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Unsignalized Intersection Capacity and 
Level of Service: Revisiting Critical Gap 

MICHAEL J. CASSIDY, SAMER M. MADANAT, Mu-HAN WANG, AND FAN YANG 

Operational performance at a minor street stop-controlled intersection 
is a function of motorist gap acceptance behavior. Issues in modeling 
gap acceptance are reexplored using discrete choice methods. Logit 
models of varying levels of sophistication are used in simulation to 
generate average delays at the intersection stop bar. Comparison of sim
ulated and empirical delays suggests that deterministic methods for 
modeling gap acceptance may represent a reasonable trade-off between 
accuracy and ease of application, but two potential concerns are at 
issue-namely, delay estimates are very sensitive to the value used for 
mean critical gap, and the use of a single-valued critical gap necessitates 
the exclusion of disaggregate factors influencing the gap acceptance 
decision. Logit models estimated for intersection traffic movements 
have identified a number of such influential factors. Further research to 
explore fundamental issues of gap acceptance should be undertaken 
before adopting a capacity arid level-of-service methodology for minor 
street stop-controlled intersections. 

Operating conditions at a two-way stop-controlled intersection are 
a function of driver choice characteristics. The propensity of 
motorists traveling on the minor street to use available gaps in the 
major street traffic streams will dictate operational performance. 
Efforts to model the gap acceptance behavior of motorists have 
been the focus of considerable research .. There may be value in re
examining these previous efforts in light of newly revised capacity 
and level-of-service procedures for stop-controlled intersections 
(1). This paper reexplores key issues in modeling gap acceptance. 

BACKGROUND 

The term "critical gap" is defined as the minimum time gap (exhib
ited by major street vehicles) allowing one vehicle to enter the inter
section from a minor street. The gap acceptance process is proba
bilistic in nature. Each driver has his or her own perception of a 
critical gap, and the value of this "minimum acceptable" gap may 
change with changing conditions at the intersection. Functions have 
been developed from suggested distributions of critical gap to relate 
the probability of gap acceptance to the gap length (2-4). Miller (5) 
assumed that critical gaps conform to a normal distribution and used 
probit modeling techniques to estimate the probability of accepting 
a given gap on the basis of its length. These works addressed the 
variation in gap acceptance tendencies from one driver to the next. 

Daganzo ( 6) extended Miller's work by accounting for variation 
within drivers as well as across drivers. Daganzo used multinomial 
probit to estimate the parameters of the distribution of critical gaps. 
Mahmassani and Sheffi (7) modeled the gap acceptance process as 
a series of independent, sequential choices to either accept or reject 
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each gap in a conflicting traffic stream. By modeling the probabil
ity of gap acceptance using a probit function, Mahmassani and 
Sheffi demonstrated that an individual motorist's propensity to 
accept gaps varies as a function of the time spent waiting at the stop 
bar (or the number of gaps previously rejected). Recent empirical 
studies by Kittelson and Vandehey ( 8) support this finding. Most 
recently, Madanat et al. (9) used logit modeling to demonstrate that 
the delay spent in queue (before arriving at the stop bar) also influ
ences drivers' gap acceptance behavior. 

These previous findings underscore two important features: 

1. Drivers are not homogeneous. Different drivers display 
different gap acceptance tendencies. 

2. Drivers are not consistent. Drivers display time-'dependent 
gap acceptance tendencies (e.g., a driver may ultimately accept a 
gap smaller than gaps that were previously rejected). 

There appears to be little dispute concerning the probabilistic 
nature of gap acceptance. The literature does, however, document 
efforts to model gap acceptance decisions using deterministic meth
ods (l,10). Single-valued, mean critical gaps are estimated from a 
distribution of gaps. The motorist is assumed to reject all prevailing 
gaps smaller than the critical gap, and all gaps larger than the criti
cal gap are presumed to be accepted. These deterministic methods 
for capturing gap acceptance behavior are often assumed to possess 
adequate predictive strength or the benefits of exploiting determin
istic models (which are easy to apply) are often considered to out
weigh potential inaccuracies. 

The need may exist to examine more carefully the trade-offs 
between the simplicity of a deterministic methodology and the 
robustness provided by a probabilistic, properly specified gap 
acceptance function. And if through careful examination the traffic 
engineering community eventually elects to adopt a deterministic 
model, the methodology used for estimating values of critical gap 
should be based on behaviorally defensible theories. This paper pre
sents evidence concerning variation in gap acceptance behavior 
from one driver to the next, as well as time-dependent factors influ
encing the gap acceptance decision. The potential significance of 
this variability across and within drivers is presented both statisti
cally and through simple example. 

The work exploits a very limited empirical data base for model 
estimation. As such, gap acceptance functions presented herein are 
not definitive. The purpose of this paper, however, is not to propose 
the adoption of any particular model but to explore the relative mer
its of deterministic and probabilistic gap acceptance functions. 

EMPIRICAL DATA 

Empirical data used to estimate gap acceptance functions were col
lected from two neighboring T-intersections in Indiana. The geo-
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metric configurations of these suburban intersections are illustrated 
in Figure 1. The stop-controlled approach at Intersection 1 consists 
of separate lanes for left- and right-turning traffic, and the stop
controlled approach at Intersection 2 consists of a single shared-tum 
lane. The major (uncontrolled) street has one lane in both directions. 
No traffic control devices, other than the minor street stop signs, 
influence operation at the intersections. 

Fifteen minutes of operation were recorded at each intersection 
using video. Data manually extracted from videotape included 

• The lengths of all gaps observed in the major street traffic 
streams and whether each gap was accepted or rejected by motorists 
on the minor street, 

• The time that minor street motorists waited in queue (before 
arriving at the stop bar), 

• Vehicle move-up times to the stop bar, and 
• The amount of time that individual motorists waited at the stop 

bar before accepting a gap. 

HIERARCHY OF GAP ACCEPTANCE FUNCTIONS 

The authors first estimated a series of gap acceptance functions rang
ing from the very simple to the more sophisticated. Each function 
was estimated through discrete choice techniques (11). The applica
tion of discrete choice methods produced models estimated from 
disaggregate observations of individual behavior. Thus, the logit 
models estimated herein reflect the probabilistic nature of the gap 
acceptance process (i.e., the variability across and within drivers). 

Single-Valued Critical Gap Function 

The simplest gap acceptance model recognizes variations in critical 
gap values across drivers; each driver is assumed to have his or her 
own critical gap. All gaps confronting a motorist that are smaller 
than his or her specified critical gap are invariably rejected. 
Conversely, motorists accept all gaps greater than or equal to their 
critical gaps. It is further assumed that these critical gap values 
follow some probability distribution across the population of 
motorists. The mean and variance of this distribution are the 
relevant parameters in this model. 

--------------~-----¥~.i.<>!§~~t!.. 
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___________________ }~.!~~~!1":~--

1 rr-r:nternection No 2 
Minor Street 

FIGURE 1 Data collection sites: top, 
Intersection 1; bottom, Intersection 2. 
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The mean critical gap cannot be observed directly. To estimate 
this value, the authors express the probability that a motorist accepts 
a given gap, Pr( a), as the probability that a gap of length tis greater 
than or equal to the motorist's critical gap, Tcr· 

Pr(a) = Pr(t;::: Tcr) 

Denoting by Tcr the mean critical gap, and by E the random devia
tion of each motorist's critical gap from the mean, this probability 
can be rewritten as 

Pr(a) = Pr(t;::: Tcr + E) = Pr(E :5 t - Tcr) 

Depending on the distribution of E, this probability function can 
take different forms; if E is assumed to be distributed logistically 
with scale parameterµ (which implies that the dis..!_ribution of criti
cal gaps across drivers is logistic with mean Tcr and variance 
7T2/3µ2

), then the probability takes the logit form 

1 
Pr(a) = . _ 

1 + e-µ(t-Tcr) 

setting µTcr = a 

1 
Pr(a) = ----

1 + eatJI 

Values of & andµ (the estimates of a andµ) are obtained thr?ugh 

maximum likelihood estimation (12). From the relationship Tc, = 
&/µ,the mean v~lue of critical gap is estirr.iated. The resulting model 
can be used to predict motorist gap acceptance behavior as a homo
geneous and consistent process: all drivers can be assumed to accept 

A • -

gaps larger than Tc, and to reject other gaps. 

Probabilistic Gap Acceptance Function 

The deterministic model just presented fails to exploit the full capa
bilities· of lo git models. The logit model used for estimating mean 
critical gap also provides a distribution of critical gaps. As ~own, 
these critical gaps are distributed logistically with a mean of Tcr and 
a variance of 7T2/3µ 2• Because the model identifies only the distrib
ution of Tcr and not the actual critical gap for each driver, the model 
can only generate proba~ilistic statements. The logit model yields 
the probability of accepting a specific gap as a function of_ its length, 
t. Thus, the function. recognizes that drivers are not homogeneous, 
although drivers are still assumed to behave in a consistent manner. 

Probabilistic Function with Disaggregate Factors 

Discrete choice methods (e.g., logit models) facilitate the identifi
cation of factors influencing gap acceptance as well as the inclusion 
of these factors in the resulting gap acceptance function. Thus, 
explanatory variables in addition to gap length can be incorporated 
into a logit model to further enhance estimation capabilities. The 
output of this more sophisticated model is the motorist's probabil
ity of gap acceptance as a function of relevant prevailing conditions. 
Through the inclusion of time-dependent factors that further explain 
gap acceptance decisions, the resulting function recognizes that a 
motorist's critical gap may change with changing conditions at the 
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intersection. Effectively, the function still assumes that motorists 
respond to critical gaps, but the value of critical gap varies with each 
motorist and with each new situation. As such, the logit function 
captures nonhomogeneous and inconsistent gap acceptance behav
ior among motorists. 

Estimating Gap Acceptance Functions 

To demonstrate further the characteristics of each aforementioned 
gap acceptance function, the authors estimated specific models 
using empirical observations of right-turning vehicles at Inter
section 1. To estimate the mean critical gap for a single-valued 
function, the logit model was derived incorporating only gap length 
t as an explanatory variable: 

Pr(a) = ---
1
---

l + es.212 - o.s9934r 

Independent Variable Estimated Coefficient t-Statistic 

1 (constant) -5.21200 -7.65608 
t 0.89934 7.01240 

Auxiliary Statistics At Convergence Initial 

Log likelihood -67.129 -150.41 
Number of observations 217 
Adjusted rho-square 0.547 

The factor tis highly significant in explaining gap acceptance propen
sity at the 95 percent level (i.e., the t-statistic is well above 2). More
over, the model's overall fitis very satisfactory as evidenced by the 
adjusted rho-square valueh of 0.547. 

From the relationship tr = &/fl, the estimated mean critical gap 
is 5.212/0.899, or 5.8 sec. This single-valued function is illustrated 
at the top of Figure 2. The characteristics of the logit model are illus
trated in the middle of Figure 2. 

The logit model incorporating all explanatory variables found to 
be significant is as follows: 

Pr(a) = ----------1 + eS.109-1.373 1-0.042td+1.720dv 

where 

t = gap length confronting the right-turning motorist, 
td = total individual delay imparted to motorist up to occurrence 

of subject gap (where td is sum of queueing and stop bar 
delays), and 

dv = dummy variable distinguishing gaps and lags; 
dv = 1 where motorist is confronted with a lag, 
dv = 0 otherwise (lag is defined as the elapsed time between the 

arrival of the minor street vehicle to the stop bar and the 
arrival of the first conflicting vehicle to the intersection). 

Independent Variable Estimated Coefficient t-Statistic 

1 (constant) -8.10861 -6.45629 
t 1.37346 6.56972 
td (total delay) 4.19540e-002 3.02295 
dv -1.71950 -2.86030 

Auxiliary Statistics At Convergence Initial 

Log likelihood -53.828 -150.41 
Number of observations 217 
Adjusted rho-square 0.620 

80% 

20% 

0% 0 2 

80% 

20% 

0%0 2 3 

80% 

TRANSPORTATION RESEARCH RECORD 1484 

~Critical Gap=5.8 sec. 

4 5 6 7 8 9 10 11 12 

4 

Gap Length (sec.) 

Mean Critical Gap 
_..,=5.8sec. 

5 6 7 9 10 11 
Gap Length (sec.) 

12 

~ 60% --·-----···--···-····-··-···-

~ 
'8 
Cl. 

40% ··········-·····-··--··-···-·······--

20% --··-···--···-····:-····-

0%~P4i~~~§!:::~--,---,--.---.,..--.----1 
0 2 3 4 5 6 7 8 9 10 

Gap Length (sec.) 

---- Delay = 60 sec. -+-- Delay = 50 sec. _,,,__ Delay = 40 sec. 

-a- Delay = 30 sec. ~ Delay = 20 sec. __..._ Delay = 10 sec. 

FIGURE 2 Three hierarchal models of gap acceptance. 

The right-tum model indicates that a motorist's propensity to accept 
a gap increases with increasing gap length, consistent with virtually 
all previous studies of gap acceptance. Likewise, the model indi
cates that gap acceptance propensity increases with delay incurred 
on the intersection approach, a finding consistent with previous 
research evidence (7-9). Finally, the model indicates that, all else 
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TABLE 1 Mean Stop Bar Delays 

Measure Empirical 

Mean Stop Bar Delay (secs) 7.5 

Percent Error 

being equal, motorists have a greater tendency to accept gaps than 
to accept lags, consistent with the findings of Daganzo (6). 

All independent variables in the model are statistically significant 
at the 95 percent level. The model's overall fit is very satisfactory, 
as indicated by the adjusted rho-square of 0.620, a higher value than 
that of the simpler logit model. The bottom of Figure 2 illustrates 
the gap acceptance probabilities estimated by the disaggregate logit 
model for a range of total individual delays. Lag acceptance proba
bilities are not displayed in this figure. 

DELAY ESTIMATION 

Using the functions just described in conjunction with simulation, 
the potential impacts of gap acceptance functions on delay predic
tion will be explored. Moreover, the sensitivity of predicted delay to 
single-valued gap acceptance functions is demonstrated. On the 
basis of this sensitivity, the authors argue the importance of estimat
ing a mean critical gap through behaviorally defensible techniques. 

Estimation Method and Simulation Model 

The gap acceptance functions were incorporated into a microscopic; 
· stochastic simulation model. Delay estimates generated from each 

function were evaluated. 
Simulated vehicle arrivals on all approaches conformed to a Pois

son distribution and were based on the observed mean arrival rates. 
Vehicle move-up times on the stop-controlled approach conformed 
to empirically identified distributions. 

The initial simulation experiments separately used each of the 
three gap acceptance functions presented earlier. When a logit func
tion was used in the simulation model, the gap acceptance proba
bility of each right-turning vehicle at the stop bar was computed at 
the onset of each gap or lag. If the gap acceptance probability 
exceeded a randomly generated number from the [0,1] uniform dis
tribution, the gap was accepted. When a single-valued function was 
used in the simulation, the process was purely deterministic (i.e., all 
gaps less than the specified critical gap were rejected, all gaps 
greater than or equal to the critical gap were accepted). 

Simulation Findings 

Each gap acceptance function was evaluated by comparing empirical 
and simulated stop bar delays (i.e., the delays incurred by motorists 
waiting at the stop bar for a suitable gap). Table 1 presents average 
stop bar delays as obtained (a) empirically, (b) through simulation 
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Disaggregate Simple Logit 5.8 sec. J 
Logit Model Model Critical Ga 

7.0 5.6 6.0 

6.7 25.3 20.0 

with the logit function incorporating disaggregate explanatory vari
ables, (c) through simulation with the simple logit function account
ing only for the influence of gap length, and (d) through simulation 
with a single-valued critical gap of 5.8 sec (as estimated previously). 

The logit model incorporating disaggregate factors generated an 
average delay prediction that most closely matches the empirical 
value. Statistical tests indicated that discrepancies between simu
lated and empirical means and variances were not significant at the 
95 percent level. 

The discrepancies between stop bar delay mean and variance as 
generated with the single-valued critical gap of 5.8 sec likewise 
were not statistically significant from the empirical values. Thus, 
from the example scenario evaluated in this paper, there is no evi
dence that a single-valued gap acceptance function cannot be used 
to model driver behavior reliably at a stop sign. As is explained in 
the following section, however, a deterministic approach to gap 
acceptance may be reliable only ifthe specified value of critical gap 
is an appropriate estimate. 

Finally, significant differences did not exist between delay values 
generated from the simple logit model accounting only for gap 
length and from the single-valued critical gap function. This was to 
be expected as the long-run estimates generated from an average 
value of critical gap will be equivalent to the outcomes generated 
from a distribution of critical gaps. 

Delay Sensitivity to Critical Gap 

Where the gap acceptance model is a single-valued function, simu
lation experiments suggest that predicted delay is very sensitive to 
the specified value of critical gap. The following table presents the 
simulated estimates of average stop bar delay for various single
valued critical gaps: 

Critical Gap (sec) 

5.5 
5.8 
6.0 
6.5 
7.0 

Average Stop Bar 
Delay (sec) 

5.1 
6.0 
6.6 
8.8 

13.0 

Marginal changes in .the specified critical gap value produce 
relatively large differences in estimates of ayerage stop bar delay, 
consistent with the tendencies of analytical queueing models. 

Further simulation experiments revealed that the specified value 
of critical gap substantially alters estimates of average approach 
delay, a common measure of effectiveness. Table 2 presents simu
lated steady-state values of average approach delay as a function of 
critical gap. Critical gap values that vary slightly from 5.8 sec yield 
sizable differences in estimated approach delay. 
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TABLE 2 Simulated Average Approach Delays Using Critical Gap 

I Probabilistic 

Gap Disaggregate 
Acceptance Lo git 5.5 sec 

Function Function 

Average 
Approach 11.7 8.6 

Delay (secs) 

Estimating Mean Critical Gap 

If a single-valued gap acceptance function is to be used for analy
sis, the apparent sensitivity of predicted delay dictates that critical 
gap values reflect proper estimates. Thus, any published values of 
critical gap should be estimated by means consistent with motorist 
behavior. 

The revised Highway Capacity Manual procedures (J), for exam
ple, adopt a method for estimating critical gap previously described 
by Miller (5) and Troutbeck (13). With this method, a mean critical 
gap (for a particular maneuver) is inferred statistically from 
sequences of observed gaps at a stop-controlled approach using the 
assumption that the observed largest gap rejected by a motorist is 
smaller than the driver's critical gap, which, in tum, is smaller than 
the gap actually accepted by the motorist (i.e., drivers are assumed 
to be consistent). Estimating mean critical gap using this assump
tion has several shortcomings: 

• All gaps rejected by the motorist except for the largest rejected 
gap are not included in the estimation of critical gap. This results in 
a loss of important information. 

• Important information is also lost if the observed motorist 
accepts a lag. As no gaps are rejected, data specific to the driver are 
discarded. The loss of such information may cause bias in the esti
mated critical gap (i.e., sample selectivity bias) given that previous 
research ( 6) and findings reported in this paper indicate that 
motorists respond differently to gaps than to lags. 

• A problem occurs whenever drivers reject gaps larger than the 
one that they eventually accept, a frequent occurrence (6-9, also the 
disaggregate logit model). Data specific to these drivers are either 
discarded or "modified" to be consistent with the assumption of 
motorist homogeneity and consistency. Discarding or changing 
observations to match postulates is a concern. · 

In contrast to the method just described, the application of 
discrete choice techniques to estimate critical gap is consistent with 
observable phenomena. By exploiting all observations, the result
ing estimates of mean critical gap capture the variability across and 
within motorists. Given the apparent sensitivity of delay, discrete 
choice methods should be used for estimating mean critical gap. 
Such estimates can be derived easily with standard software pack
ages, as demonstrated earlier. 

A logit function estimated with sample data in which the fraction 
of rejected gaps differs significantly from that of the population will 
be biased in the estimated constant term. If the population's fraction 
of rejected gaps is known, a correction can be ·applied (J 1). 
Bias becomes an Issue when estimating functions that are to be 
generalized. The concern can be avoided by developing gap 

Detenninistic 

· 5.8 sec 6.0 sec 6.5 sec 7.0 sec 

10.9 12.1 17.5 28.2 

acceptance models for intersections operating under specified sets 
of conditions. 

FURTHER EVALUATION OF 
GAP ACCEPTANCE FACTORS 

The example scenario does not suggest that exploiting a single
valued gap acceptance function is inappropriate for intersection 
analysis. Nonetheless, it will be demonstrated that the application 
of a mean critical gap leads to a potential dilemma: excluding dis
aggregate factors that influence gap acceptance erodes estimation 
power. A likelihood ratio test indicated that the predictive strength 
of the disaggregate logit model is significantly greater at the 95 per
cent level than that of the simpler logit model. (This finding was 
inevitable given that all coefficients in the disaggregate function are 
statistically significant.) 

For further exploring the significance of influential factors, gap 
acceptance functions estimated for the remaining minor street 
movements at Intersections 1 and 2 are presented. 

Intersection 1 

The gap acceptance function estimated for left-tum minor street 
vehicles at Intersection 1 is as follows: 

Pr(a) = ------------
1 + e7.909-l.382ming-0.0131d+l.l92dvnf 

Independent Variable Estimated Coefficient t-Statistic 

-7.90869 -6.81553 
ming 1.38196 6.79695 
td l.26032e-002 2.13013 
dvnf -1.19245 -2.10543 

Auxiliary Statistics At Convergence Initial 

Log likelihood -53.204 -218.34 
Number of observations 315 
Adjusted rho-square 0.740 

Disaggregate total delay, td, increases driver propensity to accept 
smaller gaps. The influence of gap length is complicated in that left
tum maneuvers are executed through two conflicting traffic 
streams. A specification search indicated that a more powerful 
model results from the inclusion of a single coefficient, ming, rep
resenting the smaller of the two gaps in both traffic streams. This 
suggests that left-turning motorists evaluate opposing gap lengths 
collectively and react to the smaller of the two gaps. 
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Finally, the estimated coefficient dvnf, a dummy variable, is 
equal to 1 if the smaller prevailing gap is in the near-side lane (dvnf 
= 0 otherwise). The sign of this coefficient indicates that drivers· 
have a reduced propensity to accept a smaller gap occurring in the 
near-side lane, contrary to an earlier empirical finding (8). 

Intersection 2 

The estimated gap acceptance functions for right- and left-turn 
movements at Intersection 2, the T-intersection with a shared tum 
lane, are as follows: 

Pr(a) = 1 + e6.126-l.11 t-l.258dvl 

Independent Variable Estimated Coefficient · t-Statistic 

-6.12569 -6.75654 
t 1.10980 6.23020 
dvl 1.25750 2.17838 

Auxiliary Statistics At Convergence Initial 

Log likelihood -46.553 -160.12 
Number of observations 231 
Adjusted rho-square 0.69 

Pr(a) = --------------
1 + e7.531-0.916ming-0.0ll td-l.466dvnf-I.209dv2 

Independent Variable Estimated Coefficient t-Statistic 

-7.53077 -7.88504 
ming (min. gap) 0.91590 . 8.62597 
td 1.05003e-002 2.18858 
dvnf 1.46597 2.82062 
dv2 1.20854 1.94173 

Auxiliary Statistics . At Convergence Initial 

Log likelihood -79.989 -302.91 
Number of observations 437 
Adjusted rho-square 0.720 

For right-tum movements, driver propensity to accept a gap 
increases with gap· length. The dummy variable dv 1 reflects driver 
propensity to follow behind a "leading" right-turn vehicle (an influ
ence unique to shared tum lanes)-that is, dvl = 1 where the pre
ceding vehicle executed a right tum. The sign of this coefficient 
indicates that right-turning drivers are motivated to accept lags 
remaining from a previous right tum. 

The right-tum function in this model does not have a coefficient 
reflecting the effect of individual delay at the stop-controlled 
approach. The apparent exclusion of this influence is most likely 
attributable to a lack of variability in total delay observed in the data 
set. The actual influence of delay on gap acceptance may not be 
insignificant. 

In the gap acceptance function for left-turn movements atjnter
section 2, the influence of individual delay, td, and minimum gap, 
ming, are interpreted as in the logit model for left-turn vehicles at 
Intersection 1. At Intersection 2, however, the sign of the dummy 
variable dvnf indicates that a motorist has a lower propensity to 
perform left-tum maneuvers where the smaller of the two 
opposing gaps occurs in the far-side lane, a finding consistent with 
an earlier study (8). Finally, the dummy variable dv2 characterizes 
a left-turn driver's propensity to accept the lag "left behind" by a 
preceding left-tum vehicle. The sign of this coefficient is com
patible with the factor identified for right-turn movements at the 
intersection. 
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Pooling Models Across Intersections 

Tests of taste variation were conducted to assess gap acceptance 
behavior across intersections. The assessments indicated that gap 
acceptance functions for either turning movement should not be 
combined across intersections, implying that differences in 
geometrics may create differences in gap acceptance behavior. 

Summarizing Model Estimation 

The coefficients found to affect gap acceptance decisions include 
disaggregate measures such as individual approach delay, influ
ences of near- and far-side gaps in the conflicting traffic streams, 
motorist propensity to follow closely behind leading motorists exe
cuting the same maneuver, and a general preference for gaps over 
lags. Because these factors were all significant at the 95 percent 
level, the disaggregate gap acceptance functions have much greater 
predictive power than models including only gap length. Thus, for 
the scenarios evaluated in this paper, the estimation capabilities of 
mean critical gaps are inferior to those provided by disaggregate 
models. 

CONCLUSIONS 

This paper has highlighted issues relevant to modeling gap accep
tance behavior at stop-controlled intersections. Findings from this 
study do not suggest that deterministic methods for modeling gap 
acceptance are unacceptable. Because using deterministic functions 
leads to analysis techniques that are easy to apply, modeling gap 
acceptance using a single-valued critical gap may be justified. 

However, this paper illustrates two concerns. First, if the traffic 
engineering community adopts a deterministic gap acceptance 
methodology, values of mean critical gap should be estimated using 
techniques consistent with motorist behavior. Critical gap values 
that differ only marginally from proper estimates produce dramatic 
delay prediction errors. 

Second, the use of single-valued functions necessitates the exclu
sion of disaggregate factors influencing the gap acceptance deci
sion. The limited data exploited in this paper provide some insight 
into how the exclusion of these factors harms estimation. More con
clusive assessments (using larger empirical data bases) are required. 
Expanded empirical evaluations would probably identify additional 
factors that affect gap acceptance. Such discrete influences might 
include socioeconomic driver characteristics, conflicting vehicle 
speeds and flows, and intersection geometrics. 

Before the trade-offs between deterministic and probabilisitic 
gap acceptance functions can be identified, the estimation capabili
ties of both function types should be evaluated carefully. The appli
cation of discrete choice methods may represent the appropriate 
means for satisfying research needs in gap acceptance modeling. 
The relative strengths of deterministic and probabilistic gap accep
tance funetions may be evaluated through discrete choice. No mat
ter which function type is ultimately adopted, the gap acceptance 
model can be estimated by logit or probit. 

Should probabilistic functions be warranted, incorporating the 
gap acceptance model into an intersection assessment procedure 
becomes a consideration. Perhaps the only practical means of 
applying probabilistic models is through computer simulation. If 
manual evaluation techniques are desired, nomographs or some 
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other graphical-based method can be constructed from simulation 
experiments. 
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DISCUSSION. 

ROD TROUTBECK 

Queensland University of Technology, P.O. Box 2434, Brisbane, Australia. 

The paper by Cassidy et al: is an interesting one in that it discusses 
a problem that has relevance today as researchers look at the per
formance of unsignalized intersections and of permitted right-tum 
movements at signalized intersections. The authors presented a 
well-documented case, but omitted an important point: the propor
tion of gaps accepted is influenced by driver characteristics and by 
flows. The reason is, drivers whose perceptions of a critical gap is 
longer than other drivers' will reject a number of gaps. Similarly, as 
the major stream flow increases, the number of shorter gaps will 
increase, and the drivers who need longer gaps will reject even more 
gaps. Hence, as the priority stream flow increases, the gap size with 
a 50 percent probability of being accepted increases. 
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An approximate relationship exists between the gap size with a 
50 percent probability of being accepted and the priority stream 
flow, as a function of the mean and variance of the critical gap 
distribution (J). Ashworth's correction was based on the critical 
gap distribution for drivers whose critical gaps follow a normal dis
tribution and on a probit function for the probability that a gap will 
be accepted. If the critical gap distribution has a log-normal distri
bution and the gaps in the priority stream are exponentially dis
tributed, the proportion of gaps of a particular size that are 
accepted, Pr(a), does not have a log-normal distribution (2). 

However, the equation 

(1) 

can be applied for most critical gap distributions, including normal, 
log-normal, and gamma distributions. Here, µP is the mean used to 
quantify the P(a) distribution. If the critical gaps are normally dis
tributed, the gap size with a 50 percent chance of being accepted is 
µP. If the critical gap distribution has a log-normal distribution, the 
gap size with a 50 percent chance of being accepted, t50 , is given 
by 

µp 
t50 = vi + cr2 tµ2 

p p 

where 

s~ = variance used to quantify Pr(a) curve, 
µ1 and cr} = mean and variance of the critical gap distribution, 

and 
q = flow (vehicles/sec). 

Miller also indicated that the coefficient of variation of the Pr(a) 
distribution is approximately the same as the critical gap distribu
tion. Hence 

(2) 

For example, if the driver's critical gap has a log-normal distrib
ution with a mean of 6s and a standard deviation of 2s, Ashworth's 
technique indicates that t50 would be given by 

In addition, by using Equation 1 

t50 = 0.95 (µ/ + q cij) 

or 

t50 = 5.69 + 3.79q (3) 

To demonstrate that this equation is reasonable, I took a sample 
of 500 drivers whose critical gaps followed a log-normal distribu
tion_ and presented them with simulated gaps with a Cowan M3 dis
tribution of 100 times. For each of these times, a lo git analysis was 
applied to the accepted and rejected gaps, and a t50 value was 
estimated. 

There was a small difference between the logit function I used 
and the one used by the authors in that the logit function was 
assumed to be a function of logarithm of gap size. That is, 
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FIGURE 3 Ashworth's line determined by Equation 3. 

In = a ln(t) + b { 
Pr(t) } 

1 - Pr(t) 
(4) 

hence 

Pr(t) = -----l + e-aln (1)-b 
(5) 

This ensures that as t approaches zero Pr(t) approaches zero. The 
functions in the Cassidy et al. paper indicate that there is a proba
bility that a gap of zero will be accepted. 

By using Equation 3 or 4, 

(6) 

Thus, for each set of minor stream and major stream arrival 
flows, I obtained 100 estimates of t50• The mean of these estimates, 
determined by using Equation 3, appear in Figure 1. The drivers 
were assumed to be consistent with a mean critical gap of 6s and 
a standard deviation of 2s. If this condition is relaxed so that 
drivers have a degree of inconsistency, the results show a similar 
trend. 

Figure 3 indicates that Ashworth' s equation provides a reason
able fit, and explains that there is a relationship between the 
proportion of gaps with a 50 percent chance of being accepted and 
the major stream flow. 

The conclusions I reach are, first, that there is a monotonic, 
increasing ·relationship between the proportion of accepted gaps 
and the major stream flow if driver behavior remains constant and 
flows change. This can be explained using Ashworth' s method. 
Second, logit or probit analyses should account for this trend, but 
more important, researchers should expect terms such as total 
delay to be statistically significant in the logit or probit analyses. 
However, this delay term also is a proxy for the flow term. I cau
tion others (using these simplified logit or probit analyses) not to 
assume that a delay term has a substantial affect on the critical gap 
function. 
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AUTHORS' CLOSURE 

We thank Troutbeck for his discussion concerning the relationship 
between flow on major streets and gap acceptance. We do not dis
agree with his assertion that "as the priority stream flow increases, 
the gap size with a 50-percent probability of being accepted 
increases." We do not have data substantiating this claim because 
our study relied solely on a small data set; that is 15 minutes of 
observations from each of two intersections. This small data set did 
not provide a wide range of flows. 

We suspect that if we had estimated gap acceptance models by 
using a larger data base with a range of major street flows, we would 
have found this factor to be significant. We note the likelihood of 
this in the conclusions of the manuscript. 

We emphasize that the delay term in our models is not a proxy 
for the flow term, and our finding that delay is a significant predic
tor of gap acceptance is not attributed to a change in major street 
flows. Our models' delay term is driver specific. It is the disaggre
gate delay imparted to a motorist who, while waiting on a minor 
street, is confronted with a nearly fixed flow on a major street. We 
found that drivers who experienced longer delays had a propensity 
to accept shorter gaps and found this difference in gap acceptance 
behavior to be statistically significant. This observed effect was 
independent of the major street traffic flow. 

It is worth reiterating that two factors-minor street delay and 
major street flow-influence gap acceptance in opposite ways. The 
discussant's formulas and accompanying figure point out that the 
gap size with a 50-percent chance of being accepted increases with 
major street flow. Conversely, we found that added delay leads to a 
decrease in the estimated value of critical gap. 

Publication of this paper sponsored by Committee on Highway Capacity 
and Quality of Service. 


