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Delays at Oversaturated Unsignalized 
Intersections Based on Reserve Capacities 

WERNER BRILON 

There is a practical need for estimating average delays at intersections, 
especially during peak periods, even if a temporary overload must be 
managed by the intersection. Suitable computation formulas must 
always be based on approximations. The formulas available are based 
on the degree of saturation x, where x > I describes the oversaturated 
situation. The application of x has proven to be successful in the con­
text of signalized intersections. For unsignalized intersections, the 
reserve capacity R is a more elegant parameter. Here R < 0 describes 
the oversaturated situation. The coordinate transformation technique 
applied for R to derive average delays during peak periods is explained. 
The complexity of many influencing parameters and the algebraic solu­
tions make it impossible to solve the complete problem analytically. 
However, for two levels of approximation, a set of formulas is derived 
to estimate the average delay during a peak hour for the vehicles on the 
minor street of an unsignalized intersection. These formulas can be used 
for practical application. 

A variety of formulas are available for estimating delays at inter­
sections. The fact that so many formulas exist emphasizes that none 
describes the complete reality. Indeed, each of the formulas repre­
sents another approximation that focuses on different special capa­
bilities. Table I characterizes the more well-known approaches. 

GENERAL QUEUEING MODEL 

The basic sophistication of each delay formula is the understanding 
of traffic operations at an intersection as an analogy to a queueing 
system. As an example, Figure 1 illustrates this analogy for an 
unsignalized intersection with only two traffic streams (qn is the 
traffic fl.ow on the minor street as the input to the queueing system). 
Here, the time, s, that a vehicle spends at the first position can be 
regarded as its service time. The time when a vehicle is waiting in 
higher positions of the queue than 1 can be regarded as the delay, 
w, in the sense of queueing theory. Therefore, the total time that a 
vehicle spends in the whole queueing system (d = s + w) is the 
delay, d, of the vehicle in the sense of traffic engineering. 

The problem for traffic engineering is that the type of operation 
of the service counter cannot be described by one of the classical 
mathematical solutions from queueing theory, for neither signalized 
nor unsignalized intersections. Therefore, specific solutions for 
queueing problems in traffic engineering must be developed. 

ANALYTICAL SOLUTIONS 

Analytical solutions have been sought for these service systems, 
which are established by intersections within traffic systems. A real-

Ruhr University, D-44780 Bochum, Germany. 

istic chance for the development of such solutions, however, can be 
expected only for steady-state situations, in which qn and capacity 
c are constant over time and qn < c for unsignalized intersections. 
For most analytical solutions, it must also be assumed that each of 
the traffic streams has Poisson properties (i.e., exponentially dis­
tributed headways). 

For unsignalized intersections under steady-state conditions, sev­
eral delay formulas have been proposed. The solution with the high­
est degree of sophistication appears to be the Ki;emser solution (1,2) 
in Brilon's formulation (3) (Equations 12 and 13), which is based 
on Yeo's formula (4): 

E(W,) qi! y. E(Wr) + z. E(w~) 
D = -v- + 2 . v · y (1) 

where 

v=y+z 
y = 1 - qn · E(W2) 

z = qn · E(W1) 

2 ( q/c ) ( e q/c ) .. 
E(W2) = - e - 1 - q ~i · -- + t - t + t 2 - t 2 

1 qp p c qp f c f c . 

where tc equals critical gap, in seconds, and t1equalsfollow-up time, 
in seconds. 

Here, however, the expressions for E(W2) and E(Wz2) are correct 
only if tc ~ t1 (5). For the m~re realistic situation of tc > tfi the 
improved expressions by Daganzo (6) or, even better, by Poeschl 
(7) could be used. 

TIME-DEPENDENT SOLUTIONS BASED ON 
DEGREE OF SATURATION 

From the complexity of the equations mentioned before, it is evi­
dent that they are not useful for practical application. Moreover, 
steady-state situations are .not realistic in road traffic operations. 
Instead, the input flows to street intersections fluctuate over the time 
of day. For instance, Figure 2 illustrates an example for a typical 
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TABLE 1 Characterization of Delay Formulas for Unsignalized Intersections 

Combination of 
Kremser, Yeo, 
Brilon, Poeschl (eq. 
1) 

HCM 1994 (13) 
cf. (eq. 2) 

Kimber, Hollis (11) 

steady state 

• 

workday. Here the peak hour is particularly important for the lay­
out of the intersection and its control. Therefore, the average delay 
and its tolerable maximum during the peak hour determine the 
whole design procedure. Hence, it is most important to describe the 
quality of traffic operations at intersections for a peak period with 
sufficient precision. By the definitio_n of a peak period, it is clear that 
lower input traffic flows exist before and after the peak. 

As solutions for this problem at signalized intersections with 
fixed cycle times and greens, the well-known formula by Akc;elik 
(8,9) or the formula by Wu (JO) can be used. Forunsignalized inter­
sections the user can choose between the formula by Kimber and 
Hollis (J 1) and that by Akc;elik and Troutbeck (12), which is also 
recommended by the new Chapter 10 of the Highway Capacity 
Manual (HCM) (13). The derivation of both formulas is based on 
x = degree of saturation. For Akc;elik and Troutbeck' s solution ( 12, 
Equation 1.2), this is obvious. 

The Kimber and Hollis formula (J 1) has proven to be especially 
useful to estimate delays, and it appears to have a reliable back­
ground, particularly for temporarily oversaturated conditions. The 
formula and its derivation are supposed to be based on the degree 

' • 
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FIGURE 1 General outline of queueing system that represents 
unsignalized intersection with one minor traffic stream (volume 
qn) and one priority stream (volume qp). 

Time dependence 
with temporary oversaturation 

qo = o; q1 = o 

• 

• 

of saturation. Unfortunately, the derivation is not published any­
where, which is a remarkable drawback. It also has not been possi­
ble to redetermine the formula. From its description it can be 
obtained that the capacity c0 and the input flow q0, before and after 
the peak period, are taken into account. 

The delay formula by Akc;elik and Troutbeck (12) is given in 
modified version by the following equation: 

1 T[ J 8·x] d = - + - (x - 1) +(x - 1)2 + --
c 4 c · T 

where 

d = average delay (sec), 
T = duration of peak period (sec), 
x = degree of saturation == q/c, 
q = qn = minor street traffic flow (veh/sec), and 
c = capacity (veh/sec). 

The derivation of the formula can be found elsewhere (J 4). 

(2) 

The capacity, c, can be obtained from any useful capacity for­
mula-for example, the formula according to Siegloch (15), which 
is also the basis of the HCM procedure (13): 

µ = 3,~00 . e-<rc- 0.5. 'f). 3,~ 
f 

where µis given in vehicles per hour. 
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FIGURE 2 Traffic flow pattern over time for 
typical workday on street with predominating 
afternoon peak hour. 

(3) 
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Equation 2 has one great drawback: it assumes that the traffic 
flow qn before and after the peak period of duration Tis 0, which is 
unrealistic. A set of formulas based on the same sophistication­
including, however, positive traffic flows before and after the peak 
period-is described by Troutbeck (14). 

The results from Equation 2 formulated in dependence on the 
degree of saturation x can be obtained from Figure 3 as one exam­
ple. This example has been prepared for T = duration of the peak 
period = 3,600 sec. From the graph it can be seen that the curves 
are scattered over a very wide range if the capacity is altered. 

As a counterpoint to this, Figure 4 should be compared. Here, the 
same relations are illustrated, but the reserve capacity R = c - qn is 
used as the independent variable. Again, the parameter of the curves 
is the capacity. All curves are nearly coinciding, and the parameter 
is not of high importance, especially in the range of delays that is 
useful in practice (d < 60 sec). Thus, the use of the reserve capac­
ity, R, appears to facilitate some of the interrelations within the the­
ory of unsignalized intersections. This fundamental idea originates 
from Harders' work (16). He was the first to find that the reserve 
capacity R is a strong determinant for the traffic flow quality at 
unsignalized intersections. This was the reason that R was used as 
the measure of effectiveness in Chapter 10 of the 1985 HCM (17), 
which was a realization of Harders' concept. 

CONCEPT OF RESERVE CAPACITY 

The concept introduced in this paper tries to develop formulas for 
the average delay at an unsignalized intersection, only based on the 
reserve capacity R: 

R=c-q (veh/sec) (4) 

where q is the traffic volume of the movement under observation in 
vehicles per second, and R is given in vehicles per second. Here 
especially, the approximation of peak periods including temporary 
oversaturation (i.e., R < 0) should be solved. 

Simplification of Flow Pattern and D/D/l System 

Consider a queueing system with two traffic streams as in Figure 1. 
The minor street traffic flow, q,,, is the input flow to the system. For 
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FIGURE 3 Average delay of vehicles in front of stop line 
calculated from Equation 2 depending on x. Different lines 
apply to different capacities c (100, 200, 300, 400, 500, 600, 
and 1,000 veh/hr); here Tis given as 1 hr. 
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FIGURE 4 Average delay of vehicles 
in front of stop line calculated from 
Equation 2 depending on R. Different 
lines apply to different capacities c (100, 
200, 300, 400, 500, and 600 veh/hr); here 
Tis given as 1 hr. 
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simplicity, it is now called q. Assume that the capacity of the sys­
tem can be calculated from qP by any useful capacity equation; for 
example, the Siegloch formula (Equation 3). 

Look at a traffic flow pattern over time as illustrated in Figure 5 
(top). The variables being used are explained in Table 2, and T 
equals the duration of peak period (e.g., T = 3,600 sec). Of course, 
in reality, the headways of vehicles entering the system are distrib­
uted randomly. However, for further simplification in the case of 
oversaturation (i.e., R < 0), imagine-as a preliminary approach to 
the solution-that during the peak period of duration T, the queue­
ing system is operating like a D/D/1 queueing system, in which 
arrival headways (a) of the minor street vehicles and their departure 
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FIGURE 5 Flow patterns over time including peak 
period: top, traffic flow q and capacity c; bottom, 
queue length N. 
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TABLE 2 Variables for Traffic Flow Pattern 

before during after 

the peak period 

traffic demand qo q qi 
on the minor street qo < q ql < q 

capacity Co c C1 

reserve capacity Ro= Co - qo R = c -q R1 = C1 - qi 
Ro> 0 R > OorR:::; 0 R 1 >0 

queue length No N N1 

All variables for q, c, and Rare given in vehicles per second. 

headways (b) from the stop line both are constant for all vehicles. 
For such a system, it can easily be imagined that for R > 0 the queue 
length and the delay both are 0. 

However, for the time of temporary oversaturation with R < 0, 
queue length is constantly increasing (Figure 5, bottom). At the end 
of the oversaturated peak period, the queue length is Nr, with 

Nr = (q - c) · T + N0 

Nr =No - R· T 

where R = c - q has a negative value. 

(5) 

The time needed to clear the queue down to N1 after the peak is 

Nr-N1 
Ta= 

Ct - qi 

(6) 

where N 1 is the expectation of the queue length after the peak, on 
the assumption that no overload was observed within the peak 
period: Thus, N 1 is only a result of q1 and c1 (with c1 > q1) without 
regard to the results of the peak period. 

In each queueing system, as a general property, the sum of all 
delays is the area under the function of the queue length. Before this 
basic idea can be applied, the type of average to be used must be 
defined. According to most of the authors mentioned earlier, the 
shaded area in Figure 5 (bottom) represents the sum of all delays 
induced in the system by the vehicles arriving during the peak 
period. Thus the sum S of all delays is 

S=No·T+ 
0 1 

-R· 
0 1 

·T+ -
(N, - N )2 ( N, - N yz ) 

2 · R1 R1 2 

(7) 

The average delay, d, per vehicle caused by those vehicles arriving 
during the peak period, then, is 

s 
d=-­

q·T 
(8) 

This delay d already includes the time spent in the service posi­
tion (first position of the queue on the minor street) of the queue, 
because the vehicle in this position already has been included in the 
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queue length according to Figure 5 (bottom). Therefore, dis a rep­
resentation of the delay in the sense of traffic engineering. 

Equation 8 gives the delay, d, for the D/D/1 system. From alter­
nating the parameters N0, NI> and R 1 by a series of sample calcula­
tions it is learned that the delay curve is a straight line for R1 = c. 
For R 1 < c, the curve becomes concave (concave side above the 
curve). For R1 > c, the curve would become convex. However, 81 

> c is not a reasonable case, because it would be unusual that the 
reserve capacity, R 1, could become even greater after the peak than 
the peak-hour capacity, c. The function ford is not very sensitive to 
N 1 as far as N 1 is varied over a reasonable range of values. There­
fore, for practical cases, it could be sufficient to assume that N 0 = 

N 1 (see Case Sl later in the paper). 
Equation 7, which is also a part of Equation 8, looks rather com­

plicated. Hence, for better understanding, we also look at simplified 
special cases. 

Simplification Case SO 

The most simplified case is the one corresponding to the assump­
tions of the formula of Ak9elik and Troutbeck (Equation 2): 

Co c =Ct 

qo 0 =qi 
No 0 =N1 
Ro c =R1 

For these conditions, Equation 7 can be written as 

y2 q 
S=-R·2·c 

Equation 8 then can be expressed as 

R·T 
d = -"2-""C 

. (9) 

(10) 

Some results ford as a function of R are shown in Figure 6. Here 
it is clear that d has a linear relationship to R, where the gradient 
depends on T and c. The solution of Equation 10 toward R is 

2·c·d 
R= ----

T 

-50 0 50 
reserve capacity (veh/h) 

FIGURE 6 Average delay for D/D/1 system 
as function of reserve capacity, R, during 
peak period for Case SO. T has been fixed 
to 1 hr; c is capacity of system. 

(11) 



Brilon 

Simplification Case SJ 

A more general and realistic simplified case is to assume that the 
average queue lengths before and after the peak are ·of the same size: 

No=N1 
Co= C = C1 

R1 <c 

This case comes very close to reality, because evaluations of Equa­
tion 7 showed that N 1 has only a very minor influence on the result 
for the average delay (see previous discussion). 

Under this assumption, Equation 7 becomes 

r2 T2 
S=N, ·T-R·-+--·R2 

0 2 2 · R 1 

(12) 

Equation 8 in this case can be written as 

d = -
1-[No - !!__:_!__ ( 1 -~ )] 

c - R 2 R1 
(13) 

Because the function is quadratic in R, it also has positive d values 
for a large R. However, only the part for negative R is of interest in 
this context. A solution of Equation I 3 toward R is possible: 

(14) 

where A = T - 2 · d. 
But this solution cannot be used for further derivations because 

it leads to equations that cannot be solved (explained later). There­
fore, at the moment, this solution is obsolete. Instead, it turns out 
that a simplified approximation of this equation is needed. To 
achieve this, approximate the curves for negative R values by 
straight lines that have the same gradient b for all N0 values. This is 
possible with good approximation. More numerical evaluations of 
Equation 13 showed that this reduction to a uniform gradient of the 
curves does not cause much bias. This gradient, b, is given by the 
following equation, which is an application of Equation 13. 

b = {-1-[No _ R1 · T(l _ Ri)]- N0
}. _1 (lS) 

c - Rf 2 R1 c IR1I 

R1 is an arbitrary point along the function of Equation 13 for R < < 
0, where the original function of Equation 13 should be met exactly 
by the linear approximation. Further derivations show that R1 should 
be chosen in accordance with the other parameters, mainly the peak­
hour duration T and the reserve capacity R 1 after the peak. For appli­
cation, the following is recommended: 

100. 3,600 
R1= ---T--

Then the approximation for Equation 13 is 

(16) 
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The solution toward R is 

(17) 

Approximation for Steady-State Solution 

As pointed out earlier one could indicate an analytical solution for 
the delay in the steady-state queueing system that is established by 
an unsignalized intersection (Figure 1). This solution, however, is 
so complicated that it is not useful for further derivations. It has 
turned out in many investigations (11, 18) that the M/M/1 queue is 
a very close approximation for an unsignalized intersection. In the 
M/M/1 queue, the total time that a customer spends in the queueing 
system is 

1 
d= -

R 
(18) 

This approach is used as an approximation of the delay at an 
unsignalized intersection in the steady state (i.e., R > > 0). The 
curve only can be used for 0 <Rs c. Equation 18 can be solved 
for Ras 

1 
R=­

s d 

where the index s stands for steady state. 

(19) 

The M/M/1 queue also can be used, with rough approximation, 
to estimate the average queue length for steady-state conditions. 
The expectation for the number of vehicles in the system, then, is 

qo Co - Ro 
No= - = ---

Ro Ro 

q1 C1 -R, 
N,= - = ---

R, R, 
(20) 

This solution is assumed to apply for the periods before and after 
the peak when R0 and R, are considerably larger than 0. 

Coordinate Transformation 

For longer peak periods or small R values (e.g., R < < 0), the delay 
in any type of queueing system tends toward the D/D/l delay. Then 
the details of the arrival and departure process will be of less impor­
tance. The dominating property of the queueing system, then, is the 
tremendous increase of the queue during the oversaturation period. 
Therefore, the real delay must be found along a transition curve that 
connects the steady-state delay curve for R > > 0 with the D/D/1 
delay for R < < 0. This transition curve is illustrated in Figure 7. 
The equation for this curve cannot be derived analytically; again, 
only an approximation can be derived. A reasonable approach to the 
derivation of this approximation is to assume that y is equal to z 
(Figure 7). This is identical to 

Rs= -Rv + R (21) 

where 

Rs = reserve capacity that causes average delay din steady-state 
system (Equation 19), 
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FIGURE 7 Principle of coordinate transformation. 

Rv = reserve capacity that causes average delay din D/D/l sys­
tem (solution of Equation 8 toward R and simplified Equa­
tions 11and14 od 7, respectively), and 

R = actual reserve capacity during peak. 

The expressions for both Rs and Rv include the delay, d. There­
fore, Equation 21 establishes a relation between the delay, d, and the 
reserve capacity, R. The problem now is to solve Equation 21 
toward the solution d = function (R). It is not easy to solve this 
function by algebra for a more general case. Moreover, it can be 
shown that for the general case (Equation 7) this solution is not pos­
sible because it results in imaginary equations containing expres­
sions for v=l. Therefore, one is forced to focus on the simplified 
cases SO and S 1. 

Case SO 

Concentrate first on Case SO to understand the method. Enter 
Equation 11 for Rv and Equation 19 for Rs into Equation 21, which 
results in 

1 2. c. d 
- =R+ --
d T 

The solution toward d gives 

d = - 4 ~ c · [ R · T - Y (R · T)2 + 8 · c · T] 

(22) 

(23) 

An illustration of this formula is given in Figure 7 by the transition 
line for T = 1 hr and c = 600 veh/hr. To repeat: Equation 23 
estimates the average delay at an unsignalized intersection with 
the same degree of approximation as Equation 2, which is based 
on a similar derivation using x (degree of saturation) instead of 
the reserve capacity, R. The capacity, c, can be estimated by 
any useful type of formula [e.g., the Siegloch formula (Equation 
3)]. Capacity formulas based on the empirical regression 
method (14) or any other method can be used. The new Equation 
23 is a little bit shorter and thus easier for practical use than 
Equation 2. 
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Case Sl 

To find a solution for Case S 1, again the coordinate transformation 
technique must be used (Equation 21). For Rs, enter Equation 19, 
and for Rv, use Equation 17. Thus, 

1 N0 d 
-=R---+­d b. c b 

with b according to Equation 15. 
The solution of this equation toward d gives 

d = - B + YB2 + b 

(24) 

(25) 

where B = 1'2 · [b · R - (Nc/c)]. The result of this equation is illus­
trated in Figure 8. Equation 25 gives an estimation of the average 
delay during a peak period of duration T when an initial queue of 
length N0 exists at the beginning of the peak interval. Moreover, the 
reserve capacity R1 after the peak is included via band Equation 15. 
The important independent parameter, however, is the reserve 
capacity, R, during the peak period. 

One might argue that on the way to this result, many approxima­
tions were made. This, however, also is the case for each of the alter­
native approaches to solving the peak-hour delay problem. Thus, at 
the moment, Equation 25 is the most detailed formula for average 
delay at an unsignalized intersection for times of temporary oversat­
uration that can be recommended as a result of these derivations. 

Of course, it would be desirable to use the more exact solution 
for Rv (Equation 14) in the coordinate transformation (Equation 21). 
This, however, turns out to be impossible. The result would be a 
transcendental equation using imaginary numbers (containing 
\/=1) as part of the result. 

DISCUSSION OF RESULTS 

It would be even more desirable to enter the complete and general 
solution for the D/D/1 delay given by Equations 7 and 8 into the 
coordinate transformation technique. This attempt also results in 
transcendental equations. Thus, this most complete solution also is 

-~ 150 

~ 
~ 
'C 100 
~ 

~ 
~ 50 
~ 

0 
·100 -50 0 50 100 150 200 

reserve capacity (veh/h) 

FIGURE 8 Average delay as function of 
reserve capacity, R, during peak period of 
duration T = 1 hr calculated from Equation 
25 for Case Sl for T = 1 hr, R1 = 300 vehlhr, 
and c = 600 veh/hr. Parameters of curves 
are N 0 = 0, 5, 10, 20, and 50 veh. Complete 
D/D/1 solution shown in figure is obtained 
from Equation 13. 
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not possible now. To find a solution to that problem, a more general 
approximation to Equation 7 that does not have two roots for R = 
function (d) (e.g., an exponential function) must be found. This 
would be useful only if all the parameters,N0, N 1, R 1, T, and R, could 
be included in a realistic way. 

Another possible improvement should be considered further: the 
attempt to allow a time dependency also within the peak period 
itself (e.g., a parabolic pattern could be used). For signalized inter­
sections, this has been solved by Wu (10) on the basis of the stan­
dard philosophy of degree of saturation. For the unsignalized inter­
sections, this task might have a chance to be solved together with 
the approximation mentioned before, as some preliminary numeri­
cal sample calculations showed. 

Morepver, the same approach that has been developed here for 
unsignalized intersections could be used for signalized intersec­
tions, too. According to Kimber and Hollis (11) and subsequent 
publications by Kimber, one could try to model the signalized inter'­
section delay by an MID/I queueing system. The time customers are 
in the system is 

d= -
1 

(.!:.__ + 1) 
2 · c R 

(26) 

This equation also could be solved toward R. Nevertheless, com­
pared with Equation 18, the same technique applied to signalized 
intersections promises to reveal more complications. Therefore, 
one could say that the degree of saturation, x, is a suitable parame­
ter to describe signalized intersection performance. The reserve 
capacity, R, is a more suitable parameter for unsignalized intersec­
tions. 

Finally, the number of possible approximative solutions for the 
peak-hour delay problem appears to be unlimited. Therefore, for the 
user it is of greatest importance to understand the sophistication of 
each of the provided solutions. The numerical results of these theo­
retically equivalent solutions could make a decisive· difference, 
especially in situations with large overloads of the intersection. 
Thus, a confirmation of the validity of the solutions by either simu­
lation studies or empirical evaluations would be desirable, a task 
that will initiated at the author's institute. 

CONCLUSIONS 

The paper presents another approach for estimating average delays 
of minor street vehicles at an unsignalized intersection for oversat­
urated and nearly oversaturated peak periods. The derivations point 
out that the reserve capacity, R, is useful for application as the inde­
pendent parameter to describe traffic performance. For the compu­
tation of average delays, Equation 23 can be used as a rough 
approach. It describes the delay problem with the same degree of 
sophistication as the delay equation of Chapter 10 in the latest edi­
tion of the HCM (13). However, it describes the average delay with 
considerable simplifications. 

A more realistic solution is given by Equation 25 (including 
Equation 15 for b). This solution takes into account that before and 
after the peak period, only limited capacity reserves are available. 
Thus, the equation can be recommended for practical use. Of 
course, the whole set of equations is quite lengthy, as are all other 
solutions presented. However, in computer programs it is not a 
problem to apply this set of equations. The overall quality of the 
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solution might be comparable to that of the solution of Kimber and 
Hollis (11). However, the derivation also is given here. To improve 
the applicability of the solution, the whole set of formulas is 
repeated step by step in the appendix. 

APPENDIX 
Steps for Applying Equation 25 

It is assumed that all values for the variables mentioned in Table 2 
are given, including the duration T of the peak period. For practical 
cases, T should be at least 15 min (900 sec). It is also assumed that 
the steady-state queue length before and after the peak period are 
nearly equal with sufficient approximation (N1 =N0). All variables 
in these equations should be used in units of seconds, number of 
vehicles (veh), and vehicles per second. 

The average queue length during the time before the peak is 

Then the sequence of the following equation must be applied: 

100. 3,600 
R1= - ---T--

(20) 

b = {-1-[No ~ R1· T(l _ R1 )]- N0
}. _1 (15) 

c - R1 2 R1 c IR1I 

B = ~ . ( b . R - ~o ) 

d = - B + v' B2 + b (25) 

where d is the average delay for vehicles arriving during the peak 
period. 

The maximum of the average queue length must be expected at 
the end of the peak period (Figure 5, bottom). The expectation for 
this queue length at the end of an oversaturated peak period is 

{No - R · T} 
Nr =max 

0 
. (5) 

On average, vehicles arriving at the end of the oversaturated peak 
period must face the longest delays. The expectation for their delay 
is 

(6) 

Nr and Tw in addition, are subject to random variation, which is not 
described in this paper. 
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