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Analysis of Driver Safety Performance 
Using Safety State Model 

EDWARD J. LANZILOTTA 

A significant component in the pursuit of safety is estimation of risk prob­
ability. In transportation systems virtually all safety-related events and 
outcomes involve an intermediate event known as an accident. The safety 
state model is a probabilistic model that is used to estimate the probabil- · 
ity of an accident as a function of the human-machine system state. By 
using a discrete Markov network, the safety state model forms a frame­
work for capturing the human-machine and human-human interactions 
in a transportation system. The observed data are used to calibrate the 
model, which is subsequently used to estimate the risk probability 
performance of other human operators. The theoretical development of 
this model is reviewed. In addition, motivation and background, as well 
as advantages and disadvantages with respect to existing quantitative 
methods of risk probability estimation, are discussed. Finally, the appli­
cability to driver performance analysis is discussed. 

A current trend in the automobile industry is an emphasis on safety. 
Automobile manufacturers are implementing features intended to 
improve highway safety. The motivation is well justified because 
the magnitude of damage, injury, and death on highways remains a 
significant problem. 

A key component of safety in the human-machine system is the 
human driver. As controller of the vehicle the driver must monitor 
the state of the vehicle (position and speed) and the surrounding 
environment (including other vehicles, as well as roadside ele­
ments), make decisions with regard to control actions, and actuate 
the vehicle controls to carry out the control decisions. The driver is 
solely responsible for the state of the vehicle: the control decisions 
and actuation determine the resulting position and speed of the 
vehicle in the environment. The control actions of the driver play a 
significant role in the effectiveness of any designed-in safety device 
or system. In the worst case a driver can counteract or override the 
effects of a designed-in safety system because of either a lack of 
training or a higher level of risk-taking. 

In this work the driver-vehicle system is modeled as a closed­
loop control system (1,2), with the vehicle as the "plant" and the 
human driver as the "controller." The driver senses the state of the 
vehicle and environment and provides control input to the vehicle. 
The control strategy is a time stream of decisions made by the dri­
ver, which govern the actuation response to the driver's perception 
of the system state. These decisions are the n~sult of some combi­
nation of rational thought and instinctive response, and the basis for 
the decisions is typically obtained through a combination of train­
ing and experience. 

Measuring driver performance is a challenge, especially with 
respect to safety-related decision behavior. Current driver evaluation 
methods focus on ·perception and actuation, because these task skills 
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are observable and testable (e.g., through eye examinations and sim­
plistic road tests). However, the decision-making component of the 
human-machine control system plays a significant role in governing 
the interaction between a vehicle and its environment. These inter­
actions ultimately determine the safety of the driver's actions. 

This research is focused on modeling system behavior in ground 
transportation systems. In particular, researchers are interested in 
evaluating the decision behavior of vehicle drivers. This behavior 
is evaluated in terms of risk probability as a function of the state of 
both the vehicle and its environment during operation. A proba­
bilistic model is used to represent the state of the human-machine 
system. This model, termed the safety state model, provides a 
framework for observing system behavior and driver decision 
behavior as a function of time. The observed data are used to 
calibrate the model, which is subsequently used to predict the risk 
probability as a function of the system state. By using the resultant 
relationship between system state and estimated risk probability, the 
safety state trajectory of a human-vehicle system can be trans­
formed into a risk probability trajectory as a function of time. The 
risk probability trajectory is used as the basis for evaluation of 
driver performance with respect to safety. In the event of an acci­
dent the safety state trajectory provides a chain of events leading to 
the accident, which may be used for determination of causality. 

DISCUSSION OF SAFETY AND RISK ASSESSMENT 

Before developing the theory of the safety state model consider the 
terms used and the meanings associated with them. Lowrance (3) 
defines safety as the "judgment of acceptability of risk." This defi­
nition provides a working framework for the pursuit of safety, 
which includes subjective and objective components. The subjec­
tive component, which is the judgment of acceptability, evaluates 
whether a given level of risk is acceptable to the society that is 
affected. Policies are set on the basis of that judgment. These poli­
cies determine the trade-off between a level of risk and the 
resources expended to reduce that level of risk. Risk judgment is 
typically performed by policy makers. 

The objective component is risk assessment. A variety of defini­
tions of risk can be found in the literature. Rowe (4) defines risk as 
"the potential for unwanted negative consequences of an event or 
activity," alluding to the notion of chance. Lowrance (3) includes 
the probabilistic component explicitly, defining risk as the "measure 
of probability and severity of adverse effects." Rescher (5) echoes 
that idea: "Risk is the chancing of negative outcome. To measure 
risk we must accordingly measure both of its defining components, 
the chance and the negativity." Gratt (6) specifies the relationship 
between probability and severity in risk assessment by stating that 
the "estimation of risk is usually based on the expected result of the 
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conditional probability of the event times the consequences of the 
event given that it has occurred." Wharton (7) offers that "a risk is 
any unintended or unexpected outcome of a decision or course of 
action," including both positive and negative outcomes. 

In the case of transportation safety risk assessment is most often 
considered in terms of fatalities, personal injury, and property 
damage: the results of an accident. Based on the definitions of risk, 
risk assessment in transportation systems can be divided into two 
subcomponents: the probability and the severity of an accident. The 
risk probability of an accident estimates the relative likelihood that 
such an event will occur. The severity estimates the ultimate out­
come of the accident in the terms of interest (i.e., injuries and 
deaths) for a given set of conditions regarding the accident. In a 
sense the accident event represents a demarcation point in time: all 
of the events leading to an accident contribute to risk probability, 
whereas those that occur after the accident are in the domain of 
severity. These components ofrisk assessment parallel the concepts 
of "active safety" and "passive safety" devices, respectively. 
"Active safety" is a term typically applied to those devices or sys­
tems that assist in preventing accidents (such as anti-lock braking 
systems and traction control), whereas "passive safety" devices are 
those that reduce the severity of an accident when it does occur 
(such as airbags and door guard beams). Risk assessment is 
typically performed by systems analysts. This research is focused 
on estimation of risk probability. · 

Risk assessment is, in effect, a subset of reliabiqty engineering, 
which is focused on estimating the probability and effects of system 
failures. When a system failure can result in injury or death to a 
human it becomes a safety issue. Assessment of system reliability 
with respect to a failure of this type is risk assessment. 

Risk probability, especially in transportation systems, is not a 
static quantity. Instead, risk probability varies as a function of the 
state of the system, which includes the state of the vehicle as well 
as the state of the environment. The system state in transportation 
systems is quite dynamic with respect to time. The driver is respon­
sible for a constant stream of control decisions, and the actions 
resulting from those decisions determine the state of the vehicle in 
relation to the state of the environment. Thus, through these control 
decisions the driver has a profound impact on the risk probability of 
the vehicle system. Many accident scenarios are the result of 
compounding several hazard conditions, each of which may be 
relatively innocuous when it occurs in isolation. Some of these 
hazards may be due to driver errors (8), whereas others may be due 
to machinery failures in vehicle or wayside equipment. The 
collected set of potential hazard conditions leading to a particular 
accident scenario can be considered a system state. Because this 
state varies with time and the risk probability is a function of this 
state, risk probability can also be considered a function of time. 

Time is an integral component of risk probability. The risk 
probability can be modeled by probability theory as the relative 
likelihood of the occurrence of an accident. However, the risk prob­
ability of an accident only makes sense if its occurrence is compared 
with the alternative event, which is the nonoccurrence of an acci­
dent. Since nothing "happens" during the nonoccurrence, the event 
can only be considered with respect to some fixed metric. The safety 
state model considers the probability of an accident with respect to 
a fixed time frame, known as a time slice. Thus, the risk probability 
represents the relative likelihood of an accident in a single time 
slice. On average, it also represents the percentage of time slices 
that result in an accident. An alternate form of expression is in terms 
of the mean time (number oftime slices) between the occurrence of 
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accidents. This form is-commonly known as the mean time between 
failures (MTBF) and is used extensively in the field of reliability 
engineering. 

Even if the risk probability for a rare event is very small (alter­
nately, the MTBF is very large), probability theory asserts that the 
event will eventually occur, given enough opportunity (i.e., time). 
From this, it can be seen that the only way to avoid a probabilistic 
event is to "get out of the game" before that event occurs. (In fact, 
this is what happens to most people with respect to rare catastrophic 
events-the human lifetime is much shorter than the time period in 
which one could expect to experience a single occurrence.) Thus, 
the concept of risk exposure is as follows: given a constant risk 
probability, the expected number of failures over a prescribed 
period rises with the size of the period. To reduce the overall risk of 
an undesirable event, one must reduce either the risk probability.or 
the risk exposure. 

Estimating the risk probability of transportation accidents is quite 
difficult for several reasons. First, accidents are relatively rare 
occurrences and are difficult to predict. In addition, the events and 
behavior of highest interest for risk probability estimation are those 
that immediately precede the accident event: attention needs to be 
focused on a time period that is identified by an event that occurs at 
the end of the period. Finally, a compound set of hazards and events 
typically leads to an accident. 

A guiding motivation in this work is the notion that near colli­
sions are far more common than actual accidents. If the capability 
of identifying near collisions and the conditions that lead to them 
exists, responses (in either design, operating procedure, or policy) 
can be formulated to reduce the occurrence of near collisions and in 
the process reduce the number of accidents. A dynamic estimation 
of risk probability provides a mechanism for identifying system 
states corresponding to near collisions. 

SAFETY STATE MODEL 

The safety state model is an extension of the more familiar event tree 
and fault tree models. An event tree is a representation of possible 
scenarios that can occur from a fault-precipitating event (9). A fault 
tree, by contrast, works backward from a system failure to identify 
the logical combination 6f all of the potential causes of that failure 
(10-12). The safety state model has been inspired by these methods 
of system safety analysis and represents a step forward in generality. 

Event Tree Analysis 

Event tree analysis is used for human reliability analysis. The 
purpose of the method is to identify the probability of system failure 
from the occurrence of a precipitating event. From an event tree· it 
is possible to detect points in the failure process where human 
reliability is problematic and to use that knowledge to suggest 
improvements to manual or automated procedures. 

Event tree analysis starts at a precipitating event. From the occur­
rence of that event, branches are constructed to all of the possible 
next events. Each branch . has a probability associated with the 
occurrence of the next events. Then, from each of the next events, 
tree limbs are constructed for subsequent events, with associated 
probabilities. Once the tree has been completed the overall proba­
bility of each possible event path can be calculated. Swain and 
Guttman (9) explicitly state that there should be no more than tw·o 
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branches from each node, representing a binary decision process; 
others (J J) allow for event tree construction with more than two 
branches from an event node, corresponding to partial failure. 

A generalized example of an event tree is shown in Figure 1. 
Figure 1 shows that at the precipitating event on the left the opera­
tor can choose to take Action A or not. If Action A is not chosen a 
failure will result. If Action-A is chosen then a second decision point 
occurs, at which point the operator can choose to take Action B or 
not. If Action B is not taken there is a subsequent decision to take 
Action C or not. If Action C is not taken a failure will result. If 
Action C is taken the operator will be at the same decision point as 
if Action B was chosen earlier. Thus, Action C is known as a cor­
rective action. The probability of system failure can be expressed as 

P(A) U[P(A) n P(§) n P(C)] u [~A) n P(B) n P(D)] 
U[P(A) n P(B) n P(C) n P(D)] 

The failure process is thus transformed into a combination of 
individual failure probabilities, which are more easily determined. 
The overall probability of failure can then be evaluated through the 
mathematical combinations of these individual failures, as deter­
mined from the event tree. 

Event tree analysis is especially well suited for analysis of systems 
that are procedural by nature, because it effectively measures devia­
tion from an ordered sequence of.events. In this regard it has proven 
to be very useful in the nuclear power industry. However, the binary 
decision form is not applicable to systems that offer several choices 
at each decision point. Even when the nonbinary form is used, the 
event tree method becomes unwieldy as the number of decision 
options rises. In addition, unless each decision point explicitly 
includes a time limit, event tree analysis cannot capture the time 
relationship between events. For these reasons event tree analysis is 
limited with regard to estimating the risk probability of drivers. 

Fault Tree Analysis 

Fault tree analysis is another method commonly used in human 
reliability analysis. In contrast to event tree analysis, fault tree 
analysis is .considered backward looking. The analysis begins with 
the occurrence of the failure and works backward to identify the 
combinations of contributing factors. 

An important feature of fault tree analysis is the logical combi­
nations of preceding conditions. Through the use of Boolean oper-

failure 

success 

FIGURE 1 Event tree. 
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ators ("and" and "or") the fault tree describes the combinations of 
precursor faults leading to a system failure. In addition, fault tree 
analysis can be used as a quantitative method by assigning proba­
bilities to the various failure events. A generalized example of a 
fault tree is shown in Figure 2. In this example the system will fail 
either if Event A has occurred or if Event B occurs, which results 
from the combined occurrence of Events C and D. The probability 
of this system failure can be expressed as P(A) U P(B), which is 
equivalent to P(A) U [P(C) n P(D)]. Boolean algebra provides a 
powerful tool for logically combining events and hazards that can 
lead to a failure scenario. Although fault tree analysis does not 
explicitly exclude "gate-to-gate" connections (11) (which corre­
spond to complex Boolean logic expressions), convention dictates 
that the use of these constructs is avoided. 

As with event tree analysis a weakness of the fault tree is cover­
age: in the case in which contributing events are independent the 
analysis becomes quite cumbersome, because all combinations of 
hazards must explicitly be included. Ansell (J 3) notes that fault tree 
analysis (as well as FMEA, another risk assessment technique) "suf­
fers from a narrowing of our vision of the system by either limiting 
the number of failure modes for a component or the types of risks 
considered. They both implicitly rely on the correctness of the tech­
nology or science on which the model is built. This is reinforced by 
cognate dissonance; only perceived possible risks can be guarded 
against." Fault tree analysis is also weak with regard to capturing the 
time relationships between events that contribute to an accident. 

Fault tree analysis has been applied to estimation of driver risk 
probability (14, 15). These studies have been successful in using 
fault tree methods to identify a framework of causation. However, 
in neither case was the research directed toward estimating the risk 
probability as a function of system state. Based on the weaknesses 
that have been discussed, fault tree analysis is not well-suited to 
this purpose. 

Structure of Safety State Model 

The safety state model, an extension of event tree and fault tree analy­
sis, is now described. By assuming that the conditions contributing 
to system failure are truly independent, the safety state model 
can be viewed as a generalization of event and fault tree analyses. 

Consider a collection of n conditions that could possibly con­
tribute to an accident scenario. These conditions include actions 
taken by the driver (such as acceleratio.n or braking), the state of the 
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FIGURE 2 Fault tree. 
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driver (such as fatigue or impairment), the state of another vehicle 
in the system (such as vehicle ahead braking), and the state of the 
system environment (such as a red traffic light ahead). These 
conditions are constrained to be binary conditions. That is, the 
condition is defined such that it has only two possible values. The 
complete set of possible combinations of such a set of conditions 
can be represented by a binary word which is n bits long. The total 
number of possible combinations is 2n. 

Now consider each of the possible combinations (i.e., each 
number in the set of possibilities) to represent a state in a Markov 
network. These states are identified by the associated number, 
which is within a range of 0 to (2n - 1), inclusive. The accident 
scenario is identified as an additional state, labeled 2n. The state 
number is termed the safety state of the system, and the resultant 
Markov network is known as the safety state network. An example 
of a three condition safety state network is shown in Figure 3. 

The state transition of the Markov network is defined to occur at 
regular time intervals, with the time period of the interval fixed at h. 
The value of h is set such that only one condition may change its 
state (within reasonable probabilistic bounds). At each state transi­
tion instant (i.e., at the end of each state transition interval), the 
model will transition from the current state S(i) to the next state S(j) 

with probability Pi-+J· The probability Pi-+J represents the holding 
probability for the state S(i), which is the probability that the state 
will not change at the next transition. The collection of transition 
probabilities for a given state (pi-+J• j = 0, 1, 2, ... 2") represents a 
probability distribution, and the sum of these probabilities must be 
1 (Equation 1 ). 

2" 

I Pi-+}= 1 
j=O 

(1) 

The safety state corresponding to the accident scenario [state S(2n )] 
is a trapping state, which means that once it is entered the process 
can never exit that state. This notion correlates with the reality that · 
the occurrence of an accident is permanent and cannot be undone. 

FIGURE 3 Safety state network. 
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As a trapping state the accident state has a holding probability of l 
and the probability of transition to any other state is zero. 

The collection of probability distributions for the entire set 
of possible safety states can be represented in matrix form (Equa­
tion 2). The row of this state transition matrix (P) represents the 
current state, whereas the column number represents the next state. 

P0-+0 PO-+I •.. P0-+211 

Pi-+o Pl-+I • · · P1-+2 11 ~ [~o p;] P= (2) 

P2 11 -+o P2 11 -+ I · · • P2n-+2 11 

Note that because of the structure imposed earlier in the develop­
ment, the state transition matrix can be partitioned in a convenient 
manner. The rightmost column (Pi-+J• i = 0, 1, 2, ... , 2n- 1) repre­
sents the failure probabilities from any of the nonfailure states and 
can be represented by the vector PF· The lowest row is the proba­
bility distribution for the failure state, which is all zeros with the 
exception of the holding probability. The remaining submatrix 
represents the transitions among the nonfailure states (termed 
operational states because they represent the set of states that are 
possible during nonfailure operation). The submatrix of operational 
state transition probabilities is labeled P 0 . 

When considering this network topology it is important to keep 
in mind the issues of scale. The number of states in the safety state 
network grown as a power of 2 with an increasing number of con­
ditions, and the number of elements in the state transition matrix 
grows as the square of the number of safety states. So, for example, 
a 10-condition network has roughly 1,000 states and 1,000,000 ele­
ments in the state transition matrix. When appiying this method to 
actual systems the analyst must keep in mind the effects of scale and 
choose the conditions carefully to avoid having an unnecessarily 
large and unwieldy safety state network. 

Estimating Risk 

Although the state transition matrix itself is interesting, the ultimate 
power of this model lies in the ability to estimate the probabilities 
of future states. Consider the current state S(i) to be represented as 
a vector. S(k) of dimension 2"+ 1 by 1, in which the ith. element is 
1 and the remaining elements are zero. (In this notation k represents 
the transition number as the process progresses in time.) One 
can calculate the probability distribution of the next state, shown as 
S(k + 1), using Equation 3. 

ST(k + 1) = ijT (k)P (3) 

Using this strategy one can look beyond the next transition to deter-. 
mine the probability ofreaching a given state in any number of tran­
sitions in the future (Equations 4). This is a powerful concept, and 
by using this concept one can evaluate the probabilistic behavior as 
far in to the future as one would like. Future probabilistic behavior 
can be summarized in the <l>(T) matrix, which expresses the ability 
to transition from one state to another in T transitions (Equation 5). 
Note that the <l>(T) matrix can be partitioned in exactly the same 
manner as the.state transition matrix (Equation 2). 

er(k + 2) = OT(k + l)P = OT(k)P2 = ijT(k)<l>(2) 

OT(k + T) = OT(k)pr = er(k)<l>(T) 

OT(k + 00) = OT(k)P°" = er(k)<l>( 00) 
(4) 
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0o__,o(T) 00__,1(T) 

01__,o(T) 01__,1(T) 
<f>(T) = = f <l>o(T) <l>h) ]= P

7

(5) 
L 0 I ' . 

The real goal is to determine the probability of reaching the failure 
state from any given current state. Because the Markov network is 
a finite single-chain networ~ the ultimate state will be the failure 
state. (This corresponds to the fatalistic notion that, given enough 
time, a probabilistic failure will eventually happen.) However, the 
theory of Markov processes provides a mechanism for calculating 
the mean time to another state from a known state. In the case of the 
safety state network, identification of the mean time to the failure 
state is the point of interest. 

To calculate the mean time to failure one first needs to express 
the probability that the failure will occur on a specific state transi­
tion in the future. As shown in Equation 6, 'l'(T) is a vector quantity 
that provides the probability that the· failure will occµr on the 
T 1h state transition in the future as a function of the safety state. 
The mean time bet~een failure as a function of the safety state is 
the expected value of the number of transitions until the failure 
(Equation 7). 

(6) 

MTBF = M = I T\V(T) (7) 
T=l 

Knowing this, one can estimate the risk probability as the inverse of 
MTBF (Equation 8). 

F = 1/ M = [ l~M1] 
1/Mn 

(8) 

In summary, this section details the methodology used to derive the 
risk probability and mean time between failures given a static state 
transition matrix. Both the risk probabihty and mean time between 
failure are expressed as a function of the system's safety state. Pro­
vided there is an obtainable state transition matrix that characterizes 
average driver behavior, these results can be used to compare the 
performances of drivers in several ways. Some of these are dis­
cussed later. 

Model Calibration 

As shown, a state transition matrix that is characteristic of average 
driver behavior is required. To obtain that matrix (i.e., calibrate the 
model), observations from an exist.ing system are used measuring 
the binary state of the individual conditions that are combined to 
form the safety state network. The rrieasurement record marks the 
points in time at which each individual state change occurs. From 
these data a safety state trajectory can be constructed as a function 
of time. This trajectory includes all pertinent data for model 
calibration, including state occupancy times and state transitions. 

By statistical analysis of these data the state transition probabili­
ties are computed. First, state occupancy statistics are used to deter­
mine the holding probability, P;_.;. ·The state transition statistics 
are then used to calculate the individual transition probabilities 
(Equation 9). 
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· ( number of transitions to S(j) ) 
PH; = (1 - p;-.,;) number of transitions from S( i) (9) 

Driver Performance Measurement 

Assuming that a state transition matrix of sufficient quality has been 
obtained, it is now possible to compare the performances of subject 
drivers. The safety state model is used to calculate the transforma­
tion function between the safety state and the estimated risk proba­
bility. This transformation function may be stored in lookup table 
form, with the safety state as the index in the table. 

Data are collected on a subject driver in the same manner used 
for calibration data: by observing the safety state conditions and 
recording the changes of state. These data are combined to form a 
safety state trajectory as a function of time. By using the transfor­
mation function the safety state trajectory is then transformed into 
a risk probability trajectory. 

The risk probability trajectory as a function of safety state is used 
directly for comparing driver performance. The average risk prob­
ability for the system average can be computed by taking the 
weighted average of the risk probability vector elements weighted 
by the relative time spent in that state (from the calibration data). 

Several statistical approaches are useful for comparing the 
safety-related ·performances of subject drivers. These include 
instantaneous risk level, peak risk level, overall average risk level, 
windowed risk level, and cumulative risk level. In any of these 
approaches the performance of the subject driver can be compared 
with either the average risk probability (described in the previous 
paragraph) or the performance of other subjects. 

The instantaneous risk level identifies the current risk probability 
estimation as a function of time. This measure is independent of his­
tory in that the specific safety state trajectory leading to the current 
state is not identified. (This is a general property of Markov 
processes.) It is a useful measure for evaluating performance in real 
time and could be used as feedback information to the driver as well. 

The peak risk level identifies the highest level of risk that has 
occurred. Typically, peak measurements are made within some pre­
defined time period, such as the duration of the test. This measure 
is useful in identifying the bound on the level of risk that a driver 
will take. 

The overall average risk level provides an overall mean of the risk 
probability trajectory. To compute this the risk probability trajectory 
is integrated over time, and the resultant integration is divided by the 
integration time period. In the overall average the time period 
continues to grow. As a result the overall average represents a sum­
mary of the complete history of safety-related performance. 

In contrast, the windowed risk level computes the average over a 
fixed time interval immediately preceding the current moment. For 
example, if the time window was defined as 10 min, the windowed 
average would provide the average safety-related performance for 
the last 10 min only. This measure. "forgets" the past performance 
that is outside the defined time window and can be used as a means 
of measuring learning curves or fatigue characteristics. 

Finally, the cumulative risk level represents the total amount of 
risk that has been taken. It is computed by taking the time integral 
of the risk probability trajectory and represents the expected num­
ber of accidents (in a Bernoulli sense). This measure is not intended 
to predict the occurrence of accidents-the expected value repre­
sents an average. However, it can provide useful insight into risk 
exposure. This measure would not be appropriate for subject feed-
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back, because subject knowledge of this information could signifi­
cantly affect the subject's performance. 

Discussion of Results 

The safety state model provides a method for estimating the 
dynamic risk probability as a function of system state. It has several 
strengths when compared with event and fault tree methods; 
however, it has weaknesses as well. 

The safety state model is fundamentally different from both event 
and fault tree analyses in the conceptual definition of the nodes. In 
both event and fault tree methods the nodes of the tree represent 
events. In the safety state model the nodes represent system states, 
and the transitions between the nodes represent events. This is 
significant, because any state can be reached by several different 
paths, which represent the occurrence of different events. Once a 
state has been reached (that is, once a given set of conditions is true), 
the path to that state (the order of events) does not matter. This is a 
fundamental concept in Markov process modeling. 

Significant among the strengths of the safety state model is its 
generality. No assumed dependencies or interactions exist between 
any of the contributing conditions. All combinations of conditions 
are considered equivalently. Thus, the analyst needs to specify only 
the conditions that define the safety state, without defining the rela­
tionship between them. This serves to improve the robustness of the 
analysis by reducing the chance of human error (which might be due 
to either prejudice or oversight). This becomes more significant as 
the number of conditions increases. 

As a result of its generality the method of safety state analysis is 
easily automated. This frees the analyst from any direct contact with 
the state transition matrix, which will be of formidable size in any 
significant problem. The ease of automation allows safety state 
analysis to be applied to problems that are too large and unwieldy 
for other methods. However, this strength is tempered by memory 
and computation requirements, which are significant. 

One of the most significant weaknesses is in the area of data 
collection. In an operational system, the data required for calibra­
tion would be quite difficult to gather. For driver performance 
evaluation a broad range of in-car data would be required. Systems 
in current operation do not collect appropriate data, and there is 
debate whether measurements of this nature are even feasible within 
commonly accepted notions of personal privacy. An alternative 
approach is to use data collected from simulation systems. Simula­
tion systems can be configured to provide a plethora of appropriate 
data, and networked simulators provide a mechanism for collecting 
data on interactions between two or more vehicles. Although there 
are debates in the driver performance community regarding the 
applicability of simulator-based results to operational systems, the 
author believes that simulation-based experiments provide the only 
currently available means for exploring the viability of this method. 

AN EXAMPLE 

To illustrate the method of safety state analysis, consider the fol­
lowing example: a frontal impact scenario in a rail system. In this 
example the goal is to identify the risk probability of striking another 
vehicle (or obstruction) with the front of the vehicle. The first step is 
to select the set of conditions that are considered contributory to this 
failure event. The following set of conditions are used: 
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• Condition 0: throttle actuated. This condition is true if the 
throttle is applied and false if the throttle is not actuated. 

• Condition 1: brake applied. This condition is true if the brake 
is applied and false if the brake is not actuated. 

• Condition 2: brake failure. This condition is true if the braking 
system of the train has failed in any way (even if the driver is not 
aware of this condition) and false if the braking system is function­
ing properly. 

• Condition 3: overspeed. This condition is true if the train is trav­
eling at a speed greater than that allowed by either the static speed 
limit or the signaling system and false if the train is being operated 
within the allowable speed bounds; the overspeed condition includes 
the case of passing a stop signal (entering an occupied block). 

• Condition 4: obstacle. This condition is true if there is an 
obstruction on the track (possibly another vehicle) within the stop­
ping distance of the train and false if the track is clear; for the 
purposes of this example the stopping distance is defined as the 
distance required to bring the train to a full stop from the current 
speed by using full-service braking and is a function of speed. 

This set of conditions includes measurement of human control 
actions (throttle and brake actuation), vehicle state as a result of 
human control actions (speed condition), on-board equipment fail­
ures (brake failure), and external conditions (obstacle). Since each 
condition is binary, this set of conditions can be combined into a 
single number. The resulting set of safety states is given in Table 1, 
with the operational states numbered from 0 to 31. The check marks 
indicate the conditions that are true for each state. For example, the · 
system is in state 14 when there is no obstacle present but the vehi­
cle is over the speed limit, the brakes are applied, and the brakes 
have failed. An additional state is included in Table 1, state 32. This 
state represents the occurrence of the failure event, which in this 
example is a collision. 

To calibrate the model data are collected from an operational sys­
tem. Once they are collected these data are processed to determine 
the state transition matrix, which is used to calculate the risk prob­
ability as a function of the safety state. Subjects are evaluated by 
recording the safety state information, converting the resultant 
safety state trajectory into a risk probability trajectory, and com­
paring the risk probability trajectories, as discussed previously. 

SUMMARY 

The research described here is a response to a need for methods in 
which the safety-related decision performances of vehicle operators 
can be evaluated. Some of the difficulties in this area include event 
rarity, compound and interacting errors, and related difficulty in 
determining causality. This work identifies the human operator as a 
key component in the safety of transportation systems. The driver­
vehicle system is modeled as a closed-loop control system, and a 
probabilistic model of system behavior is presented. 

Based on the work of Lowrance (3) an organization for the efforts 
involved in the pursuit of safety is identified. Safety-related work is 
divided into subjective and objective components. Risk assessment, 
the objective component, is further divided into two components. 
One component, risk probability, measures the probability of occur­
rence of a necessary intermediate event, whereas risk outcome 
measures the outcomes of these events in terms of the ultimate risks. 
In the case of transportation systems, the ultimate undesirable 
outcome is damage, injury, and death, and the intermediate event is 
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TABLE 1 Safety State Description 

Safety Binary 
State Form Obstacle Overs peed 

0 00000 
1 00001 
2 00010 
3 00011 
4 00100 
5 00101 
6 00110 
7 00111 
8 01000 " 9 01001 ..J 

10 01010 ' 
11 01011 ' 12 01100 ' 13 01101 ' 
14 01110 v 
15 01111 " 16 10000 " 17 10001 " 18 10010 \ 

19 10011 ' 
20 10100 ' 
21 10101 " 22 10110 ' 
23 10111 ' 
24 11000 ' " 25 11001 " " 26 11010 " v 
27 11011 " " 28 11100 " v 
29 11101 " " 30 11110 " " 31 11111 " v 
32 100000 

an accident. Based on this organizational description, the focus of 
this research is·in the area of risk probability assessment. 

A probabilistic model for system behavior (the safety state 
model) is developed. This model is based on finite Markov 
processes, with event tree and fault tree techniques used as inspira­
tions. From the safety state model a method for determining MTBF 
and risk probability is developed. Both of these quantities are 
expressed as a function of system state. A method for calibrating the 
safety state model is presented and is based on experimental data. 
Finally, a method for measuring individual driver performance and 
comparing it with average driver behavior and the behaviors of 
other individual drivers is presented. 

In conclusion, the safety state model represents a unique method 
for assessing the safety-related decision performances of vehicle 
drivers. Future developments include experimental verification of 
the usefulness of the model with data gathered from a human-in­
the-loop high-speed rail simulation system. 
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