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Framework for Assessing Benefits of 
Highway Traveler Information Services 

LAZAR N. SPASOVIC, MARIA P. BOILE, AND ATHANASSIOS K. BLADIKAS 

The problem of estimating traveler benefits from an information system 
that is capable of forecasting traffic conditions on the roads of a network 
with a variable degree of accuracy is considered. Unlike the cases that 
have already appeared in the literature, in which furnishing actual times 
eliminates all uncertainty out of drivers' behavior, here the uncertainty 
about the occurrence of a particular traffic condition may simply be 
reduced instead of being completely eliminated. The primary purpose 
is to propose a methodological framework that can evaluate the bene­
fits from the introduction of information services in highway networks. 
Given certain behavioral aspects of the traveler decision-making 
process, the focus is on quantifying what travelers gain by having 
perfect or partial information about highway traffic condition~. The 
secondary purpose is to use the proposed methodology to detenmne the 
optimal number of travelers to whom information on travel conditions 
should be provided. 

Intelligent transportation systems (ITSs), which encompass 
advanced surveillance, communication, control, and computing 
systems and engineering management methods, are envisioned to 
be able to increase safety, reduce congestion, and improve the pro­
ductivity of transportation systems. Within ITS advanced traveler 
information systems (ATISs) are envisioned to provide travelers 
with information on the status of highways either before they depart 
from their homes and workplaces or enroute so that they can make 
informed route choices and minimize their travel times. The infor­
mation given to a traveler may involve transmission of observed 
travel times or forecasted future traffic conditions in the network so 
that congested areas can be avoided. Embryonic systems of traffic 
information dissemination and traveler guidance, such as Metro 
Traffic and Shadow Traffic, are already operational in metropolitan 
areas. The impact of traffic information on travelers' behavior, 
and subsequently on transportation network performance, is not 
obvious and must be researched. 

Most research on the effectiveness of information systems has 
been undertaken in the area of evaluating the benefits from correct­
ing drivers' perception (or misperception) of actual road link travel 
times (J). It assumes that drivers choose their routes on the basis of 
perceived travel times. As drivers assign themselves over the net­
work an equilibrium point is reached when drivers cannot further 
decrease their perceived travel times by unilaterally changing 
routes. This assignment is deemed inefficient because drivers may 
be choosing inefficient (high-travel-time) routes since they are not 
aware of the conditions on all available alternatives. Most of the 
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papers reviewed previously (J) conclude that substantial savings 
might be achieved if information on actual travel times on links is 
given to drivers so that an equilibrium traffic assignment based on 
actual rather than perceived travel times can be reached. 

THE PROBLEM 

The problem considered in this paper is that of estimating traveler 
benefits from an information system that is capable of forecasting 
traffic conditions on the roads of a network with a variable degree 
of accuracy. Unlike the cases that have already appeared in the 
literature, in which furnishing actual times eliminates all uncer­
tainty out of drivers' behavior (perception of travel times), here the 
uncertainty about the occurrence of a particular traffic condition 
may simply be reduced instead of completely eliminated. 

The primary purpose of this paper is to propose a methodologi­
cal framework that can evaluate benefits from the introduction of 
information services in highway networks. Given certain behavioral 
and attitudinal aspects of the traveler decision-making process, the 
paper focuses on quantifying what travelers gain by having perfect 
or partial information on highway traffic conditions. 

The secondary purpose of the paper is to use the proposed 
methodology to evaluate the value of information to address the 
impacts of market penetration of information services on travelers' 
behavior and network performance. Primarily, the methodology is 
used to determine the optimal number of travelers to whom 
advanced information on travel conditions should be provided. 

It is expected that the cost of ITS technologies will substantially 
decrease with the mass production of devices such as transponders 
that can receive and send traffic information. This low cost could 
make ITS technologies widely available to travelers. In the begin­
ning travelers who are using ITSs and services will benefit greatly 
because they will be able to take advantage of the real-time (or near­
real-time) information on traffic conditions obtained via these 
systems. However, as the number of ITS users increases, alternate 
routes may also become congested, diminishing the benefits of 
information that may eventually disappear. 

It is incorrect to view ITS as a panacea for transportation ills and 
to assume that when all travelers are given access to the same net­
work information they all will be .better off than they were when 
they had only historical information or no information at all. In a 
congested network a change in the traveler assignment pattern 
caused by providing information may substantially change the total 
network travel times. In turn this can increase an individual trav­
eler's average travel time compared with that in the situation when 
he or she chooses routes on the basis of historical information or no 
information. There is a threshold point at which giving information 
to an additional traveler will make him or her worse off. This thresh-
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old point may designate the optimal market penetration, defined as 
the number of users who will benefit when given information. 
Beyond this point having the information is disadv.antageous for 
travelers. Moreover, travelers with no information may do better 
than those with information. 

The information dissemination impacts are analyzed first for a 
simple network and then for a more complex network in which two 
traveler services provide information to subscribers in either a coop­
erative or a noncooperative manner. The impact of introducing travel 
information on network performance is not well understood and is 
far from obvious. The understanding of the value of information 
concept and the ways to estimate the gains from using an informa­
tion service are critical for the successful development of an A TIS. 

DECISION-MAKING UNDER UNCERTAINTY: 
AN EXAMPLE 

Two routes, designated Routes A and B, shown in' Figure 1 are 
available to drivers commuting from Origin 0 to Destination D. The 
travel time experienced by drivers depends on the traffic conditions 
that are encountered on the routes. From past experience a traveler 
characterizes traffic conditions as either normal or congested. In 
traffic engineering parlance these conditions can be thought of as 
levels of service A, B, or C for normal traffic and D, E, or F for 
congestion. The travel times experienced by the average driver are 
22 min under normal conditions and 58 min under congested 
conditions for Route A and 31 min under normal conditions and 
39 min under congested conditions for Route B. 

From past experience a driver estimates that 60 percent of the 
time he or she encounters normal traffic. Thus, he or she predicts 
that normal traffic conditions will continue to appear with a proba­
bility of 0.6 and that congestion will be encountered with a proba­
bility of 0.4. These probabilities are called prior probabilities. The 
expected travel time on the routes is then calculated as the weighted 
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FIGURE 1. Example highway network: (top) 
single 0-D pair, (bottom) two 0-D pairs and two 
information services. 
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sum of experienced travel times for each traffic condition, where the 
weights are the probabilities of occurrence of the traffic conditions. 
The expected travel times on routes A and B, EA(T) and E8 (T), 
respectively, are · 

EA(T) = (0.6 · 22) + (0.4 · 58) = 36.4 min 

EiT) = (0.6 · 31) + (0.4 · 39) = 34.2 min 

Based on the criteria of minimization of expected travel times the 
driver chooses Route B. 

It would be ~dvantageous for a driver to obtain advanced infor­
mation on traffic conditions before he or she chooses routes. For 
example, a driver who ordinarily travels on Route A would use the 
information about congestion to avoid Route A and would use 
Route B instead. This information that eliminates all uncertainty 
about the occurrence of a traffic condition in the decision-making 
process is called perfect information. (Note that prior probabilities, 
the percentage of time a traffic condition will occur, cannot be 
changed; the driver can only receive information about which traffic 
condition will occur before he or she chooses a route.) The best the 
driver can do to minimize his or her travel time is to use Route A 
60 percent of the time and Route B the remaining 40 percent of the 
time. The minimum expected travel time that the driver can achieve 
with perfect information, E(Pl), is 

E(Pl) = (0.60 · 22) + (0.4 · 39) = 28.8 min 

Assuming that it is possible to obtain perfect information, the 
amount a driver should be willing to pay for it is determined as the 
time savings between the expected travel time with prior informa­
tion and the travel time with perfect information multiplied by the 
value of time. In the earlier example the difference is 5.4 min (i.e., 
34.2 - 28.8). Assuming that the value of time is $15/hr ($0.25/min), 
the most that a driver should pay per trip is $1.35 ($0.25/min 
5.4 min/trip). 

Formalized Approach 

The example given earlier is typical of decision making under 
uncertainty. Clearly, more than two traffic conditions may exist 
(e.g., there may also be an incident). In general, a decision maker 
may undertake action ak from the set of all possible actions A = 
(ai, a2, a3, ... , a"). Several states of nature x; included in the set 
X = (xi, X2, X3, • .. , Xm) cari occur, each with probability p;(x;). For 
each action ak that is undertaken when the state of nature x; occurs, 
the decision maker receives a payoff (a reward or a loss), Vki(ab x; ). 

In this example there are two states of nature (normal traffic and 
congestion), each occurring with a probability of 0.6 and 0.4, 
respectively, and two actions (choose Route A or B). The payoff 
Vi; (ab x;) is the travel time that a traveler experiences for selecting 
route k when condition i occurs. · 

The function V( a,x) represents the set of all payoffs and is called 
the gain function. In the example this function was deterministic, 
but in general it could be a random variable and most likely a func­
tion of traffic volume. When the traffic conditions are broadly 
defined, as in the earlier example,, the assumption that the. gain 
function is deterministic is plausible. 

In general, the decision maker-traveler will try to optimize the 
expected value of his or her gain function. In this particular exam-
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pie he or she minimizes the expected travel time of choosing action 
k when state of nature i occurs over the set of actions: 

E[V(a,x)] =mink LP(x;) · V(ak> X;) 

The expected gain with perfect information E(Pl), in which the 
traveler selects k to minimize V( ab x;) for each x;, is given as 

The value of perfect information to the traveler is based on the 
difference between the expected travel time with perfect informa­
tion and the expected travel time with prior information. 

More Complex Example 

When traffic is forecasted traffic conditions are usually given for 
each road (or route) rather than as a general statement about net­
work congestion as in the previous example. In the following, more 
complex example the same two-link network is considered, but now 
there are four traffic conditions: 

1. Both routes have normal traffic (designated NA and Ne), 
2. Route A has normal traffic but Route Bis congested (NA, CB), 
3. Route A is congested and Route B has normal traffic (CA, Ne), 

and finally. 
4. Both routes are congested (CA, CB). 

Assume that these four conditions occur with the following 
probabilities: 

p(NA, Ne)= 0.24,p(NA, Ce)= 0.36,p(CA, Ne)= 0.16, 
p(CA, Ce) = 0.24. 

The outcome when a traveler chooses Route A or B depends on 
the conditions as follows: 

Decision to Take 
Route A 
Route B 

Traffic Condition 

(NA, NB) 
22 min 
31 min 

(NA, CB) 
22 min 
39 min 

(CA, NB) 
58 min 
31 min 

(CA, CB) 
58 min 
39min 

The expected travel times on route A and B, EA(T) and E8(T), 
respectively, are 

EA(1) = (0.24 . 22) + (0.36 . 22) + (0.16 . 58) + (0.24 . 58) 
= 36.4 min 

EB(1) = (0.24. 31) + (0.36. 39) + (0.16. 31) + (0.24. 39) 
= 35.8 min 

A driver is expected to choose Route B, which has the least 
expected travel time. 

The expected travel time with perfect information, E(PI), is: 

E(Pl) = (0.24 · 22) + (0.36 · 22) + (0.16 · 31) + (0.24 · 39) 
= 27.52 min 

The difference between the expected travel time with perfect and 
prior information is 8.28 min (35.8 - 27.52). Assuming that the 
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value of time is $15/hr, the most the traveler should pay for perfect 
information is $2.07 per trip ($0.25/min · 8.28 min/trip). 

Formalized Procedure 

In the case describes in the previous section the state of ea<:;h route 
can be described by random variables X for Route A and Y for Route 
B. The random variable can assume the state-of-nature normal traffic 
(N) or congested traffic (C). Then the traffic conditions on the 
network can be described by using a joint distribution of X and Y, 
f x.h. y) = P(X = X, y = y). The payoff vkij(ab X;,y) is the time that 
a traveler experiences when selecting route k under state of nature -
(i, j). The gain function V(a, x, y) represents.the set of all payoffs. 

· The minimum expected travel time that a traveler can achieve 
with prior information is 

E [V(a, x, y)] = mink L p(x;, y) · V(ab x;, yj) 
i,j 

The expected benefit of having perfect information when a trav­
eler selects route k to minimize V for each (x;, y) state is 

E(Pl) = L p(x;, yj) · mink[V(ab X;, y)] 
i.j 

The difference between E [V(a, x, y)] and E(PI) multiplied by the 
monetary value of time determines an upper bound on what one 
should pay for perfect information. 

INTRODUCTION OF INFORMATION SERVICE 

In the second example normal traffic prevailed on either route 
76 percent of the time [p(NA, Ne) + p(NA, Ce) + p(CA, Ne)]. With 
perfect information a traveler would be able to predict this condition 
100 percent of the time and use the facility that is not congested. The 
traveler could also benefit from imperfect information, however, as 
long as route conditions can be predicted better than prior informa­
tion allows. Information, for example, that correctly predicts traffic 
conditions 90 percent of the time allows the traveler to take advan­
tage ofnormal traffic conditions 68.4 percent (0.9 · 0.76) of the time. 

Assume that in addition to the prior probabilities on the traffic 
condition a traveler is given conditional probabilities that describe 
the past performance of the information system. These probabilities 
indicate the frequency with which the information service fore­
casted a particular traffic condition, given that this condition indeed 
occurred. These probabilities are given in Table 1. The entry of 0.6 
(in the upper left of Table 1) indicates that the service forecasted 
normal traffic on Routes A and B 60 percent of the time when nor­
mal traffic acually occurred on the routes. In addition, 15 percent of 
the time the service forecasted normal traffic on Routes A and B 

TABLE 1 Conditional Probabilities 

Forecasted Actual Condition 

Condition Na,Na Na, CB ca,Na Ca,C:a 

NA,NB 0.6 0.15 0.15 0.1 

NA,CB 0.15 0.6 0.1 0.15 

CA,NB 0.15 0.1 0.6 0.15 

CA,CB 0.1 0.15 0.15 0.6 
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when actually a normal traffic condition occurred on Route A but 
congested traffic occurred on Route B. 

These conditional probabilities can be used to update the prior 
probabilities and obtain posterior probabilities. The posterior prob­
abilities represent the percentage of time that a particular traffic 
condition would occur given that it had been forecasted. The poste­
rior probabilities can in turn be used to calculate expected travel 
times on the routes. 

The following notation is needed before proceeding to solve the 
problem: 

• x, y = traffic condition that occurred. 
• m, n = traffic condition that was forecasted. 
• Px. r(x, y) =joint probability of condition x,y occurring. 
• QM.NIX=x.Y=y(m, n) = conditional probability of information ser­

vice forecasting condition (M = m, N = n), given that (X = x, 
Y = y) occurred. 

• QM.NIX=x. r=/m, n) · Px,r(x, y) =the joint probability of the fore­
cast of condition m, n and the actual condition x, y. 

• QM, N(m, n) = marginal probability of traffic condition (M = m, 
N = n) being forecasted for all possible occurrences of X, Y. 

• hx.Y1,M=m,N=n(x, y) = conditional probability of condition X, Y 
occurring given that the forecast indicated (M = m, N = n). 

Given this notation the procedure for computing posterior prob­
abilities and expected travel times is as follows: 

1. Gather the prior probabilities Px.rCx, y) and the conditional 
probabilities QM.N!X=x.r=/m, n). 
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2. Calculate the joint probabilities for each condition and its 
forecast, QM.NIX=x.Y=y (m, n) · Px.rCx, y). 

3. Calculate marginal probabilities, QM.N(m, n). 

4. Calculate posterior probabilities hx.rlM=m.N=n(X, y) as 

hx.YIM=m,N=n(X, y) = QM.NIX=x,Y=/m, n) ·Px,r(X, y)/QM,N(m, n) 

5. Calculate expected travel times for each x,y using the poste­
rior distributions as 

E [V(a, x, y)] = Lk [V(ak, m, n)] · hx. YIM=m,N=n(X, y) 

Numerical Example 

Table 2 was developed by using the prior probabilities of traffic 
conditions given earlier and the conditional probabilities of traffic 
condition forecasts from Table 1. Table 2 (a) shows the joint prob­
abilities for each traffic condition and its forecasts that are obtained 
by multiplying the prior probabilities by the conditional probabili­
ties. The marginal probability of a forecasted traffic condition, 
QM_N(m, n), is obtained by summing the joint probabilities over all 
actual conditions. For example, the marginal probability that NA, NB 
is forecasted equals 0.246(0.144 + 0.054 + 0.024 + 0.024). 

Table 2 (b) shows the posterior probabilities that are obtained by 
dividing the joint probabilities by the marginal probability. For 
example, the posterior probability of NA, NB occurring given that it 
is forecasted equals 0.585 (0.144/0.246). 

· ·TABLE 2 Probabilities of Numerical Example 

a. joint and marginal ~robabilities of actual traffic condition and its forecast 

Actual Marginal 

Forecast NAzNB NAzCB CazNB CA,CB Probability 

NA,NB 0.144 0.054 0.024 0.024 0.246 

NA,CB 0.036 0.216 0.016 0.036 0.304 

CA,NB 0.036 0.036 0.096 0.036 0.204 

CA,CB 0.024 0.054 0.024 0.144 0.246 

b. posterior probabilities 

Actual 

Forecast NA,NB NA,CB CA,NB CA,CB 

NA,NB 0.585 0.22 0.098 0.098 

NA,CB 0.12 0.71 0.053 0.12 

CA,NB 0.176 0.176 0.47 0.176 

CA,CB 0.098 0.22 0.098 0.585 

c. minimum time routes, expected travel times, and marginal probabilities 

Forecast Choose Travel Time (min/veh) Marginal 

NA,NB 

NA,CB 

CA,NB 

CA, Ca 

Route Probability 

A 

A 

B 

B 

22*(0.585 + 0.22) + 58*(0.098 + 0.098) = 29.078 

22*(0.12 + 0.71) + 58*(0.053 + 0.12) = 31.368 

31*(0.47 + 0.176) + 39*(0.176 + 0.176) = 33.754 

3 l *(0.098 + 0.098) + 39*(0.22 + 0.585) = 32.6 

0.246 

0.304 

0.204 

0.246 
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The route choices resulting in the minimum expected value of 
travel time for each forecast and the marginal probabilities of the 
forecasts are given in Table 2 (c). 

The minimum expected travel time for the average driver is 

E [V(a, x, y)] = 0.246 · (29.078) + 0.304 · (31.368) 
+ 0.204 · (33.754) + 0.246 · (32.6) = 32.79 min 

This time is obtained by the drivers using Route A when the fore­
cast calls for either normal traffic on both routes or normal traffic 
on Route A and congestion on Route B (55 percent of the time) and 
using Route B when the forecast calls for either congested traffic on 
both routes or congested traffic on Route A and normal traffic on 
Route B (45 percent of the time). 

The use of an information system resulted in the reduction of trav­
el time by 3 min (35.8 - 32.79) compared with the case when only 
historical (or prior) information is used. The most that a traveler 
should be willing to pay for the service is his or her value of 3 min. 

OPTIMAL NUMBER OF INFORMED TRAVELERS 

It would be incorrect to assume that all travelers should be given 
information even if they are willing to pay for it. A highway network 
has limited capacity and experiences congestion. As congestion 
increases so does travel time. If travelers are given information indis­
criminately it is possible that the change in commuting patterns will 
result in higher average travel times on routes, and thus higher indi­
vidual travel times for all travelers, including those with information. 

It is assumed that travelers are minimizing their individual travel 
times or behave according to Wardrop's First Principle (2). An 
inherent assumption of Wardrop's First Principle is that travelers 
have full information (actual travel times) about the routes. In the 
case in which travelers base their route choice on perceived travel 
times instead of actual ones, the principle states that at equilibrium 
the traveler cannot improve his or her perceived travel time by uni­
laterally switching routes. This principle leads to Stochastic User 
Equilibrium (3). 

The minimization of individual traveler times must not be con­
fused with the minimization of networkwide travel times, also 
known as Wardrop's Second Principle (2). It is common that in 
minimizing their individual travel times travelers can indeed 
increase the total networkwide travel time. In the absence of con­
gestion Wardrop's First and Second Principles yield the same traf­
fic assignment flows and costs. 

. In this paper it is assumed that travelers have an incentive to pur­
chase information of a given accuracy as long as it can make them 
better off. This implies that travelers will be able to further mini­
mize their individual travel times in comparison with the case of 
having only historical (prior) information. Therefore, the optimal 
(or desirable) number of travelers can be determined by an equilib­
rium pattern which the travel times for travelers who use the infor­
mation service are at least as good as those for travelers with 
historical information. This equilibrium point determines the 
maximum market share for the information service. 

Network Equilibrium 

To analyze this problem the networkwide interactions among 
travelers must be investigated. The network highway links are 
congested, and the travel time on a link is estimated according to the 
Bureau of Public Roads (BPR) congestion curve (4) of the form 
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t1 = t0 ·[1 + a(link flow/link capacityY] 

where 

t1 = average travel time on link l, 
t0 = free-flow travel time on link l (the distance divided by the 

free-flow speed), 
a = marginal increase in link time when accommodating an 

additional vehicle, and 
x = coefficient. 

The link capacities used in the BPR curve were calculated by 
using the methodologies set forth in the 1985 Highway Capacity 
Manual (5) for each road type (arterial and freeway). 

Assume that the congestion curves for Routes A and B are 

tA = 17·[1 + 3·(flow/2,000)2], and 

ts = 30·[1 + 3·(flow/6,000)2] 

where Route A and B capacities of 2,000 and 6,000 vehicles per 
hour, respectively, are calculated for levels of service that represent 
stable flow. Depending on traffic conditions, normal and congested, 
each of these curves are divided into two areas. For normal traffic 
conditions on Routes A and B they are 

tA = 17· {I + 3 · [(100 + /A)/2,000]2}, and 

ts = 30· { 1 + 0.3 · [(1,500 + fs)/6,000]2} 

For congested traffic conditions on Routes A and B they are 

tA = 17·{1 + 3 · [(1,300 + /A)/2,000]2}, and 

ts= 30·{1 + 0.3 · [(5,100 + fs)/6,000]2} 

The graphical representation of the volume-travel time functions 
and areas representing normal and congested conditions are given 
in Figure 2. 

If 500 travelers are assigned over the routes the resulting travel 
times are 21.59 min for normal conditions and 58.31 min for con­
gested conditions on Route A and 30.99 min for normal conditions 
and 37 .84 min for congested conditions on Route B. If normal 
conditions on Route A prevail 60 percent (24 percent + 36 percent) 
of the time and congestion prevails 40 percent (16 percent + 24 per­
cent) of the time, the expected travel time is 36.28 min. If normal 
conditions on Route B prevail 40 percent (24 percent + 16 percent) 
of the time and congestion prevails 60 percent (36 percent+ 24 per­
cent) of the time, the expected travel time is 35.1 min. 

When the model is solved with prior information only, all 
500 travelers are assigned to the minimum time Route B, yielding 
an average travel time of 35. l min (the minimum of 35.1 and 
36.28 min for Routes B and A, respectively). When travelers are 
assigned by using the posterior information provided by the infor­
mation service, all 500 travelers use Route A 55 percent of the time 
[the sum of the marginal probabilities of those choosing route A in 
Table 2(c)] and Route B 45 percent of the time, yielding an average 
travel time of 31.39 min. This lower travel time is achieved by using 
the information service to forecast normal traffic on Route A and 
assigning the travelers over that route during those periods and over 
Route B when traffic is congested on Route A. 

If all 500 travelers were subscribers to the service they would 
have been better off than if they were using prior information only. 
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FIGURE 2. BPR congestion curves and traffic conditions. 

By using the information their individual time decreased by 
3.71 min (from 35.1to31.39 min). Finally, when the travelers are 
assigned with perfect information, all 500 are assigned to Route A 
60 percent of the time and Route B 40 percent of the time. Thus, the 
travel times are further minimized to an average of 28.09 min. 

The question that arises is determination of the optimal number 
of users to be given information. Common sense would indicate that 
travelers would have an inc:entive to use the information service 
only if it did not make them worse off than they were with no ser­
vice at all. Consequently, the optimal market penetration is deter­
mined by a traffic assignment for which the average travel time is 
no less than that of an assignment obtained without information. 

Returning to the previous example, it can be verified that when 
800 travelers (instead of 500) are assigned according to the mini­
mum expected travel time, the resulting travel times are 34.818 min 
when only prior information is available and 35.770 min with the 
information service (posterior). It is obvious that the switching of 
commuting patterns caused by the vehicles that obtained informa­
tion has caused the average travel times on links to become higher 
than they were in the case in which they had prior information. One 
may conclude that it is highly unlikely that people will be using the 
service that makes them worse off (by 0.952 min in this case) than 
they were before they started using it. Therefore, the number of 
users to whom information services should be provided (i.e., an 
equilibrium among users with and without an information service) 
needs to be determined. 

To determine the optimal number of users to be given informa­
tion, assume that travelers are divided into two classes: those with­
out and those with information, designated.fwa andfw, respectively. 
Thefwo travelers will be using only Route B, whereas.fw travelers 
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will be using Routes A and B in a mixed strategy. It should be rec­
ognized that the travel times on routes depend on both types of flows 
fwo and fw, because these flows use the routes simultaneously. 
Since travelers with information fw will be using Route A during 
certain times (i.e., 55 percent of the time), they will be removed 
from Route B. Thus, the following equation can be set up. The equa­
tion determines an equilibrium pattern in which the travel times for 
travelers who use the information service are at least as good as 
those for travelers with historical or prior information. The left side 
of the equation represents the travel times of travelers with histori­
cal information, whereas the right side represents the travel times of 
travelers who use the information service. 

0.4·{30·[1 + 0.3·[(1,500 + fwo + fw - 0.55.fw)/6,000]2} 
+ 0.6·{30·[1 + 0.3·[(5,100 + fwo + fw - 0.55.fw)/6,000]2} 
= 0.246·{17·[1 + 3-[(100 + fw)/2,000]2]-0.805 + 17·[1 
+ 3·[(1,300 + .fw)/2,000]2]·0.196} + 0.304·{17·[1 + 3-[(100 
+ fw/2,000]2]-0.83 + 17·[1 + 3·[(1,300 + fw)/2,000]2]-0.173} 
+ 0.204·{30·[1 + 0.3·[(1,500 + fwo + fw)/6,000]2]·0.646 
+ 30·[1 + 0.3·[(5,100 + fwo + .fw)/6,000]2]-0.352} 
+ 0.246·{30·[1 + 0.3·[(1,500 + fwo + fw)/6,000]2]·0.196 
+ 30·[1 +·0.3·[(5,100 + fwo + fw)/6,000]2]-0.805} 

Given that fwo + fw = 800, solving this equation yields flows 
forfwo andfw of 57.957 and 742.043 vehicles, respectively. The 
travel assignment times are equalized at 34.882 min. This result 
implies that approximately 742 vehicles will have an incentive to 
subscribe to the service, but only if it were free. 

The resulting average travel time as a function of traffic volume 
for each information distribution strategy is given in Figure 3. There 
are three information distribution strategies: (a) all travelers have 
only prior information, (b) an information service gives information 
on traffic conditions to all travelers indiscriminately, and (c) the 
information service is provided to a selected group of travelers, 
whereas the rest of the travelers use historical information. The 
number of users with information indicates the optimum market 
penetration because the average travel time between an origin and 
a destination cannot be further improved by giving information to 
an additional traveler. 

Figure 3 shows that up to a volume of 700 vehicles/hr, if all trav­
elers are given the information an average traveler will experience 
a shorter travel time compared with that in the case in which he or 
she were to use prior information. After that volume the informa­
tion should be given to only a portion of the total travelers. For 
example, for a volume of900 vehicles/hr, the information should be 
given to 748 vehicles. This results in an equilibrium time of 35.080 
min/vehicle. (Note that if the information is given to all 900 vehi­
cles the average user cost would increase to 37 .515 min.) For a vol­
ume of 1,000 vehicles/hr the number of travelers with information 
will be 755 vehicles/hr. It is apparent that the 11.1 percent inverse 
in volume (i.e., from 800 to 900 vehicles) will increase the market 
penetration of the service by 0.9 percent (i.e., from 748 to 755 vehi­
cles). Thus, the majority of additional travelers will be given no 
information. 

Further Extensions 

The framework is also applied to a more complex network consist­
ing of six nodes (two origin-destination pairs and two through 
nodes), seven links, and four paths. The network is shown in Fig-
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FIGURE 3. Travel times under various information distribution strategies. 

ure l(b). For the purpose of simplifying the discussion of the results 
it is assumed that the network is symmetric (i.e., Links 1 and 7 are 
identical and Links 2 and 4 are identical to Links 5 and 6). Two 
paths are available for travel from each origin to a destination. Paths 
Pl and P3 consist of Links 1 and 7, respectively, whereas Paths P2 
and P4 consist of Links 2, 3, and 4 and Links 5, 3, and 6, respec­
tively. The prior and posterior probabilities of normal and con­
gested traffic occurring on Paths Pl and P2 and Paths P3 and P4 are 
assumed to be identical to those given in Tables 1 and 2 for Routes 
A and B. It is also assumed that there are two information services 
available to travelers: Poly-Traffic serving the 01-D 1 pair and 

Shade-Traffic serving the 02-D2 pair. There are 500 vehicles/hr 
between each origin and destination. 

The results presented in Table 3 indicate that when the services 
made their decision as to whom to give information and what 
commuting strategies to suggest independently from each other, 
they gave the information to all 500 vehicles from each origin. The 
vehicles ended up with the strategy of choosing Paths P2 and P4 55 
percent of the time and Paths Pl and P3 45 percent of the time. 
Since the services made their decisions in a vacuum, they did not 
consider the possible strategies of their opponents. Thus, they per­
ceived that the resulting vehicle travel times would be 31.39 min. 

TABLE3 Optimal Market Penetration and Travel Times Under Various Information 
Dissemination Strategies 

Infonnation Select Routes Users with Expected Travel Time 

Type Inforffiation (min/veh) 

Service 

(veh/hour) 

Perceived Actual 

Prior Pl and P3 0 35.1 35.1 

100% of the time 

Posterior -- P2 and P4 55% 1,000 31.39 38.91 

No of the time, and 

Cooperation Pl and P3 ·45% 

between of the time 

Services 

Posterior -- P2 and P4 55% 748 34.69 34.69 

Cooperation of the time, and 

between Pl and P3 45% 

Services of the time 
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However, since Link 3 is shared by Paths P2 and P4, the congestion 
on Link 3 caused by an additional 1,000 vehicles going over it 
55 percent of the time resulted in an actual travel time of 38.91 min. 
This decision to suggest to all vehicles to choose the same com­
muting strategy made all vehicles worse off than they would have 
been if they had stayed on Paths Pl and P3 100 percent of the time. 
Had they stayed on Paths Pl and P3, as they would have under prior 
information, their travel times would have been 35.1 min. 

When the services either cooperated with each other or attempted 
to predict each other's responses in terms of a likely strategy, the 
optimal assignment indicated that they each gave information to use 
Paths P2 and P4 55 percent of the time to only 374 vehicles. This 
resulted in a travel time of 34.69 min. The remaining 126 vehicles 
from origin 01 were not given information and thus stayed on Path 
P 1 100 percent of the time. The remaining 126 vehicles from origin 
02 stayed on Path P3 100 percent of the time. 

Future Framework Extensions 

The framework presented in this paper can be expanded to take 
into account traveler utilities rather than travel times. The utility, in 
addition to travel time, may include other impedances such as 
out-of-pocket cost and other qualitative measures of a commute 
such as the scenery along the route, perceived safety of the 
surrounding area, and so forth. 

The paper assumed that drivers have linear utilities (i.e., they 
place the same value on 1 min saved on a 22-min trip as well as on 
a 58-min trip). This is a rather strong assumption, because people 
value time savings higher on a shorter trip than on a longer trip (6). 
A candidate nonlinear utility function that can be used in the 
framework has been provided elsewhere (6). The process of deriv­
ing nonlinear utility functions has been given previously (7). 

The framework can also be expanded to take into account the fact 
that more than two traffic conditions can arise (and be perceived by 
a driver) on the route. In addition, instead of using discrete distrib­
utions a continuous probability distribution can be used to describe 
traffic conditions. Consequently, the payoffs can be expressed as 
expected values of a random variable, the traffic flow. Various 
methods for estimating congestion functions need to be incorpo­
rated into the model as well. 

The framework presented here is rather aggregate. It does not 
recognize the time dimension of a decision-making process. The 
methodology presented needs to be expanded to take into account 
the dynamic aspects of decision making. There needs to be a feed­
back loop between the traffic conditions arising at various links in 
the network at various moments in time and travelers' decisions. 

CONCLUSIONS 

A framework was presented for assessing the benefit of information 
from an ATIS. It provides transportation professionals with a tool 
to evaluate the value of an information service and to compare it 
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with the case in which only historical information was available. In 
addition, the framework can be used to evaluate the value of the 
information service in comparison with the case in which travelers 
have perfect information. The methodolo~y can also be used to 
estimate the characteristics and accuracy of the information service. 
For example, given a certain target market penetration, the method­
ology can be used to determine the system accuracy (i.e., probabil­
ities of detecting traffic conditions) so that an average potential user 
receives a certain level of benefits. The method can be further 
improved by considering additional traffic conditions that occur on 
the routes. More appropriate congestion functions can be derived 
and used in the method. The procedures presented in this paper can 
be used within a more comprehensive framework that uses state-of­
the-art traffic assignment techniques of mathematical programming 
and simulation to better ascertain both the potential value of infor­
mation to customers and the optimal number of people to whom the 
information should be given. Finally, the framework may comple­
ment behavioral studies that determine travelers' attitudes toward 
various types of information delivery technologies. 
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