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Competing Risk Hazard Model of Activity 
Choice, Timing, Sequencing, and Duration 

DICK ETTEMA, ALOYS BORGERS, AND HARRY TIMMERMANS 

Recently hazard models have become increasingly popular in trans­
portation research for modeling duration processes of various kinds. 
The application of hazard models is extended to the field of activity 
scheduling to account for the continuous nature of the decision-making 
process underlying activity performance. A competing risk hazard 
model of the accelerated time type, which describes simultaneously the 
duration of the present activity and the choice of the next activity, is pre­
sented. Both a generic and an activity-specific version of the model 
were estimated. The covariates used in the model represent factors that 
affect activity scheduling, such as time of day, opening hours, travel 
times, priorities, and time budgets. An interactive computerized data 
collection procedure was used to obtain specific data needed to calcu­
late the covariates. The estimated models performed satisfactorily, 
suggesting that competing risk models are a useful tool for describing 
activity scheduling as a continuous decision-making process. This is an 
important finding, especially because influencing the timing of activi­
ties and trips is a subject of increasing interest to policy makers. 

In past decades, activity scheduling has been a topic of increasing 
interest in the transportation research community (J). The central 
assumption underlying this stream of research is that people travel 
to participate in various activities that satisfy their personal needs. 
Thus, the key question in understanding how travel decisions are 
made and how people will adapt their travel behavior to changes in 
their environment is how people decide about activity performance 
and related travel behavior. More specifically, it requires an under­
standing of the activity scheduling process, which encompasses 
decisions about which activities to perform, at which locations, at 
which times, in which sequence, and which travel modes and routes 
to use. 

Modeling efforts in transportation have addressed several aspects 
of activity scheduling. For instance, discrete choice models of desti­
nation choice, mode choice, and route choice are well known and 
widely applied, whereas multidimensional models encompassing 
several of these choices, often using a nested logit approach, are 
becoming increasingly popular (2). More specific applications 
include models of combined activity and destination choice through­
out the day (3) and trip chaining models, describing the sequencing 
of activities (4,5). Other approaches describe the choice of complete 
activity patterns explained by their scheduling convenience (6) or the 
planning phase that precedes activity execution (7). 

Another approach in choice modeling with possibly relevant 
implications for activity scheduling is the development of dynamic 
discrete choice models (8,9). These models typically describe how 
choice behavior develops over time. By including state dependence 
and heterogeneity, the choice made at time tis explained partly by 
choices made previously so that changes in behavior are modeled 
rather than independent choices. Models of this type have been 
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applied in the analysis of panel data to describe vehicle transactions 
and various kinds of travel behavior (8,7). Applications in the field 
of activity scheduling, however, are scarce. 

Dynamic discrete choice models, however, do not go without 
severe computational difficulties, especially if the number of alter­
natives and waves is large, which is typically the case in activity 
scheduling analysis. Furthermore, activity performance is increas­
ingly regarded as a continuous process, in which individuals can 
decide during activity performance to end an activity and start 
another one. The decision whether to continue or stop will therefore 
depend strongly on time and duration of the present and previous 
activities. Thus, the probabilities of pursuing different activities and 
travel to different locations will change continuously over time. 
Both static and dynamic discrete choice models do not explicitly 
account for this duration dependence. 

Recently, hazard models have gained increasing interest in 
transportation research as a means to describe the duration of 
processes such as activity performance (JO). Hazard models there­
fore are promising tools for incorporating duration dependence into 
activity-based approaches and taking into account the continuous 
nature of the implied decision making. The specific contribution of 
this paper to the literature is the introduction of a competing risk haz­
ard model to activity scheduling modeling to describe not only activ­
ity duration but also activity choice. Spatiotemporal constraints were 
incor.porated by using specific individual data on available locations 
and hours obtained by using a computerized interactive data collec­
tion procedure. The results indicate that transitions between activity 
types can be described by a competing risk model with covariates 
accounting for spatiotemporal flexibility of activities. 

The remainder of this paper is organized as follows. In the sec­
ond section, hazard models are introduced and discussed. Special 
attention is given to competing risk models and issues of hetero­
geneity and risk interdependency. In the third section, the model 
that was used in the present research is discussed. The model struc­
ture and the covariates, representing spatiotemporal constraints, are 
outlined. In the fourth section, the data collection procedure, which 
was performed using a recently developed interactive computer 
procedure, is described. The fifth section describes the results of the 
analyses. Different specifications of the competing risk model are 
discussed. Finally, the sixth section summarizes the findings and 
addresses directions for future research. 

THEORETICAL BACKGROUNDS OF 
HAZARD MODELS 

Basic Concepts 

In this paper, a series of hazard models is applied to describe and 
analyze activity scheduling processes. Because hazard models have 
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not been widely used in transportation research the basic principles 
of hazard models will be discussed and summarized to allow a 
better understanding of the empirical findings of this study. 

Although hazard models only recently have gained increasing 
popularity in transportation modeling, they have been applied for 
decades in other disciplines, such as industrial engineering, biol­
ogy, medical science, and labor market research (J 1,12). Hazard 
models typically are applied to describe duration data such as 
machine failure times or patient survival times under different med­
ications or unemployment periods. More specifically, hazard mod­
els describe the probability of occurrence of a certain event 
(machine failure, death, finding a job) within an interval [t,t + dt], 
given that it has not occurred up to time t. This conditionality can 
be considered the key concept of hazard modeling and offers a nat­
ural framework for describing durations and intervals between the 
occurrence of events. For instance, in the case of activity duration, 
the probability of stopping an activity will be small when it has just 
started and will gradually increase with the time of execution. Haz­
ard models offer the statistical tools to describe this conditional 
probability, which enables one to incorporate duration dependence 
into transportation modeling. 

Mathematical Formulation 

A number of functions are of particular interest with respect to the 
mathematical description of hazard models. First, a probability den­
sity function f(t) giving an unconditional distribution of durations 
T within a population can be defined as 

P(t T ~ t +At) 
f(t) = lim A 

Llt~O u.t 
(1) 

The probability that in a specific case the event will occur before 
time t is then 

F(t)= P(T < t) = r f(u)du 
0 

(2) 

It follows thatf(t) is the first derivative of F(t) with respect to time. 
A key function in hazard modeling is the survivor function S(t), giv­
ing the probability that the process has survived until t: 

S(t) = I - F(t) = P(T 2 t) = rf(u)du (3) 

The hazard function h(t), finally, describes the probability of occur­
rence at t conditional on survival until t: 

P(t ~ T < t + A t IT 2: t) 
h(f) = lim A 

ut~O u.t 

f(t) 

s (t) (4) 

In principal, the hazard can take many different forms (see Fig­
ure 1). It can be monotonically increasing (a), U-shaped (b), monot­
onically decreasing (c), or constant (d). Lawless (J 1) and 
Kalbfleisch and Prentice (13) give examples of shapes that are typ­
ical for certain types of duration processes. Given that the shape of 
the hazard yields important information about the nature of the 
process under study, remarkably little attention has been paid to the 
specific shape of the hazard in transportation applications. The 
emphasis has been primarily on the influence of covariates influ-
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FIGURE 1 Some hazard functions. 

encing the scale of the hazard, indicating longer or shorter durations 
in general. 

The shape of the hazard function is determined by the distribu­
tional assumptions that are made for the probability density func­
tion f(t). A number of different distributions can be chosen (11), 
resulting in different hazard functions. Some distributions and their 
related hazard functions are listed below. For a detailed review of 
possible distributions the reader is referred to Lawless (J J) and 
Kalbfleisch and Prentice (13). 

1. Exponential distribution: 

h(t) = A. t 2 0 

2. Weibull distribution: 

h(t) = A.13(A.t)f3- l A.,13 > 0 

3. Log normal distribution: 

4. Log logistic distribution: 

A.13(A.t)f3-l 
h(t) = I + (A.t)f3 

(5) 

(6) 

(7) 

(8) 

The choice of a specific distribution and related hazard function 
usually will be made according to hypotheses based on existing the­
ory. However, testing of different distributions with different scale 
and shape parameters may often lead to a better insight into the 
duration process under study. 

Parametric Hazard Models 

Apart from duration dependence other factors also influence activ­
ity duration and timing. For instance, the start of an activity may be 
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influenced by opening hours, time of day, or priority of the activity. 
To incorporate such explanatory variables into the model two model 
types can be used. The first is known as the proportional hazard 
model, which takes the following form: 

h(t IX) = ho(t)g(X) 

where 

X = a vector of explanatory variables and 
h0(t) = the baseline hazard function. 

(9) 

The baseline hazard is the hazard function assuming that all 
covariates X have a value of 0. g(X) is usually defined as exp (13X), 
where 13 is a vector of parameters. The function g thus acts multi­
plicatively on the baseline hazard. This causes the property of pro­
portionality, implying that the ratio of hazards for specific sets of 
covariates (hi/h2) remains constant over time. This assumption how­
ever can in some cases be undesired. For instance, Leszczyc and 
Timmermans (14) found that intershopping trip times differed, 
depending on the store chains that were visited. In this research, 
different duration processes may be expected for different types of 
activities. In such cases the proportion of hazards of different des­
tinations is likely to vary over time. Accelerated liktime models can 
be used to describe such cases. These models are log linear for T: 

log T = x13 + E 

The hazard function in this case can be shown to be 

(11) 

Thus, the effect of the covariates X is on t rather than on the base­
line hazard. The models are not proportional and offer greater 
flexibility in modeling durations of alternative processes. This, 
however, comes at the cost that heterogeneity cannot be incorpo­
rated into the model. In both cases different forms of the hazard 
function are obtained by taking different distributions for the base­
line hazard h0 as described earlier. 

Competing Risk Models 

The previous description has considered durations of processes with 
only one exit. However, the ending of an activity can be the means 
to starting various new activities so that there will be different pos­
sible exits. A competing risk model was used to describe transition 
rates to these competing risks. In this case, hazards are defined 
specifically for different exits: 

hk(t) =Jim 
ilr.-,o 

P(t :5 T < t + 11t, Dk= IIT 2:: t) 

11t 
(12) 

where hk(t) is the probability that exit k occurs at time t and Dk is a 
dummy variable indicating whether or not exit k was chosen. 

The relation between hazards and survival functions for specific 
exits and joint hazard and survival functions is given simply by 
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(13) 

(14) 

Parametric versions of the proportional and accelerated time type 
are written as follows: 

(15) 

(16) 

where different distributional assumptions can be made for hob the 
k-specific baseline hazard. 

The probability that, if an exit is chosen, this exit will be k,7rk can 
be calculated as follows: 

7fk = f s(s) hk(S) ds 
0 

(18) 

Lancaster (12) shows that under the assumption of stationarity 
(hk(t)lh(t) = mk for all t) and a Weibull distribution for the proba­
bility density function 7rk can be written as follows: 

exp (xk 13k) 

L exp (x1 13) 
j 

(19) 

Thus, the well-known logit model can be regarded as a compet­
ing risk model under strong assumptions. This example clearly 
illustrates that competing risk models offer the attractive opportu­
nity of relaxing the static assumption underlying discrete choice 
modeling and incorporating dynamic aspects into consumer behav­
ior research. In a number of transportation applications, especially 
where the timing of travel decision is concerned, this might be a 
valuable contribution. 

Notwithstanding these attractive features, some issues should be 
addressed in the application of competing risk models. Competing 
risk models fall in the class of models with multivariate lifetime dis­
tributions, with different distributions of lifetimes T; according to 
the competing risks. If information on all lifetimes T; is available, 
one can test for independence of the various lifetime distributions. 
However, in the case of competing risks only min (TI> ... , Tk) is 
observed so that the assumption of independence cannot be tested. 
This is caused by the fact that it is principally impossible to dis­
criminate between different multivariate distributions f(t1> ... , tk) 

that give rise to the same cause-specific hazard functions based on 
min (T" . .. , Tk) only (11). Recently, Han and Hausman (15) intro­
duced a proportional hazard model that allows for testing of inde­
pendence among risks. In their approach, time is divided into T dis­
crete periods and a proportional hazard model is formulated in an 
ordered logit or ordered probit form. Interdependency can then be 
incorporated by correlations in the stochastic terms of the model. 

A second issue that should be addressed is the problem of het­
erogeneity within the sample. In case of observed heterogeneity, 
characteristics of subjects that can easily be measured, such as 
sociodemographics, influence the observed behavior. Heterogene­
ity can then be accounted for by including the sociodemographics 
as explanatory variables in the model. Unobserved heterogeneity 
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exists when unobserved characteristics of subjects in the sample 
(e.g., motivations, tastes, and preferences) correlate with the 
observed behavior-in this case activity choice and duration. Not 
accounting for heterogeneity may lead to biased results. For 
instance, Meurs (9) found that linear regression models without 
heterogeneity lead to underestimation of elasticities. The effects 
of ignoring heterogeneity in duration models are less clear cut. 
Studies by Hensher (16) and De Jong et al. (17) seem to suggest 
that including heterogeneity does not have a dramatic effect on the 
parameter estimates of the explanatory variables but has a larger 
impact on the shape and scale parameters of the distribution of the 
baseline hazard. An additional complication arises when multiple 
observations for one subject are included in the sample, for exam­
ple, if panel data or multispell duration data are used. If hetero­
geneity exists, the observations of one subject will be interdepen­
dent. By treating the observations as independent, one can easily 
overestimate the effects of state and time dependence and habit 
persistence (18). 

To account for heterogeneity in proportional hazard models usu­
ally a heterogeneity term is introduced, which is a random variable 
with a certain (often gamma) distribution (13, 16). Lancaster (12) 
and Sueyoshi (19) extend the inclusion of a mixing distribution to 
the competing risk case. By specifying mixing distributions ~ for 
competing risks, the joint distribution can be used to account for 
interdependency between risks. However, in the case of accelerated 
time models, introduction of a heterogeneity term is not possible 
because of identification problems (20). 

COMPETING RISK MODEL OF ACTIVITY 
CHOICE, SEQUENCING, TIMING, 
AND DURATION 

In the current research, the sequencing and timing of activities 
during the course of a day are of interest. Two models were 
estimated to describe this process. Both models describe the transi­
tion from one activity to another. The competing risks by which 
the origin activity can end are the possible following activities. 
The dependent variable in the models is the duration of the first 
activity that is equivalent to the time until a transition to another 
activity takes place. However, the covariates used to explain the 
duration are generic in one model and specific for various activity 
types in the other model. For this application, models should be 
obtained in which the proportion of transition probabilities to 
different activity classes can change over time. This implies an 
accelerated time formulation for each model. The generic model 
can be specified as 

where 

hk(t) = hazard function for transition to any activity k, 
h0 = baseline hazard, 
X = vector of generic covariates, and 
13 = vector of generic parameters. 

The specific model is given by 

(20) 

(21) 
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where 

hk (t) = hazard function specific for transition to activity k, 
Xk = vector of covariates specific for activity k, and 
13k = vector of parameters specific for activity k. 

Obviously, the choice for the accelerated time model has some 
implications. First, it does not allow incorporation of heterogeneity 
into the model. In addition, it is not possible to readily test for inde­
pendence of activity choices. Hence, the choice of which model to 
use was based on a tradeoff between incorporating heterogeneity 
and interdependence between risks and the flexibility to allow the 
ratio of transition rates to different risks to vary over time. The latter 
should receive the priority that led to the choice of the accelerated 
time model in this project. 

The following activities were distinguished in the specific model: 

1. In-home leisure activities, 
2. In-home task activities, 
3. Work/education, 
4. Shopping, 
5. Personal business out of home (not item 3 or 4), and 
6. An end state in which no further activities are performed. 

The covariates X used in both models to explain activity duration 
and transition to other activities are derived from previous research 
(21), which revealed that spatiotemporal constraints and general 
characteristics of activity performance were relevant for activity 
scheduling behavior. The following covariates describing spa­
tiotemporal flexibility were used: 

1. The activity from which the transition takes place. Five dum­
mies are used to represent the possible activities, being the first five 
activity types mentioned earlier. These are generic variables in both 
models .. The dummies represent differences in average activity 
duration between different classes of activities. 

2. The activity to which the transition takes place. Dummy cod­
ing was used in a similar way to represent the six possible destina­
tion states. The dummies represent the effect of the destination 
activity on the duration of the preceding activity. 

3. START: the start time of the first activity in minutes. It is 
assumed that the time of day at which activities start may influence 
the probability of transition to another activity. For instance, the 
probability of switching to leisure activities may be higher at the 
end of the day, whereas switching to work is more likely at the 
beginning of the day. 

4. TILSTART: the time until the next activity can start in min­
utes. This factor represents the influence of opening hours of facil­
ities or the influence of fixed hours for certain activities, such as 
work or education. It is hypothesized that if less time remains until 
an activity can start, a transition to this activity is more likely to take 
place. If PS2 is the earliest possible start time of the destination 
activity, TILSTART is calculated as follows: 

TILST ART = PS2 - ST ART 

This measure takes a value of 0 if the activity can start before 
START. 

5. TILCLOSE: the time until the next activity can end at the lat­
est in minutes. This factor represents the effect of closing times or 
the end of fixed hours for certain activities. The effect can be 
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twofold: if less time remains for the execution of an activity, it 
becomes more urgent so that transition to this activity is more likely 
to take place. However, if too little time remains for the execution 
of an activity a transition will become less likely. If PE2 is the latest 
possible endtime of the destination activity, TILCLOSE is calcu­
lated as follows: 

TILCLOSE = PE2 - START 

If START > PE2, then TILCLOSE is set to 0. 
6. PRIORI: the priority of the first activity on a 0 to 10 scale. It 

can be hypothesized that the priority of the first activity will influ­
ence the duration of this activity, in the sense that activities with 
lower priority are more likely to be ended to pursue other activities. 

7. PRIOR2: the priority of the next activity on a scaJe of 0 to 10. 
Analogous to PRIOR~, a transition to an activity with higher prior­
ity is more likely to take place if the priority of this activity is higher. 

8. TRAVTIME: the travel time between the origin and the des­
tination activity in minutes. This factor represents the distance 
decay over time of switching to different activities. 

9. TIMESPENT: the time spent on the destination activity type 
at earlier occasions during the same day in minutes. This factor rep­
resents history dependence. That is to say, the amount of time spent 
on an activity earlier in the day is likely to influence the probability 
of switching to the activity once more. 

DA TA COLLECTION 

The competing risk model was estimated using activity scheduling 
data that were collected in January 1994. Subjects were 39 students 
of Eindhoven University of Technology, Eindhoven, The Nether­
lands. The data were collected using the interactive computer pro­
cedure MAGIC (22), which consists of two parts. In the first part 
general information on activity performance ~nd spatiotemporal 
constraints is collected. For 31 activities the following information 
is recorded for each subject: 

1. Will the activity be performed on the planning day according 
to an arrangement in which other people are involved (yes/no)? 

2. What was the last time the activity was performed (days ago)? 
3. What is the average frequency of performance of the activity 

(times per month)? 
4. How long does is take to perform the activity (minimum time, 

average time, maximum time)? 
5. How likely is it that the activity will be performed on the 

target day (on a 0 to 10 scale)? 
6. What are the locations at which an activity takes place? Of each 

location the subject is asked to provide the following information: 
(a) the name of the location, (b) the hours at which the subject would 
consider performing the activity at this location (this may be a 
smaller range than is implied by strict opening hours), (c) the attrac­
tiveness of the location on a 0 to 10 scale, indicating how pleasant 
the location is to stay at, and (d) The address of the location. 

The list of 31 activities is designed to cover the spectrum of daily 
and incidental activities and includes both in-home and out-of­
home activities; it includes the following: 

• Taking an educational course; 
• Studying at home; 
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• Practicing hobbies at home; 
• Buying provisions; 
• Visiting post office or bank; 
• Visiting a cafe, bar, or disco; 
• Visiting a sports match; 
• Sightseeing; 
• Eating breakfast; 
• Housekeeping; 
• Visiting someone; 
• Performing work; 
• Visiting cashpoint; 
• Participating in sports; 
• Attending the theater or a.concert; 
• Eating lunch; 
• Reading; 
• Having visitors; 
• Buying clothes or shoes; 
• Engaging in club activities; 
• Volunteering; 
• Attending a museum or exhibition; 
• Eating supper; 
• Watching television; 
• Getting food (s~ack bar); 
• Visiting a specialty shop; 
• Going to the movies; 
• Visiting the library; and 
• Visiting a restaurant. 

In addition, travel distances between the locations mentioned by 
the subjects are requested. These data enable the calculation of the 
covariates described earlier. 

In the second part of the procedure subjects are asked to perform 
a scheduling task; that is, they are requested to list all activities they 
plan to perform the day after the experiment. These activities are all 
on the list of activities used in the first part, so that detailed infor­
mation on each selected activity is available. The schedule encom­
passes the planned activities and the sequence in which they are 
executed, the locations at which the activities take place, travel 
modes used, and the start and end times of activities. From these 
schedules the data used for estimation of both the models was 
derived. For each observed transition from one activity to another 
all competing risks, that is, all possible destination activities, were 
included in the data set. The set of alternative destination activities 
for a transition encompasses all activities from the list of 31 that 
were assigned a likelihood greater than 0 in the first part of the pro­
cedure. For each competing risk the values of the covariates in the 
generic and specific model were calculated on the basis of the infor­
mation supplied in the first part of the procedure. The destination 
activity that was chosen by the subject was coded as an observed 
transition; the other competing risks were coded as right censored. 
The data set consisted of a total of 256 observed transitions and 
7,041 right-censored cases. 

The study described in this paper is exploratory in nature. A 
small sample that is not representative of the population of some 
geographic area as a whole has been used. The sample is homoge­
neous with respect to age (18 to 25 years), main occupation, and 
income (students). Therefore, sociodemographic variables are not 
included in the model. Furthermore, a data set that was collected 
using this procedure, as detailed information about spatiotemporal 
constraints on an individual level was obtained, was preferred in 
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this case but is usually not the case with existing time budget and 
travel surveys. 

ESTIMATION AND RESULTS 

Estimation Procedure 

The models described earlier were estimated using the SAS pack­
age. Independence between competing risks and homogeneity was 
assumed. This implies the following likelihood function: 

N A; C,,; 

L=TI TI TI Jc(f;a,XiaJdiac Sc(f;a,Xiac) 1 -diac (23) 
i=I a=I c=I 

where 

N = number of individuals in sample, 
A;= number of activities performed by individual i, 

C,; = number of possible exits for activity a of individual i, 
f,_. = probability density function of duration times for Exit c, 

Sc = survivor function for Exit c, 
t;0 = time at which activity a of individual i is ended, 

X;ac = vector of covariates associated with Exit c from activity a 
of individual i, and 

d;ac = dummy variable that indicates whether Exit c was chosen 
for ath activity of individual i. 

As noted earlier, the fact that heterogeneity is not included in the 
model may affect the scale and shape parameters of the baseline 
hazard and the estimation of lagged effects. However, the hetero­
geneity in the sample used for this study is diminished by the fact 
that the subjects were all students who differed little with respect to 
sociodemographic characteristics. Further, the effect of hetero­
geneity on the estimation of state dependence in duration models is 
less clear, compared with dynamic models based on panel data. 
Nevertheless, heterogeneity will have some effect, and this should 
be considered when interpreting parameter estimates. 

Generic Model 

The generic model was estimated with various distributions 
assumed for the baseline hazard. The goodness-of-fit measures for 
the various distributions are indicated in Table 1. As indicated by 

TABLE 1 Goodness-of-Fit Measures of Generic 
Models with Various Distributional Assumptions 

distribution loglikelihood 

weibull -1151.61 

exponential . -1163. 90 

lognonnal -1125.08 

loglogistic -1151.00 
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the goodness-of-fit measures, the log-normal distribution describes 
the transition probabilities best. 

The parameters that were estimated assuming the log-normal dis­
tribution are indicated in Table 2. Positive parameter values indi­
cate a positive effect on the duration of the origin activity, whereas 
negative parameter values suggest a shorter duration. The origin 
dummies thus suggest that work/education usually has a relatively 
long duration. The positive effect on the durations of in~home 
leisure, in-home task activities, and personal activities out of home 
is smaller, whereas shopping is the activity with the shortest dura­
tion. The positive and significant sign of STARTTIME suggests 
that if an activity starts later, it will have a longer duration. Appar­
ently, the probability of starting a new activity is smaller later in the 

TABLE 2 Parametric Estimates of Log-Normal Generic 
Model 

variable name ·parameter (t-value) 

intercept -0.08 (-0.18) 

in home leisure• 0. 93 (3.65) 

in home task 1 0.73 (3.08) 

work/ education 1 2.22 (8.70) 

shopping1 -0.08 (-0.24) 

pers. act. out of home 1 ·0.88 (3. 75) 

starttime 0.10 (4.02) 

tili;tart 0.07 (1.33) 

tilclose 0.06 (2.70) 

priori 0.05 (2.05) 

prior2 -0.08 (-5.71) 

travtime 0.27 (9.50) 

timespent 0.13 (2.25) 

scale 1.60 (22.22) 

1 dummy for origin activity 
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day. TILST ART does not have a significant effect. TILCLOSE, 
however, has a significant and positive effect, suggesting that tran­
sitions are· postponed if more time remains for the destination activ­
ity. Thus, if there is less time pressure for the destination activity, 
the preceding activity will have a longer duration, as one would 
expect. PRIOR 1 has a significant and positive value. This suggests 
that if the priority of the origin activity is higher, it will have a 
longer duration. However, a higher priority of the destination activ­
ity has the reverse effect, as indicated by the negative value of 
PRIOR2. Thus, if the destination activity has a higher priority, the 
preceding activity will have a shorter duration. TRA VTIME has a 
positive and significant value. Thus, if travel time to the destination 
activity increases, this will postpone the transition to this activity, 
resulting in a longer duration of the preceding activity. TIME­
SPENT, finally, has a positive and significant value: that is, that the 
more time one has already spent on an activity, the less likely one 
is to switch to this activity. Apparently, time budgets exist for var­
ious types of activities that set limits to the amount of time spent on 
one activity. 

Specific Model 

The specific model was also estimated with different assumptions 
of the distribution of the baseline hazard. The goodness-of-fit 
measures are indicated in Table 3. Again, the best performance is 
achieved assuming a log-normal distribution. 

The parameters of the log-normal model are indicated in Table 4. 
In the specific model the origin activity was represented by a set of 
generic dummy variables; furthermore, an intercept was estimated 
for each destination activity. The parameters for the origin activity 
all have a significant positive value, so that the effects can be inter­
preted only relatively to each other. The estimated values suggest 
that work/education usually has the longest duration, whereas shop­
ping has the shortest duration on average. The intercepts represent 
the effect of the destination activity on the duration of the preced­
ing activity. A significant negative parameter value suggests that a 
transition to personal activities out of home will shorten the 
preceding activity. In-home task activities, however, are usually 
postponed, resulting in a longer duration of the preceding activity. 

Positive and significant STARTTIME parameters were estimated 
for work/education and personal activities. Transitions to these 
activities are thus postponed if the preceding activity starts later. 
However, the negative value for the end state indicates that transi­
tions to this category are more likely to happen later in the day. A 
significant parameter for TILSTART was found only for work/edu­
cation. Thus, activities followed by work/education activities have 
longer durations if more time remains until this activity can start. 
The effect of TILCLOSE is significant only for in-home task activ­
ities. Contrary to the expectation and to the findings of the generic 
model, transition to this activity takes place earlier if time pressure 
is less, resulting in a shorter duration of the preceding activity. Para­
meters for PRIORI were significant only at the 10 percent confi­
dence level for work/education and personal activities out of home. 
The signs indicate that a transition to work/education takes place 
earlier if the origin activity has a higher priority, which is contrary 
to the expectation in this paper. However, the opposite holds for 
personal activities out of home. The positive sign indicates a longer 
duration of the preceding activity if the priority is higher. Positive 
and significant parameters for PRIOR2 were found for in-home task 
activities, work/leisure, and shopping. If the priority of these activ-

TABLE 3 Goodness-of-Fit Measures of Specific 
Models with Different Distributional Assumptions 

distribution loglikelihood 

weibull -1073.56 

exponential -1106.82 

lognormal -1050.57 

loglogistic -1060.04 
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ities increases, transitions to these activities will take place earlier, 
resulting in shorter durations of the preceding activities. A positive 
and significant parameter value for TRA VTIME was found for all 
activities, except the end state. Apparently, all are postponed if 
travel time increases. This effect is strongest for in-home leisure and 
relatively weak for work/education and in-home task activities. This 
indicates a weaker distance decay for obligatory activities, as one 
would expect. Significant parameters for TIMES PENT were found 
for work/education and personal activities out of home, indicating 
that transitions to work/education and personal activities out of 
home are postponed if more time already has been spent on these 
activities. This holds to an extreme extent for personal activities. 
Apparently, there are strict time budgets for personal activities. So, 
with few exceptions (PRIORI and TILCLOSE) the parameter signs 
are in line with common sense. 

COMPARISON OF GENERIC 
AND SPECIFIC MODEL 

In terms of interpretation of the parameters, the two models are 
largely consistent. Shifts in the sign of parameters appeared only in 
the case of TILCLOSE and PRIOR 1. However, parameter values 
vary in sign and magnitude between destination states in the specific 
model, indicating that different types of activities ·are planned 
according to different criteria. Therefore, the extension from a 
generic model to a specific model is regarded as an important 
improvement. To test whether the specific model performed statis­
tically better than the generic model, a likelihood ratio test was 
performed. The chi-square statistic of 149.02 with 35 degrees of 
freedom indicates that the specific model performs significantly 
better at a = 0.005. 

CONCLUSION 

In this paper an alternative method of modeling activity choice, 
timing, and duration has been described. Competing risk hazard 
models of the accelerated time type were used to describe the dura­
tion of an activity, the choice of a next activity, and their mutual 
dependency. The estimated models performed satisfactorily, sug­
gesting that competing risk models are a useful tool for incorporat­
ing duration dependence into discrete choice modeling. This 
conclusion is particularly relevant as timing of activities and trips 



TABLE 4 Parametric Estimates of Log-Normal Specific Model 

DESTINATION ACTIVITIES 

in home in home task work shopping pers. act. out end state 
leisure education of home 

in home lei- 2.21 (13.23)2 

sure 1 

in home task 1 1.97 (13.83) 

work educa- 3.49 (21.17) 
tion1 

shopping1 1.08 (4.82) 

pers. act. out 2.34 (16.69) 
of home1 

intercept for -3.23 (-1.21) 1. 93 (2.03) -2.01 (1.85) -1.32 (-0.75) -2.34 (-3.66) 4.62 (3.70) 
destination 

starttime 0.20 (1.09) -0.11 (-1.83) 0.31 (4.25) 0.22 (1.85) 0.14 (2.98) -0.55 (-6.88) 

tilstart 0.21 (0.81) 0.09 (0.91) 0.35 (2.06) 0.12 (1.78) 

tilclose 0.22 (1.24) -0.17 (-3.40) 0.05 (0.64) 0.11 (1.22) -0.02 (-0.41) 

priorl -0.03 (-0.54) 0.06 (1.39) -0.15 (-1.93) 0.03 (0.23) 0.06 (1.84) 0.05 (0.60) 

prior2 0.00 (0.56) -0.16 (-4.06) -0.11 (-2.59) -0.25 (-3.29) -0.05 (-1.93) 

travtime 0.41 (3.52) 0.15 (2.46) 0.10 (1.77) 0.24 (2.53) 0.26 (6.77) -0.04 (-0.54) 

times pent 0.08 (0.28) 0.14 (1.08) 0.27 (2.32) 15.51 (4.06) 

scale = 1.34 (24.81) 

dummy for origin activity 
2 t-values in parentheses 
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becomes the subject of policy making to reduce congestion and 
preserve mobility. 

In this application two models were estimated: a generic model 
and a specific model, which is conditional on the destination state. 
The specific model was superior to the generic model because the 
goodness of fit of this model was significantly higher. Furthermore, 
the estimated parameters reflected differences between scheduling 
criteria for different activity types, which would remain unrevealed 
in the generic model. Parameter estimates suggest that spatiotem­
poral constraints such as time of day, opening hours, and travel time 
play an important role in activity scheduling and timing. Also the 
history of the pattern and priorities of activities influence timing and 
choice of activities. The inclusion of these covariates was enabled 
by a specific computerized data collection procedure, which pro­
vides an extensive record of individual activity scheduling 
processes. Application of such a procedure can be considered a pre­
requisite if one wants to obtain models that are capable of describ­
ing travel behavior at a detailed level. Both the generic and the spe­
cific models were estimated by assuming different specifications of 
the baseline hazard. Of the tested distributions, the log-normal 
distribution provided the best fit in predicting activity transitions. 

The modeling approach described in this paper is a first step in a 
new direction of modeling and simulating the performance of activ­
ity patterns. However, improvements still need to be made. An issue 
already raised is how heterogeneity and interdependency of risks 
should be handled. In this study flexibility of the model structure 
was allowed to prevail over heterogeneity and interdependency. 
Future research, however, should address possible ways of unifying 
the above properties into one model structure. Another development 
would be the extension of the unconditional competing risk models 
described above to conditional models, where transition probabili­
ties are dependent on both origin and destination states. 
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