis (20). 

Another potential benefit from the development of DIPLOMAT 
is that for the first time it can provide a two-dimensional compre
hensive approach that retains, as an option, all assumptions con
ventionally made in the analysis of both concrete and bituminous 
pavements. It is a well-documented axiom that the parameter used 
to characterize the dense-liquid foundation, the modulus of sub
grade reaction k, cannot be reliably correlated to the elastic modu
lus E,, used with the elastic solid subgrade characterization (21). If 
the last isotropic layer in DIPLOMAT is extended so that its thick
ness tends to infinity (or is simply made large enough), the model 
adopted would correspond to the conventional layered elastic analy
sis. If on the other hand the thickness of the last isotropic layer tends 
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TABLES Verification of Corrected Plate Theory Solution Using DIPLOMAT 

Max. Bend. Stress in 
Upper Layer Using 

Corrected 
E1 hi E2 h2 k S.R. LS.R. DIPLOMAT Pl Theory 
GP a mm GP a mm kPa/mm· MPa MP a 

UNBONDED LAYERS 
27.6 254 2.76 320 17.1 1.2 0.1 0.950 0.993 
20.7 237 2.07 406 13.6 1.5 0.1 0.964 1.001 
34.5 203 2.41 493 18.3 2.0 0.1 1.191 1.207 
41.3 152 4.82 394 14.1 3.0 0.1 1.591 1.556 
13.8 176 0.69 279 . 45.6 1.2 0.2 1.590 1.610 
13.8 178 1.89 274 58.9 1.5 0.2 1.315 1.336 
16.5 127 2.07 254 34.5 2.0 0.2 2.121 2.126 
15.2 152 4.13 297 81.6 3.0 0.2 1.152 1.040 

BONDED LAYERS 
152 381 1.36 152 32.3 1.2 0.1 0.362 0.445 
27.6 406 2.41 287 90.9 1.5 0.1 0.268 0.359 
27.6 254 2.76 254 32.0 2.0 0.1 0.574 0.714 
20.7 257 2.07 406 46.1 3.0 0.1 0.446 0.590 
13.6 229 0.69 127 99.8 1.2 0.2 0.865 0.959 
41.3 152 4.12 102 115.3 1.5 0.2 1.513 1.718 
34.5 126 3.44 127 77.3 2.0 0.2 1.659 1.954 
10.3 127 1.38 190 48.8 3.0 0.2 0.997 1.310 

Notes: µ 1=µ2=0.15; Load=44.5 kN (10,000 lbs)@ 861 kPa (125 psi) (radius, a= 128 mm 
(5.05 in.). 

S.R. = Stiffness ·Ratio 

= ( ~~ J for unbonded 

= ( heBJ for bonded 
lhlf 

LS.R. = Load Size Ratio = (~) 

h = 3 (h3 + E2 h3) 
eU l l El 2 

to zero and the constructed layers are assumed to behave as plates 
resting on a bed of springs, this would correspond to the conven
tional Westergaard problem. 

A number of follow-up possibilities and enhancements to 
DIPLOMAT are possible. Prominent among these is the capability 
to account for the dynamic effects on pavements of moving wheel 

f 
'" 

loads. Findings and conclusions from recent work conducted by a 
number of investigators (22,23) could easily be incorporated into 
DIPLOMAT, in view of the retention in the latter of both layered 
elastic and plate theory assumptions. 

To address the issue of edge loading within the context of a com
prehensive pavement analysis and design procedure, an interesting 
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formulation proposed by researchers in the former Soviet Union 
could be adapted and enhanced for use in DIPLOMAT. Called the 
Method of Compensative Loads, this approach can lead to an ana
lytical (closed-form) solution for the edge-loading problem, using 
any chosen subgrade idealization (7). Edge loading is solved by 
superposition of the corresponding interior loading solution plus a 
solution for a set of comprehensive loads that restore the boundary 
conditions along the location of the edge. Such a solution. would be 
much easier to implement iri a design algori_thm than current finite
element techniques. · 

CONCLUSIONS 

In this study, Burmister's layered elastic theory has been extended 
to accommodate a multilayered pavement system incorporating an 
arbitrary sequence of plates and spring beds, in addition to isotropic 
layers. The formulation has. been coded into a new computer pro
gram, called DIPLOMAT, thereby allowing for the first time direct 
comparisons between the distinct analytical approaches .conven
tionally employed for so-called rigid and flexible pavements. The 
new program is as user friendly and computationally efficient as the 
widely used layered elastic analysis program B.ISAR. In addition to 
permitting multiple-wheel loads, DIPLOMAT may be used to 
investigate the effects of a variety of interface and boundary condi
tions, including that of a rigid base. When ·considering a plate on 
grade, DIPLOMAT reproduces the closed-form solutions by West
ergaard (dense liquid foundation) and by Losberg (elastic solid 
foundation). On the other hand, for a pavement section consisting 
of up to five isotropic layers, the new program reproduces the 
BISAR solutions for bonded or unbonded layers. A number of 
applications of the program are presented, including an assessment 
of the structural contribution of compressible (granular or bitumi
nous) bases under a concrete pavement slab, and the determination 
of the interface spring stiffness that accounts for constructed layer 
compressibility. It is illustrated with several examples that using a 
DIPLOMAT-based iterative procedure it is possible to find a set of 
values for the spring interlayer stiffnesses in a given pavement sys
tem, which produce an adequate match of maximum bending 
stresses obtained using the plate and the isotropic layer models for 
the constructed layers in the pavement system. Some implications 
of program results to pavement design are also discussed. 
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