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Comparison of Alternative Methods for 
Updating Disaggregate Logit Mode 
Choice Models 

DANIEL A. BADOE AND ERIC J. MILLER 

An empirical assessment of alternative methods of updating disaggre
gate travel choice models so that their transferability from the estima
tion context within which they were originally developed to an appli
cation context (which differs from the original estimation context 
geographically or temporally, or both) is presented. The case study for 
the empirical tests performed is a long-term temporal transfer of work 
trip logit mode choice models estimated using 1964 data for the greater 
Toronto area (GTA) to represent 1986 work trip mode choice in the 
GT A. Three updating procedures that have been previously presented 
in the literature are examined (Bayesian updating, transfer scaling, and 
combined transfer estimation), plus a fourth new procedure, joint con
text estimation. All four procedures assume that a "small" data set of 
observed travel choices is available for the application context, which 
can be used in the updating procedure. The case study results indicate 
that the latter three procedures all possess merit as potential updating 
methods, with the choice among the three depending on such items as 
model specification and application context sample size. The results 
also indicate that if the application context sample size exceeds 400 to 
500 observations, then updating may provide little or no improvement 
over simple estimation of an application context model, especially if 
"full" model specification is supported by the available data. 

The spatial and temporal transferability of random utility models 
of travel demand is a matter of considerable practical interest. 
Although the empirical evidence concerning the transferability 
properties of random utility models is mixed (J), consensus exists 
that the potential for model transfer is greatly enhanced if local area 
(i.e., application context) data are used to update the model so that 
it better reflects application context conditions (J-6). At least two 
major reasons underlie this need to update transferred models ( 4): 

1. Limitations in model specification, perhaps most notably as a 
result of omission of relevant variables; and 

2. Differences in unmodeled "contextual factors" (geographical, 
historical, etc.) between th.e estimation and application context that 
affect the evolution over time of trip-makers' travel tastes and pref
erences. 

Three major updating procedures have been presented in the lit
erature to date: 

1. Bayesian updating, in which parameter estimates from a small 
application context sample are combined with the estimation con
text parameter values using a classical Bayesian analysis to yield an 
updated set of parameters (2); 

2. Transfer scaling, in which the application context utility func
tion scales and alternative-specific constants are estimated from a 
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small application context sample, assuming that the remainder of 
the utility function parameters are transferable from the estimation 
context (3,4); and 

3. Combined transfer estimation, which can be viewed as a 
generalization of the Bayesian updating approach, which accounts 
for transfer scaling effects (6). 

These approaches all assume that the estimation context model 
parameter values are known and that a small sample application 
context data set is available which permits the estimation of an 
application context model that is identical to the estimation context 
model being transferred. If, however, the estimation context data set 
used to estimate the original model parameters is also available 
(which in many instances may well be the case), a fourth approach 
is possible. This fourth approach, labeled joint context estimation 
involves estimating a new joint estimation/application context 
model, using both the estimation context and application context 
data sets. 

This paper has two purposes. First, it provides a systematic com
parison of the four updating techniques within a common empirical 
application. Second, this empirical application is unique in the lit
erature because it involves assessing the relative effectiveness of the 
various updating procedures in achieving long-term temporal trans
ferability of a disaggregate choice model within the same geo
graphic area. Specifically the case study consists of updating 1964 
morning peak-period work trip mode choice models developed for 
the greater Toronto area (OTA), Canada, over a 22-year period to 
reflect 1986 conditions. 

The next section of this paper briefly reviews the four updating 
procedures. The paper's third section briefly describes the data sets 
used in the study, and the fourth section describes the test procedure 
employed. The fifth section presents and discusses the results 
obtained. The final section of the paper then summarizes the find
ings of the study and their implications for the state of practice in 
model updating and transfer. 

MODEL UPDATING METHODS 

It is assumed that a disaggregate multinomial logit choice model is 
to be transferred from an original (estimation) context to a new 
(application) context; that the estimation context parameter esti
mates are known; and that a small sample data set drawn from the 
application context that is suitable for estimating a model specified 

· identically to the estimation context model is available. 
Notation used throughout this discussion of methods includes the 

following: 
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0 = [K X l] vector of utility function parameters, where K 

= N + M - 1 = [ iJ; 
a = [(N - 1) X 1] vector of alternative-specific constants, 

where N is maximum number of alternatives available 
in choice set; 

~ = [M X I] vector of parameters consisting of utility func
tion weights for M explanatory variables in model; 

X;1 = [M X I] vector of explanatory variables for alternative 
i for individual t; 

V;1 = systematic utility for alternative i for individual t 
= wxit + O'.; (where O'.N = Q by definition); (1) 

P;1 = probability that individual t will choose alternative i 
from choice set C 

= exp(V;1)/~1rnexp(\/;1); (2) 
0i.02 = estimates of 8 derived from estimation context and 

application context data sets, respectively; 
~; = estimated parameter covariance matrix for context i (i 

= 1,2); and 
eupdate = final estimates of 0 to be used in application context, 

as generated by updating procedure. 

Bayesian Updating 

On the basis of the seminal work of Atherton and Ben-Akiva (2), it 
is well known in the literature that the Bayes theorem can be applied 
to the updating problem to yield asymptotically normal updated 
parameters with the following mean: 

(3) 

and covariance matrix: 

(4) 

Thus, to use this updating procedure, one must estimate an applica
tion context model using the available application context small 
sample using standard maximum likelihood methods to compute 0 2 

and ~2 • These can then be combined with the known values of 0 1 

and ~ 1 from the estimation context using Equation 3 to yield the 
updated model parameters. Atherton and Ben-Akiva (2) used this 
procedure with considerable success to update a 1968 Washington, 
D.C., work trip mode choice model to reflect 1963 New Bedford, 
Massachusetts, and 1967 Los Angeles applications. 

Transfer Scaling 

It is well recognized that alternative-specific constants are likely 
not to be transferable between applications, given the extent to 
which systematic but unmodeled "contextual factors" are captured 
within these terms. It is equally true that the overall scale of the 
model's utility functions (which are not statistically identifiable 
within a standard cross-sectional model) are also likely to vary from 
one application to another, again because of unmodeled contextual 
factors. 

A not unreasonable hypothesis on which to construct an updating 
procedure, therefore, is to assume that the utility function parame
ters computed in the estimation context, excluding the alternative
specific constants, are transferable to the application context, up to 
scale (note that, among other implications, this results in values of 
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time-as defined by the ratios of time-to-cost parameters within the 
utility functions-being equal in the two contexts). Indeed, as 
shown elsewhere (1,3,4), much of the transfer bias can, in fact, be 
eliminated by adjusting model constants and scales. The updating 
problem then becomes one of determining changes in alternative
specific utility function constants and scales relative to estimation 
context values. For example, given a set of estimation context para
meters (excluding alternative-specific constants), ~" one can 
assume that the application context systematic utilities, V;1,2, take the 
following form: 

Vi1.2 = µ;,2~(X;1.2 + a;.2 (5) 

where µ;,2 is the ratio of the application context utility function scale 
to the (unidentified) estimation context utility function scale for 
alternative i, and all other terms are as previously defined, with the 
addition of the subscript 2 to indicate the application context. 

Alternatively, Gunn et al. (3) apply scale factors to various group
ings of parameters, where these groupings are defined on the basis 
of variable type rather than alternative. Equation 5 is thus a special 
case of the Gunn et al. formulation, which also includes as special 
cases complete reestimation of the model parameters on the basis of 
the application context data set (i.e., 1 µ for every parameter) and 
"naive" transfer of the estimation context model (µ = l ). 

The updated application context alternative-specific constants 
(a) and scale adjustments (µ) are readily estimated given an appli
cation context small sample using standard maximum likelihood 
methods, with the constructed variable W;1 = ~(X;1, 2 being the sin
gle explanatory variable in the utility function for each alternative. 

Given that W;1 is constructed using the estimated values ~" the 
standard errors reported by typical logit model estimation packages 
will be biased downwards. If it is critical to the evaluation of the 
updating results to eliminate this bias, then appropriate corrections 
can be computed. More typically, the estimation results obtained 
will be sufficiently robust to allow the modeler to use the unadjusted 
standard errors, with the recognition that they somewhat overesti
mate the precision of the parameter estimates. 

Successful applications of transfer scaling techniques include the 
following: 

1. Gunn et al. (3), in which alternative transfer scaling schemes 
were applied to four different models: joint mode and destination 
choice models for personal business trips and shopping trips and trip 

-frequency choice models for the same two trip purposes; with the 
transfer occurring between two regions in the Netherlands (Rotter
dam/The Hague and Utrecht), and with the data sets for the two 
urbanized regions being collected 5 years apart and at different 
times of the year; and 

2. Koppleman et al. ( 4), in which both intraregional transfer
ability within the Washington, D.C., area and interregional trans
ferability among the metropolitan areas of Washington, D.C.; 
Baltimore; and Minneapolis-St. Paul were investigated for the case 
of work trip mode choice models. 

Combined Transfer Estimation 

Implicit in the Bayesian updating approach is the assumption that 
0, = 02 = 0; that is, that the estimation and application contexts 
share the same underlying set of parameters. The transfer scaling 
method, on the other hand, explicitly assumes that a "transfer bias," 
4, exists, where 
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(6) 

Ben-Akiva and Bolduc (6) present a generalization of the Bayesian 
approach, which accounts for a nonzero a, and which yields the 
minimum mean square error estimate of 0update achievable from a 
linear combination of the estimation and application context para
meter estimates. As shown in Equation 6, this minimum mean 
square error estimate is provided by 

Comparison of Equation 7 with Equation 3 indicates that the com
bined transfer estimator reduces to the Bayesian estimator in the 
case of a = 0. In practice, the unknown transfer bias a is approxi
mated by the estimated bias d = 0 2 - 9 1• Ben-Akiva and Bolduc 
also demonstrate theoretically that the combined transfer estimator 
is superior to simply using the application context parameter esti
mates 82, providing the transfer bias, a, is small. If the transfer bias 
a is large, then the term (:L 1 + ..i..i')- 1 in Equation 7 becomes neg

ligible and hence eupdate = 82. 

Joint Context Estimation 

The transfer scaling procedure described above for updating model 
constants and scales makes the following assumptions concerning 
the other model parameters (i.e., J3): 

1. J31 = J32, = J3; 
2. J3 1 - J3 is small (i.e., the sample error in the estimates of J3 

obtained from the estimation context are small); and 
3. These parameter estimates are obtained solely from the esti

mation context data, independent of and before consideration of 
application context data (which are allowed only to affect the appli
cation context constants and scales). 

A much more general model that is fully consistent with the behav
ioral assumptions mentioned earlier is one in which J3 is jointly esti
mated using both the estimation and application context data sets, 
simultaneously with the estimation of the alternative-specific con
stants for both contexts and the scales of one context relative to the 
other. 

The following notation is used in developing the joint context 

estimation procedure: 

p = 1 for estimation context; = 2 for application context; 
sf, = vector of explanatory variables for alternative i common to 

Periods 1 and 2 (i.e., associated with the constant parameter 
vector -y), but with values given for person tin context p; 

aP = vector of utility function parameters assumed to be specific 
to context p (at a minimum, this includes alternative-spe
cific constants for context p ); 

rf, = vector of context-specific explanatory variables for alterna
tive i for individual t within context p; 

µ; = utility function scale for alternative i in context 2 (context 
superscript has been suppressed to simplify notation; con
text 1 scales are assumed to be "imbedded" within aP and 
-y; given this, µ; is actually the ratio of context 2 scale to 
constant 1 scale for alternative i, with absolute values of 
either of these scales not being identifiable); 
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9 = combined vector of all parameters to be estimated within 
joint context model, excluding utility function scales 

xfr= combined vector of all explanatory variables in joint 
context model, for alternative i for person tin context p 

and 

= [r~l 
SuJ 

for p = 1 

Given these definitions, the systematic utility components for the 
two contexts are 

(8) 

(9) 

Given the explicit accounting for changes in scales and constants 
between the two contexts, the usual IID Gumbel Type I distribution 
is assumed for the random utility terms in each context, leading to 
conventional multinomial logit choice models: 

pP. = 
II 

exp (Vfr) 

I exp (ij';) 
jEC1 

p = 1,2 (10) 

If nP is the number of observations in the context p data set and yfr 
is the observed choice indicator for person tin context p (equals 
1 if alternative i is chosen; equals 0 otherwise), then the joint log
likelihood function for the joint context model is simply 

2 np 

L = In L * = """' """' """' yP In pP LL L ~It II 
(11) 

p=l t=I iEC1 

Substituting Equations 8 through 10 into Equation 11 yields, on 
rearrangement; 
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L = ln L* =I L y)1[0Tx)1 - In( L exp(0Tx)1))] 
t= I iEC1 jEC1 

With straightforward changes in notation, this model is identical to 
that developed by Ben-Akiva and Morikawa for combining 
revealed and stated preference data sets within the same choice 
model (7,8). As noted by Morikawa et al. (8), "nested logit" full 
information likelihood estimation procedures can be applied to this 
model. Such a procedure was programmed in Fortran by the authors 
and used in computing the joint context model parameter estimates 
presented in this paper. 

Joint context estimation can clearly be used as a model updating 
technique, providing that the estimation context data are available 
for combination with the small sample application context data set. 
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Although this will not always be the case, access to estimation con
text data is surely sufficiently feasible in many instances to warrant 
the testing of this approach compared with the previous three 
approaches discussed. In particular, potential advantages of joint 
context estimation relative to conventional transfer scaling tech
niques include the following: 

1. It eliminates biases within the updated application context 
parameters caused by estimation context sampling errors [a prob
lem discussed in detail elsewhere (6)]; and 

2. It provides an operational full-information maximum likeli
hood procedure for parameter estimation when multiple cross
sectional data bases are available, as opposed to current methods, 
which are all limited information estimation procedures and hence 
inefficient in their use of data. 

DATA 

The 1964 estimation context data set is obtained from the 1964 Met
ropolitan Toronto and Region Transport Study (MTARTS) survey, 
which was a home interview survey of 3.3 percent of the households 
in Metropolitan Toronto and the surrounding regions, consisting of 
24,000 households in total. This survey is documented elsewhere 
(9). The 1986 application context data set is obtained from the 1986 
Transportation Tomorrow Survey (TTS), a telephone interview 
survey of 4 percent of the households in the GT A, or 67 ,000 house
holds in total. This survey is documented elsewhere (10, 11). 

Both surveys were one-day travel surveys that collected generally 
comparable information, with the single biggest difference being 
that the 1986 TTS did not collect information on worker occupations 
and household income. Although coded to different zone systems, 
these zone systems are roughly similar in definition. Similarly, the 
study areas for the two surveys vary slightly but not significantly. 

All level-of-service data required, with the exception of parking 
costs and transit fares (which were assembled from other sources), 
were generated using EMME/2 network assignment procedures 
applied to 1964 and 1986 road and transit networks. All costs were 
scaled to 1986 Canadian dollars on the basis of consumer price 
indexes for transportation. 

RESEARCH METHOD 

Test Procedure 

In this study, the morning peak-period work trips contained in the 
1964 MTARTS data base define the estimation context data set. 
Two multinomial logit work trip mode choice models are estimated 
using the 1964 data set: one that contains only level-of-service vari
ables (i.e., modal travel times and costs), and one that in addition to 
these level-of-service variables includes as full a set of socioeco
nomic variables as is supported by the available data (referred to as 
the "fully specified" model). 

The morning peak-period work trips contained in the 1986 TTS 
data base then define the application context data set. All four of the 
updating procedures discussed assume the existence of a "small" 
sample of trips drawn from the application context to be used in the 
updating calculations. 

To simulate this small sample, random subsets of trip records are 
drawn from the full TTS data base (which consists in total of 32,328 
usable records for this application). To explore the impact of sam-
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pie size on updating performance, samples of 400, 800, 1,600, 
3,200, and 6,400 are used (with each larger sample containing all 
the records included in the smaller samples). Both the level-of
service and fully specified models are then updated using each of 
the four updating procedures for each sample size. 

In addition, level-of-service and fully specified models are esti
mated using each of the 1986 small samples. These small sample 
models are then used to compare the impact that the information 
contained in the transferred models contributes to predictive 
performance in the application context with respect to simply using 
the available application context data. 

The performances of the four updated models and the 1986 small 
model are evaluated for each sample size-model specification com
bination in terms of how well they replicate the full 32,328 record 
1986 TTS set of observed trips. The primary test statistic used is the 
log-likelihood value generated by the given model when it is 
applied to the entire 1986 ITS data set. 

In addition, however, various aggregate prediction test statistics 
were constructed, all of which compare in various ways the aggre
gate number of predicted trips by mode m for a given aggregate 
group g,N,,,g, with the observed number of trips by this mode for 
this group, N,,,g. In this paper, only one of these test statistics is 
discussed, the mean absolute error (MAE) defined as 

MAE = {I I IN,,,g - N,,,g 1}/{I I N,,,g} 
m g m g 

(14) 

Two aggregations are examined: seven major destination groups 
and worker gender. 

Model Specification and Estimation 
Context Parameters 

Three modes are potentially included in the choice set in this study: 
automobile drive allway, transit allway, and walk. Although auto
mobile passenger, automobile access to transit, and (in 1986) com
muter rail modes in principle were also available, these modes were 
excluded from this analysis to reduce the modeling complexity with 
respect to specification, decision structure, and introduction of new 
modes (the commuter rail service did not exist in 1964). Table 1 
defines the explanatory variables used in the two models, whereas 
Table 2 presents the estimation results obtained through standard 
maximum likelihood estimation of the models using the 1964 
MT ARTS data set. 

RESULTS 

Table 3 contains the 1986 full-sample log likelihood values com
puted for each model specification-sample size combination for the 
four updated models as well as the estimated 1986 small-sample 
models. Figures I and 2 display these log likelihoods for the level
of-service and fully specified models, respectively. Points to note 
from these figures and Table 3 include the following. 

First, in view of the significant transfer bias, the combined trans
fer procedure as expected yields results that are virtually indistin
guishable from the I 986 small-sample results. At very small 
samples (e.g., 400 observations), the "prior" information provided 
by the estimation context parameters contributes a very marginal 
amount of additional information (resulting in a 0.2 percent 
improvement in the full-sample log-likelihood value for the level-
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dauto = 1 for auto-drive mode; = 0 otherwise 

dwalk = 1 for walk mode; = 0 otherwise 

aivtt = auto in-vehicle travel time (min.) for auto mode; = 0 otherwise 

tivtt = transit in-vehicle travel time (min.) for transit mode; = 0 otherwise 

twait = transit wait time (min.) for transit mode; = 0 otherwise 

twalk = transit access + egress time (min.) for transit mode; = 0 otherwise 

ivtc = auto in-vehicle travel costs ($) for auto mode; = 0 for walk mode; = transit fare 
($) for transit mode 

pkcst = auto daily parking cost ($) for auto mode; = 0 otherwise 

wdist = walk distance (km.) for walk mode; = 0 otherwise 

avplic = number of vehicles per licensed person in household for auto mode; =O 
otherwise 

wcbd = 1 if worker works in PD 1 (Planning District 1) for walk mode; =O 
otherwise 

am al = 1 for male worker for auto mode; = 0 otherwise 

tcbd = l if worker destination is PD 1 for transit mode; = 0 otherwise 

tgend = 1 if worker is female for transit mode; = 0 otherwise 

of-service model and a 0.1 percent improvement for the fully spec
ified model relative to the 1986 small-sample model results). 
Beyond this point, however, it is clear that the transfer scaling com
ponent of the procedure completely dominates the calculations. 
Because in this case the transfer scaling adjusts every parameter in 
the model, this is equivalent to simply reestimating the model on the 
basis of the small-sample application context data and using the 
reestimated parameters directly. To the extent that this result is ver
ified in other empirical settings, it implies that combined transfer 
updating contributes little relative to simply reestimating the model 
on the basis of the application context small sample (a theme that is 
discussed more generally later), except perhaps in the case of 
extremely small samples. 

Of the remaining procedures, the joint estimation procedure 
always performs the best, regardless of model specification or sam
ple size used. This is not surprising given that the joint procedure is 
the only full-information procedure of the three. The improvement 
in performance achieved with the joint procedure increases with 
model specification: at the application sample size of 1,600, for 
example, the joint procedure reduces the log-likelihood value rela
tive to the Bayesian procedure by only about 1 percent for the level
of-service model, whereas it generates about a 4 percent improve
ment for the fully specified model. 

Conversely, the joint estimation procedure performs marginally 
better than the combined transfer procedure for small sample sizes 
for the simpler level-of-service model, whereas the combined trans
fer procedure performs slightly better than joint estimation at all 
sample sizes for the fully specified model. In comparing these two 
procedures, however, it should be noted that the combined transfer 
procedure effectively requires the estimation of 2(N + M - 1) para
meters, where N is the number of alternatives and Mis the number 
of utility function parameters (excluding alternative-specific con
stants); that is, (N + M - 1) parameters from each of the estimation 
and application contexts. The joint context estimation procedure, on 

the other hand, requires 2(N - 1) altemati ve-specific constants, N 

scales, and Mother utility function parameters to be estimated, for 
a total of M + 3N - 2 parameters, M - N fewer than the combined 
transfer procedure. 

Given N = 3 in this case, for the level-of-service model (M = 7) 
18 parameters are estimated in the combined transfer model, 
whereas 14 parameters are estimated in t~e corresponding joint con
text model. This is a 29 percent increase in model parameters yield
ing no improvement in model performance below the 800 sample 
level and at most a 0.5 percent improvement in full-sample log like
lihood over the entire range investigated. 

Similarly, for the fully specified model (M = 12), 28 parameters 
are required by the combined transfer procedure versus 19 for the 
joint context procedure, a 47 percent increase in parameters, which 
yields at most a 3.3 percent improvement in full-sample log likeli
hood. Thus, joint context estimation would appear to be the more 
parsimonious of the two updating procedures, and, hence, all else 
being equal, preferred. 

The constant/scale updating procedure performs surprisingly 
well at small sample sizes. For the level-of-service model, it per
forms virtually as well the joint procedure up to the l ,600 observa
tion level and it clearly outperforms the computationally more com
plex Bayesian procedure up to at least the 6,400 observation level. 
The procedure's performance relative to the others decreases with 
improved model specification, but it is still comparable to the joint 
procedure at the 400 observation level and with the Bayesian pro
cedure up to the 1,600 observation level for the fully specified 
model. This sensitivity to model specification is a sensible one, 
given that the relative role of constants (in particular) within the 
model should decline as model specification improves. 

Given that small sample updating generally utilizes sample sizes 
in the order of 1,000 or less, these results imply that updating model 
scales and constants-a simpler and less onerous task than Bayesian 
updating-may well outperform the Bayesian procedure. The 



TABLE 2 1964 (Estimation) Context Model Parameter Estimates 

Parameter Level of Service (I) Model Fully Specified Model 

Estimate t-value Estimate t-value 

dauto 0.090 0.452 -1.266 -4.362 

dwalk 0.924 3.853 1.592 6.029 

aivtt -0.031 -10.731 -0.009 -2.217 

tivtt -0.043 -9.584 -0.029 -6.205 

twait -0.205 -12.444 -0.202 -11.653 

twalk -0.046 -3.205 -0.026 -1.729 

wdist -1.961 -21.892 -1.884 -20.935 

ivtc -0.389 -3.697 -0.388 -3.488 

pk est -0.333 -11.583 -0.282 -9.134 

avplic 1.874 12.185 

am al 0.740 4.842 

tcbd 1.224 9.142 

tgend 0.759 5.299 

wcbd 0.943 4.951 

Number of observations 8066 8066 

Log-likelihood at Zero -5929.6 -5929.6 

Log-likelihood at -2839.4 -2590.5 
Convergence 

Adjusted rho-square 0.5204 0.5625 

TABLE 3 Full-Sample 1986 TTS Log-Likelihood Values for Alternative Models and Updating Sample Sizes 

I Model T~e I Sample Log-Likelihood Values 
Size 

Bayesian Transfer Joint Combined Small 
Updating Scaling Context Transfer Sample 

Estimation Estimator 

Level of 400 -11201 -11081 -11076 -11081 -11105 
Service 
Model 800 -11156 -11076 -11075 -11077 -11086 

1600 -11133 -11052 -11045 -11012 -11014 

3200 -11072 -11012 -10991 -10937 -10937 

6400 -11013 -11000 -10963 -10930 -10930 

32328 -10942 -10996 -10931 -10920 -10920 

Fully 400 -10277 -10128 -10100 -9762 -9774 
Specified 

800 -10138 -10025 -9903 -9621 -9626 Model 

1600 -9999 -10013 -9805 -9555 -9555 

3200 -9865 -9952 -9622 -9471 -9470 

6400 -9712 -9945 -9545 -9470 -9470 

32328 -9501 -9941 -9475 -9453 -9453 
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---+-- Joint Estimation 
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-H-- Transfer Scaling __..._ Small Update sample 

~ Combined Tr. Est. 

FIGURE 1 Full-sample 1986 TTS log likelihood values, level-of-service models. 

results also imply that the joint estimation procedure may add little 
additional information to the updated model, relative to simply 
updating constants and scales, at least for sample sizes of 400 to 500 
or less. 

Comparison of the performance of the updated models with that 
of the 1986 small-sample models (i.e., the models simply estimated 
using the 1986 small samples) raises some question concerning the 
utility of updating a transferred model at all given the availability 
of an application context small sample. That is, the small-sample 
models outperform most of the updated models at most sample 
sizes. Thus, if one has a small sample of at least 400 to 500 obser
vations, these results imply that one would be at least as well off to 
simply estimate an application context model, rather than to update 
a model developed elsewhere, especially if a relatively good speci
fication is supported by the application data set. 
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Indeed, Table 3 and Figures 1 and 2 reinforce the importance 
of model specification in the determination of model performance 
by showing that the differences between the level-of-service 
model log-likelihoods and the corresponding fully specified model 
log likelihoods are far greater than the total differences between 
updating procedures or across sample sizes within either of 
the model specifications. In particular, note that the log likelihood 
for the 400-sample 1986 fully specified model of -9773.83 
is larger than any of the full 32,328 sample level-of-service 
models. 

Figures 3 and 4 present the aggregate MAE statistics for the four 
updated models and the 1986 small-sample models as a function of 
sample size for the level-of-service and fully specified models, 
respectively. The results here are less clear cut, reflecting the fact 
that different aggregations result in different combinations of com-
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pensating errors. Nevertheless, some general trends are evident in 
these figures. 

In the case of the level-of-service models and small sample 
sizes (e.g., under 1,000), the Bayesian procedure consistently 
yields the best aggregate predictions, the joint estimation and 
constants/scales updating generally yield results similar to one 
another that are slightly poorer than the Bayesian results, and 
the combine transfer and 1986 small-sample models generally 
yield the poorest aggregate predictions. The results for the fully 
specified model are more mixed but, in general, are different 
from the level-of-service results in that the combined transfer 
and 1986 small sample model results are, overall, the best, 
whereas overall the Bayesian procedure performs the most 
poorly (especially at sample sizes under 1,000). The other 
two updating procedures are again fairly comparable at small 
sample sizes and again generally lie between the best and the 
worst, although in this case their performance is generally close to 
the best. 

Figures 3 and 4 again reinforce the importance of model specifi
cation in that the aggregate prediction errors are generally smaller 
for the fully specified model and the sensitivity to sample size is 
generally larger for the fully specified model as well. 

SUMMARY AND CONCLUSIONS 

This paper has provided an empirical comparison of four disaggre
gate choice model updating procedures using two data sets from the 
GT A representing travel behavior at two points in time 22 years 
apart ( 1964 and 1986). All the results obtained are based on this one 
case study, implying the need for additional tests employing other 
estimation/application contexts to be able to generalize any conclu
sions that arise from this study. On the basis of this study' s results, 
however, the following findings are noteworthy. 

I. The combined transfer estimation procedure consistently 
yields the best predictive performance in the 1986 application 
context, on the basis of the disaggregate full-sample log-likelihood 
measure used. This, however, is largely the result of the dominance 
of the transfer scaling component of the procedure, which 
effectively results in the procedure corresponding to a simple re
estimation of the model using the application context data set. 

2. The joint context estimation yields results generally compara
ble to the combined transfer procedure, but with a significantly 
more parsimonious parameter structure. Hence, if the estimation 
context data set is available to support joint context estimation, 
generally it should be preferred relative to combined transfer 
estimation. 

3. The computationally simpler transfer scaling procedure yields 
results that are similar to those of joint context estimation for small 
sample sizes. Hence, if the software required for joint context esti
mation or the estimation context data set, or both, are not available, 
then transfer scaling may well provide a useful and credible model 
update. 

4. The Bayesian updating procedure is generally dominated by 
the other updating procedures examined, all of which explicitly 
deal with transfer biases in various ways. Thus, on the basis of this 
case study, Bayesian updating cannot be recommended as an up
dating procedure, especially given alternative techniques, such as 
transfer scaling and combined transfer estimation, which are not 
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any more burdensome computationally and yet yield superior 
results. 

5. Once the application context small sample reaches the 400 to 
500 observation level, simply reestimating the model for the appli
cation context may yield results that are comparable or superior to 
any updated model transferred from an estimation context
providing that the application context data set supports develop
ment of a "fully specified" model. 

6. Model specification is important in the updating/transfer 
process. In this case study, improving the model specification 
yielded far greater improvements in model performance than either 
"optimizing" the updating procedure or increasing the application 
context sample size. 

In conclusion, this study indicates, in keeping with other studies 
cited in the paper, that updating a model estimated in another 
context through use of a small sample drawn from a new context 
significantly improves the model's transferability to this new con
text. In comparing the performance of a range of updating methods 
suggested in the literature, this study indicates that three procedures 
that all explicitly address the issue of transfer bias (transfer scaling, 
combined transfer estimation, and joint context estimation) all 
perform well at small sample sizes and possess merit as possible 
updating procedures for practical application. The choice among 
these methods depends on model specification, application context 
sample size, and availability of the estimation context data set. All 
else being equal, however, the joint context estimation procedure 
may be preferred given that it is a parsimonious, full-information 
approach to the problem. 
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