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Travel-Time Uncertainty, Departure Time 
Choice, and the Cost of Morning Commutes 

ROBERT B. NOLAND AND KENNETH A. SMALL 

Existing models of the commuting time-of-day choice were used to ana­
lyze the effect of uncertain travel times. Travel time included a time­
varying congestion component and a random element specified by a 
probability distribution. The results from the uniform and exponential 
probability distributions were compared and the optimal "head-start" 
time that the commuter chooses to account for travel time variability, 
that is, a safety margin that determines the probability of arriving late 
for work, was derived. The model includes a one-time lateness penalty 
for arriving late as well as the per-minute penalties for early and late 
arrival that are included by other investigators. It also generalizes ear­
lier work by accounting for the time variation in the predictable com­
ponent of congestion, which interacts with uncertainty in interesting 
ways. A brief numerical analysis of the model reveals that uncertainty 
can account for a large proportion of the costs of the morning commute. 

The choice of home departure time for commuters is an important 
element in determining how congestion levels will vary during 
morning peak travel. This choice has been related empirically to the 
cost of early or late arrival relative to some preferred work arrival 
time (J,2). The planning of on-time arrivals is, however, compli­
cated by the presence of uncertainty in actual travel times. 

This paper describes a model in which commuters simultane­
ously trade off costs of inconvenient schedules, lateness penalties, 
and the desire to minimize time spent in congested traffic. Like 
Gaver (3) and Polak ( 4), the authors assumed that commuters face 
a probabilistic distribution of travel times and choose departure time 
to minimize an expected cost function. In contrast to these authors, 
the cost function includes a discrete lateness penalty as ~ell as per­
minute penalties for both early and late arrival; it also accounts for 
variation over time in the predictable component of congestion. 
Furthermore, the optimized expected cost function (i.e., the costs 
resulting after an optimal departure time is chosen) is derived ana­
lytically. This is done for both a uniform and an exponential distri­
bution for uncertain travel time. 

The results show how changes in the uncertainty of travel time 
affect both the departure time decision and the resulting expected 
costs. For example, as uncertainty increases, commuters shift their 
departure schedules to earlier hours to compensate for the increased 
probability of late arrival; in some cases they overcompensate in the 
sense that the probability of late arrival decreases as uncertainty 
increases. As for the resulting expected costs, the functional rela­
tionship that is derived by relating costs to the underlying parame­
ters of the model is of great interest for empirical studies of traveler 
behavior under uncertainty (5-7). For example, only when lateness 
penalties are disregarded is that functional relationship linear in the 
standard deviation of travel time, as is frequently assumed. 
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Changes in the level of congestion over the course of the peak 
period also play an important role in commuter decisions. Rapidly 
rising congestion shifts the commuter to earlier departure times but 
also lowers the probability of late arrival. The opposite is true when 
congestion levels are falling. These types of trade-offs are fully 
accounted for in the model. 

The paper begins with a review of the literature on departure time 
and route choice, especially previous work dealing with uncertain 
travel times. The analytical model is then presented and solved. 
Some numerical examples that provide quantitative information 
about the possible importance of various components of the model 
are given. Implications for both research and policy are discussed 
in the conclusion. 

LITERATURE REVIEW 

The reliability of arriving at a destination on time is a key component 
in the decisions made by commuters for their morning trips. Prashker 
( 8) attempts to classify some perceived components of reliability into 
a measurable framework using factor analysis. More recently, 
researchers have produced direct empirical estimates of how travel­
ers respond to reliability (5-7). Much of this work has been aided by 
the development of stated preference survey techniques. 

It is useful to begin with an understanding of how travelers 
choose departure time choice under certainty. Most research has 
focused on schedule delay, defined as the difference between the 
actual time of arrival and some ideal time, usually identified with an 
official work start time. Typically the commuter is assumed to 
receive some disutility from schedule delay as well as from travel 
time (J,2,9). In Small's specification (2) this disutility is piecewise 
linear in schedule delay, that is, disutility rises linearly in either the 
early or late direction. In addition, there is a discrete penalty for 
being late. In all these studies scheduling disutility is traded off 
against the possible advantages, caused by variation in congestion 
over the rush hour, of shifting one's schedule to take advantage of 
lower congestion. In Cosslett's (I) continuous model, this tradeoff 
appears as a maximization condition involving the slope of the 
congestion function. 

Scheduling models such as these have been incorporated into 
equilibrium analyses of congestion formation. Basic models for a 
single link (I 0-15) have been extended to a variety of circum­
stances including elastic demand (16,17); networks (16,18,19); het­
erogeneous commuters, including arbitrary population distributions 
for desired arrival times (19,20); and uncertain capacity or demand 
(21,22; Arnott et al., unpublished data). Small gives a more com­
plete review (23). Although most of these analyses use determinis­
tic models of the traveler's choice of departure time, a few (16,24) 
use a discrete-choice model analogous to that of Small (2). 
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Other researchers have incorporated a simpler version of this util­
ity specification into models analyzing uncertain travel times. Gaver 
(3), Polak ( 4), and Bates (5) all consider the piecewise linear dis­
utility specification when travel time is uncertain, but none consid­
ers congestion that varies over the rush hour. Hence they examine 
only the trade-offs inherent in trying to minimize the expected dis­
utility from given arrival times given the randomness in travel times. 

Mahmassani and associates (22,25-27) simulate time-of-day 
departure choices using hypothetical data collected from actual 
commuters and fed through a traffic simulation model. These 
papers focus on day-to-day variations in travel time as commuters 
gain experience with the system. Although travel times may be 
uncertain, these simulations emphasize how people learn about the 
shape of the congestion profile as opposed to uncertainties caused 
by nonrecurrent events. 

Mannering (28) and Abdel-Aty et al. (7) investigate how likely 
commuters are to make changes in their departure time or route 
choices, or both. Mannering finds that those commuters with longer 
travel times are more likely to make changes and speculates that these 
trips may have larger variances. His results also indicate that nonre­
current events may not allow a steady-state equilibrium to evolve, 
which may have implications for simulating traffic congestion. 

Mannering and Hamed (29) find empirical evidence that work­
to-home departure decisions are influenced by similar factors. Such 
decisions may not be independent of home-to-work departure deci­
sions: for example, some commuters may delay the morning depar­
ture with the intent of staying at work until evening congestion 
levels have fallen. Neither the model in this paper nor any other one 
known to the authors attempts to deal with this dependence. 

Mahmassani and Hermari (25) and Mahmassani et al. (30) show 
that commuters tend to adjust departure times more readily than 
they do routes. In fact, route switches tend to occur when com­
muters are continually dissatisfied with the outcomes from depar­
ture time switches alone (27,30). The lower likelihood of route 
switching adds credibility to models that examine only the choice 
of departure time, which can have important impacts on the devel­
opment and timing of peak congestion levels. 

ANALYTICAL DERIVATION OF MODEL 

A model is described that explains how uncertainty in travel time 
affects the expected cost of the morning commute. First, the basic 
components of the cost model, including how changes in conges­
tion levels are accounted for are specified. Then the commuter's 
scheduling problem is formulated and solved using both a uniform 
and· an exponential probability distribution. The solution is then 
inserted into the expected cost function to determine how total 
commuting cost depends on the parameters describing the com­
muter's travel environment. This cost consists of various compo­
nents that offer a better understanding of how significant unrelia­
bility is as a contribution to travel cost. 

Cost Model 

The following cost function for the morning commute is assumed: 

C = aT + 13 (SDE) + -y (SDL) + 8DL (1) 
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where 

T = travel time; 
SDE, SDL = schedule delay early and late, respectively (defined 

later), 
DL = 1 when SDL > 0 and 0 otherwise; 

a = cost of travel time; 
13, -y = costs per minute of arriving early and late, respec­

tively; and 
e = discrete lateness penalty. 

The variables SDE and SDL are defined with respect to the 
official work start time, t11,, and the home departure time, t1i. Let 
SD = t1i + T - t"' be "schedule delay," the difference between 
actual arrival time and official work start time. Define 

SDL=gD 
if SD> 0 
otherwise 

.{ 0
-SD 

SDE = 
if SD< 0 
otherwise 

(2) 

(3) 

This formulation of costs is that of Small (2) Table 2, Model l. It 
could result if pay is docked for late arrival, or if in some other way 
the frequency and magnitude of late arrival are costly to one's 
career. Many analyses of time-of-day decisions have used the first 
three terms of Equation 1; others have implicitly added the fourth 
term with e set to infinity by excluding the possibility of late 
arrivals. A more complex model formulation could also vary the 
amount of time spent at work and could thus account for evening 
travel conditions as additional determinants of the morning 
commute decision. 

The total commute time, T, consists of three elements. Tj is the 
free-flow travel time when there is no congestion. T, is the extra 
travel time caused by congestion, which the traveler is sure to 
encounter; it is a function of t1,, the home departure time. T, is the 
extra travel time caused by nonrecurrent congestion and is modeled 
formally as a random variable. Following the standard classification 
of congestion delays into recurrent and incident-related delays 
(31,32), T_, is "recurrent delay" and T, is "incident delay." 

For simplicity it is assumed that the probability distribution of T, 
is independent of recurrent congestion and of the time of day of 
travel. This assumption has the advantage that it enables one to iso­
late the impact of exogenous changes in travel time uncertainty. 
Although the assumption may appear unrealistic, there is a surpris­
ing absence of clear-cut empirical evidence for alternative assump­
tions. Satterthwaite (33), in a review, finds no reported relations 
between congested traffic and accidents (which are a primary cause 
of nonrecurrent congestion). Hendrickson et al. (34) analyzed data 
in Pittsburgh and concluded that variance of travel times is i.nde­
pendent of departure times. Richardson and Taylor (35) posit a rela­
tionship between congested traffic and increases in travel time vari­
ability but do not derive an explicit relationship. 

To simplify the analysis, define the variable Te to be the amount 
one would arrive early if there were no incident-related delays: 

(4) 

As defined by Gaver (3), T,, is the "head start" time. Polak's (4) 
"safety margin" is equal to Te - E(T,), where E(T,) denotes the 
expected incident delay. Note that Te> 0 implies the possibility of 
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·early arrival (if recurrent congestion turns out to be nil), whereas 
Te< 0 implies certain late arrival. Schedule delay can now be writ­
ten as SD = T, - Te and the lateness dummy, DL, is equal to 1 if 

T, > Te and 0 otherwise. 
These definitions enable the cost function to be written as follows: 

C(T,) = o{7[ + T .. + T,] + 13 (1 - DL) [Te - T,] 
+ "{ DL[T, - Te] + 8DL (Sf 

Two alternative probability distribution functions for T, are speci­
fied. The first uses a uniform distribution, which assumes that the 
likelihood of a delay is equal for any level in the domain; the sec­
ond is an exponential distribution, as in Gaver (3), which allows 
lower levels of delay to have a greater likelihood than longer levels 
of delay. Many authors, including Richardson and Taylor (35), have 
fit log normal curves to travel time variance data; Giuliano (36) has 
found specifically that nonrecurrent congestion follows a log nor­
mal distribution. Unfortunately the log normal distribution is found 
to be intractable in this model, so it is not pursued here. 

Changes in Congestion Levels 

Before proceeding with the derivation of expected cost functions, it 
is convenient to describe how congestion levels change with the 
choice of departure time, t,,. First, it is possible to describe the com­
muter's choice of departure time by head start time, Tn instead of 
departure time, t,,. To do this, one assumes that T." the travel time 
associated with congestion, is a differentiable function oft,,, T .. (t,,). 
Differentiating the implicit definition t,, = t"' - 1f - T_..(T,,) - Te, one 

finds that 

(6) 

or, solving 

-1 

(1 + T~) 
(7) 

where T; = dTJdt,,. The requirement T.; > - 1 is imposed to rule 
out "overtaking," in which a person can arrive earlier by leaving 
later (23,37). This condition guarantees that Equation 7 is well 
defined and negative. Using Equation 7, the functional relationship 
between T .. and Te, defined by T. .. [t,,(Te)], has total derivative 

d T.x = T'. . ( dt,, ) = -T', = _ ~ 
dTe ' dTe (1 + T',) 

(8) 

The quantity ~ is a measure of how steeply congestion increases if 
departure is delayed; more precisely,~ is the rate at which conges­
tion increases as the "planned" arrival time, t,, + 1f + T, = t". - Te, 
is made later. It has the same sign as r;. If~> 0, conditions worsen 
as planned arrival time is delayed, thus favoring earlier schedules; 
whereas ~ < 0 favors later schedules. Note that the restriction 

r; > -1 implies~< 1. 
Henceforth T, is regarded as a function of Tn with well-defined 

derivative -~. As it turns out, making T .. a function of traffic 
volume at Te rather than that at t,, is necessary for consistency in an 
important equilibrium model of endogenous scheduling choice 
associated with Henderson (10,11); see work by Chu (37) for a 
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demonstration. If T, has a kink so that ~ is undefined, corner solu­
tions in addition to those described below become possible. 

It is now possible to solve the model for two alternative proba­
bility distributions for T" In each case the expected cost given 
scheduling choice Te is computed; then the choice of Te that mini­
mizes the expected cost is computed and this chosen value is 
inserted into the expected cost equation. The resulting expected cost 
is then a function solely of those parameters that the commuter faces 
in choosing the schedule for a morning commute trip. 

Uniform Distribution 

A uniform probability distribution is defined for the domain [ 0, T,n]. 
The probability density function is defined asf(T,) = l/T,,, for 0::::; 
T, ::::; T,,,, and 0 otherwise. The mean of T, is 1/2 T,n, and its standard 
deviation is T,11 I ff2. The mean and standard deviation for the total 
travel time are T1 + T, + 1/2 T,11 and T1 + T .. + (T,,,I ff2 ), respec­

tively. 
The expected cost for the morning commute is 

l JTm 
EC = - C(T,)dT, 

Tm o 
(9) 

Substituting Equation 5 into Equation 9, there are three possible 
cases: (a) 0 < T,, < T,11 ; (b) Te~ T,11 ; and (c) Te ::::; 0. For Case a, the 
chosen departure time can lead to either early or late arrival, depend­
ing on the realization of the random variable T,; Equation 9 becomes 

( 
T,11 ) 1 JTe EC = a 1f + T .. + - + - 13 (T,, - T,. )d T, 
2 T,,, 0 

1 JT,n + - ["{ (T, - Te)+ 8] dT,. 
T.11 Te 

[ 
T,n] 1 fj =a 1f + T .. + - + - [ (T,11 - 7;,)] 
2 . T.11 

1 + - [13T; +"I (T,11 - Te)2
] 

2T111 

= aE(T) + 8PL + 13E(SDE) + "{E(SDL) 

(10) 

(1 la) 

(12) 

In Equation l la the first term is merely the expected travel time 
multiplied by its cost. The second term is the probability of arriving 
late, Pu multiplied by the lateness penalty, 8. The last two terms 
are the expected cost associated with the amounts of early and late 

schedule delays. 
The other cases result in simple modifications of Equations 10 

and 1 la. For Case b, where Te~ T,11 (implying the commuter is early 
with a probability of 1), the limit of integration Te is replaced by T,11 

in Equation 10; the result is 

EC= [T. + T. + T,
11

] + R[T - T,
11

] CXJ x 2 Pe 2 (1 lb) 

For Case c, where T,, ::::; 0 (implying the commuter is late with a 
probability of I), then T,, is replaced by 0 as a limit of integration in 

Equation 10 and the result is as follows: 

EC = [r. + T.. + T,
11 

] + 8 + [ T,
11 

- T] a f ·' 2 "I 2 e 
(1 lc) 

In Cases band c the per-minute scheduling cost is simply that asso­
ciated with the expected arrival time because there is no uncertainty 
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about whether the commuter will arrive late. Equation 12 continues 
to apply, with appropriately modified expressions for the probabil­
ity PL and for the expectations of SDE and SDL. As will be seen, 
Cases b and c can occur when the cost parameters and the rate of 
change in the level of congestion have specified ranges; for exam­
ple, if 8 is very large or if congestion is increasing rapidly in depar­
ture time, one may choose to always arrive early (Case b). 

The value of Te that minimizes the expected cost can now be cal­
culated. For Case a, the derivative of Equation l la is set to 0, while 
regarding T .. as a function of Te as in Equation 8. Solving for Te gives 
the following result: 

T;= (J3 ! -y) (8 + 'Y T,11 + a D.*T,11) (13) 

where D. * = - dT,./dTe evaluated at T;. The second-order condition 
requires that dD.ldTe < (J3 + -y)/(a T,11), which may be interpreted as 
requiring that congestion be convex, or at least not too strongly con­
cave, in planned arrival time (t11• - T,,). If T .. is a concave function of 
Uw - Te), then d2TJdT} < 0, that is, D. = - dTJdTe is increasing 
in Te. This solution is valid only if it is consistent with Case a as an 
interior solution, which requires that 0 < T; < T,,,, that is, - 'Y T,11 
< (8 + Q' D,. *T,n) < J3 T,,,. 

To evaluate the expected cost when Te is chosen optimally, Equa­
tion 13 is substituted into Equation 11 a, yielding the following: 

EC*= Q' E(T*) + 8 Pi+ ct 

where 

T.n - Pe 
Pt=----

T.n (J3 + 'Y) 

C* = ..!_ 8 T. + (8 + a D. T,11)2 
s 2 Ill 2(J3 + -y)T,,, 

and 

J3'Y 8=---
(J3 + 'Y) 

(14) 

(15) 

(16) 

(17) 

(18) 

When 8 = D. = 0, Equations 14 through 17 are especially easy to 
interpret. The probability of being late is then chosen independently 
of travel time variance and is decreasing in -y/J3. In addition, the 
uncertainty of travel time creates a cost Ct= Yi 8 T,11 which is pro­
portional to the standard deviation (T,,/VU) of travel time and also 
to the coefficient 8, which is a kind of geometric average of the two 
schedule delay cost parameters; this cost arises because the com­
muter is unable to eliminate the likelihood of some schedule delay, 
either early or late. When 8 = D. = 0, the probability of being early 
is 1 - Pt = 'YI (J3 + -y) in agreement with Gaver (3) Equation 2.3; 
Polak (4) Equation 3.8 (with notation cE = J3 and cL = -y); and Bates 
(6) Equation 17 (with notation l = 'Y and e - h = J3). 

The last term in ct may be regarded as the scheduling-cost 
consequences of shifts in Te that are made to reduce congestion (if 
D. i= 0) or to reduce the likelihood of a discrete lateness penalty (if 
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8 > 0). For example, when D. i= 0, indicating that some congestion 
can be avoided by changing the head start, the commuter does so; 
expected travel time is thereby reduced and Ct increased. When 
8 > 0, indicating an extra penalty for being late by any amount, Tf 
is increased so as to reduce Pt; ct will go up unless a negative D. 
was already causing a tendency toward lateness. 

Consider now Case b of an individual who arrives early with a 
probability of 1; this occurs if, in Equation 13, T; > T,,,, that is, if 

8 
aD.* :::: J3 - -

T,,, 
(19) 

This case can occur when 8 is high or when congestion is increas­
ing at a rapid rate. In this case, the commuter seeking to minimize 
cost will choose Te to minimize Equation 11 b. An interior solution 
occurs when 

(20) 

which requires D. > O; the second-order condition requires that 
dD.ldTe < 0. Hence the congestion function must have a region 
where it is a rising convex function of planned arrival time t"' - Te. 
At Solution 20 the consumer trades off the extra schedule-delay 
costs of still-earlier arrival (J3dTe) against the saving in travel time 
cost caused by less congestion ( aD.dTe); this is the same tradeoff that 
forms the basis for determination of early-side arrival times in the 
models of Vickrey (12), Cosslett (1), Fargier (13), Hendrickson and 
Kocur (14), Amott et al. (15), and others. Alternatively, Case b may 
lead to the comer solution Te = T,11 . This will occur if Equation 19 
is satisfied but Equation 20 cannot be, as could easily happen if 
8/ T,11 is large. The interpretation here is that the discrete lateness 
penalty is large enough for the commuter to eliminate entirely the 
possibility of late arrival, but variation in congestion, D., is not large 
enough to cause a desire for still earlier planned arrivals. 

Consider finally Case c of an individual who decides to arrive late 
with a probability of 1, that is, someone who chooses Te ~ 0. This 
occurs if T; ~ 0 in Equation 13, if 

(21) 

This requires that D. * be negative, that is, congestion is decreasing 
and also that neither 'Y nor 8 be too large. In such a situation, the 
commuter chooses to incur the relatively mild lateness penalties to 
take advantage of lessening congestion. Expected cost (Equa­
tion l lc) has a local minimum where 

aD.=--y (22) 

provided again that dD.ldTe < 0 (convex congestion function). 
Again, there could also be a comer solution Te = 0. Note that Equa­
tions 21and22 are compatible only if D. changes considerably over 
the range of possible values of Te. This could happen if, for exam­
ple, the interval [t"' - T,,,, t11.] occurs near the end of the rush hour, 
so that D.* is strongly negative (representing rapidly falling conges­
tion at T;); the commuter may then choose a later time than Tf 
when both congestion T. .. and its rate of change, D., are smaller in 
magnitude, making Equation 22 possible. In fact, if D. * is strongly 
negative there must be a later region where ID.I is smaller because T. .. 
cannot fall below 0. 
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A practical difficulty is to find a reasonable congestion profile 
that allows one to solve these equations for the optimal head start. 
A linear congestion profile will work for Equation 13 but not for 
Equations 20 and 22. Conversely, other functional forms work for 
Equations 20 and 22 but will not give analytic solutions for Equa­
tion 13. An explicit congestion profile is not defined; additional 
research is examining simulations that endogenously generate 
congestion profiles (38). 

Exponential Distribution 

The exponential distribution for Tr is defined by the probability 
density function, 

j(Tr) = t e(-Trlb) (23) 

which applies for 0 :::::: Tr. The parameter b is the mean and the stan­
dard deviation of the distribution (this differs from the uniform dis­
tribution in which the mean is v3 times larger than the standard 
deviation). The exponential distribution more accurately reflects the 
actual probability of the occurrence of an incident by allowing short 
delays to have a higher probability of occurrence than longer delays. 

Following the same procedures as those described earlier yields 
an expected cost for the exponential distribution. Assuming that 
Te > 0, to guarantee an interior solution, 

l Joo EC = b a (If+ T, + T,.)e-Trlb dTr 
0 

1 Te 

+ b J 13 (Te - Tr) e-Trlb dTr 
0 

+ t r ["{(Tr - Te) + 8] e-Trlb dTr 
Te 

(24) 

Note that it is now possible to specify an infinite range for the 
distribution function. Integration yields the following result: 

EC = a(Tr + T, + b) + 13 (Te - b) + e-Telb (8 + bl3 + b-y) (25) 

which can be rewritten as 

(26) 

where PL = e-Telb is defined as the probability of arriving late, and 
PE= 1 - PL is the probability of arriving early, given Te> 0. This 
can again be put in the form of Equation 12, where in this case E(T) 
= If+ T_, + b, E(SDE) = Te - P£b, and E(SDL) = bPL. These 
expectations can be verified by direct calculations from Equations 
2 through 4. 

The value of Te that minimizes expected cost can now be cal­
culated. Taking the derivative of Equation 25 with respect to T,, 
setting it equal to 0, and solving for n gives the following result: 

[
8 + b(l3 + "'{)] 

T* = b·ln ------'---~ 
e b(l3 - <X~) 

(27) 

where ln denotes the natural logarithm. When 8 and ~ = 0, imply­
ing no late penalty and no change in congestion levels, this formula 
corresponds to that of Gaver (3), Equation 2.5. The second-order 
condition requires that d~ldTe < - llab2

• exp(-Telb)· [8 + b(l3 + 
-y)], which can simplify to dMdTe < (a~ - 13)/ab. The probability 
of being late, Pi = e-'l1ib, can be rewritten as 
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p* _ b(l3 - a~) 
L - (8 + bl3 + b"'{) 

(28) 

Lateness is favored by small values of 0 and "Y and by a large nega­
tive slope to the congestion function. Equation 27 will have no solu­
tion where a~ :::::: 13, but this is not a problem because if~ is large 
enough for this to occur at some head start, then the commuter will 
seek larger head starts and must eventually find a region where ~ is 
small. Such a region must exist because T, cannot be negative. 

The interior solution of Equation 27 is valid only when it is com­
patible with Te :::::: 0, the range under which it was derived. That con­
dition is violated if the term in square brackets is ::; 1, i.e., if 

(29) 

This condition is the same as that in Equation 21, except that T,,, is 
replaced by b (recall that the standard deviation in the uniform dis­
tribution is T,,,l'/fi., whereas for the exponential distribution it is 
equal to b). If it holds, the commuter chooses to always be late; 
expected cost is found by replacing Te by 0 in the limits of integra­
tion in Equation 24, resulting in the following 

EC = a(Tr + T, + b) + 8 + -y(b - Te) (30) 

which is equivalent to Equation l lc for the uniform distribution. 
Head start, Te, would be chosen either at the corner solution, Te = 0, 
or at a point where a~ = --y, just as in Equation 22. This is analo­
gous to Case c of the uniform distribution; there is nothing analo­
gous to Case b because the exponential distribution has no upper 
limit and therefore there is no way to set Te so that one always 
arrives early. 

Returning to the interior solution (Equation 27), the optimized 
value of expected cost can be calculated by substituting Equa­
tion 27 into Equation 25: 

[
8 + b(l3 + "'{)] 

EC* = a(IJ + T, + b) - ba~ + bl3·ln b(l3 _a~) (31) 

The first term is the expected cost of travel time. This can be rewrit­
ten to compare with Equation 14: 

EC*= a(IJ+ T, + b) + 8?! + C;' (32) 

where Pi is given by Equation 28 and 

C* = b{ ·ln[8 + b(l3 + -y)]- 8(13 - a~) - a~} 
·' 13 b(l3 - a~) 8 + b(l3 + "'{) 

(33) 

The equations derived above describe the expected cost functions 
associated with uncertainty in travel times. These can be used to 
evaluate the relative proportion of expected cost associated with 
travel time uncertainty. The analyses in the next section provide 
some useful examples showing the relative importance of travel 
time variance for the cost of commuting. 

NUMERICAL EXAMPLES 

To analyze the head start times and expected costs associated with 
travel variance, estimates of the cost coefficients in the models are 
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TABLE 1 Head Start Times by Standard Deviation and Change in Congestion 

Unifonn Distribution: Te (in minutes) 

Tm I Jfi. = Std. Dev. A= -0.1 A=O A=0.1 

5 15.03 15.61 16.19 
10 28.23 29.39 30.55 
15 41.44 43.18 44.92 
20 54.64 56.96 59.28 
30 81.05 84.54 88.02 

Exponential Distribution: Te (in minutes) 

b =Std. Dev. A= -0.l 

5 
10 
15 
20 
30 

needed. Empirical estimates by Small (2) of the ratios ~lo'. and -ylex 
are used in combination with a value oftime of $6.40/hr. These val­
ues are also used by Arnott et al. (15). The result, using ex = 6.40/hr, 
is~ = 3.90/hr and -y = 15.21/hr (rescaled to minutes for these cal­
culations). The authors also use 8 = 0.58 from Small (2). 

Table 1 shows the values of Tl' for standard deviations of travel 
time between 5 and 30 min and for the congestion slopes, Ll, 
between -0.1and0.1. The optimal head start time is always larger 
with the uniform distribution than with the exponential distribution; 
this is because of its higher probability weighting for large delays. 
The head start is larger (earlier departure) when the standard devi­
ation is larger and when congestion is increasing. Table 2 shows 
the corresponding optimal values of P[, the probability of arriving 
late, which is smaller when congestion is increasing. 

If a hypothetical commuter has scheduling flexibility, then it is 
possible to assume that ~ = -y, that is, the commuter is indifferent 
between schedule delay early and schedule delay late. In addition, 
this hypothetical commuter would have no b;1teness penalty, 8. This 
can be considered a form of flextime. A commuter with flextime may 
still have some preferred arrival time, perhaps determined by con­
straints on the work departure time or personal preferences, such that 

8.74 
16.05 
23.28 
30.49 
44.89 

A=O A=0.1 

9.50 10.40 
17.57 19.36 
25.56 28.25 
33.53 37.11 
49.44 54.82 

~ and -y are not 0. Table 3 indicates the head start times chosen by 
such a commuter (with~ = "I = 3.90). In all cases the commuter still 
desires a head start time to avoid congestion, although these values 
are significantly less than those in Table 1. Note that the head start 
times increase linearly with respect to the standard deviation because 
8 = 0. In the case with no change in congestion levels, Te = 

V3 · b with the uniform distribution, and Te = b · ln(2) with the 
exponential distribution. 

Our analytical derivations have separated the costs associated 
with travel time, E(T*), from those associated with the uncertainty 
of travel time, c.r + 8 Pi. How important are the relative contri­
butions made by these terms toward the total expected cost of travel, 
EC*? Table 4 provides a breakdown for each distribution for 
different levels of travel time uncertainty and Table 5 provides a 
breakdown for different levels of Ll, excluding the cost of certain 
travel time, ex (T_r + TJ. The total EC* does not differ much between 
the two distributions, the largest difference being about $0. 73 (when 
SD = 30). However, C.r, the expected cost of schedule delay, is 
much larger under the exponential distribution than the uniform dis­
tribution. For large standard deviations of travel time, c.r from the 
uniform distribution becomes virtually insignificant regardless of 

TABLE 2 Optimal Probability of Being Late by Standard Deviation and Change 
in Congestion 

Unifonn Distribution: pL• 

Tm I Jfi. = Std. Dev. A= -0.1 A=O A=0.1 

5 13.24% 9.89% 6.55% 
10 18.50% 15.15% 11.80% 
15 20.25% 16.90% 13.55% 
20 21.13% 17.78% 14.43% 
30 22.00% 18.66% 15.31% 

Exponential Distribution: pL• 

b =Std. Dev. A= -0.l A=O A=0.1 

5 17.41% 14.96% 12.50% 
10 20.10% 17.26% 14.43% 
15 21.19% 18.20% 15.21% 
20 21.77% 18.71% 15.64% 
30 22.40% 19.24% 16.08% 
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TABLE 3 Head Start Times by Standard Deviation and Change in Congestion 
with Flex Time 

Uniform Distribution: Te• (in minutes) 

Tm I JU = Std. Dev. A= -0.1 A=O A=0.1 

5 7.239 8.660 10.081 
IO 14.478 17.321 20.163 
15 21.717 25.981 30.244 
20 28.956 34.641 40.326 
30 43.435 51.962 60.489 

Exponential Distribution: Te• (in minutes) 

b =Std. Dev. A= -0.1 

5 2.706 
10 5.412 
15 8.118 
20 10.824 
30 16.236 

the level or direction of changes in congestion. However, under the 
exponential distribution, the proportion of expected costs attribut­
able to c; remains relatively stable at about 46 to 48 percent of the 
total expected costs for each level of standard deviation. This is 
about the same contribution made by the expected value of uncer­
tain travel time, O'. b or 1/2 O'. T,,,, which in the case of the uniform dis­
tribution accounts for virtually all of the expected costs of 
commuting. In both distributions the proportion of expected cost 
associated with the probability of arriving late, 8Pi, decreases as 
the standard deviation increases; apparently the shifts in head start 
time shown in Table l more than compensate for the increases in 
standard deviation. 

CONCLUSIONS 

This research has analyzed the costs associated with uncertain travel 
times. The work of Gaver (3) and Polak (4) has been followed but 

A=O A=O.l 

3.466 4.362 
6.931 8.724 

I0.397 13.086 
13.863 17.448 
20.794 26.172 

with some new contributions, focusing primarily on scheduling 
considerations. The effects of congestion that the commuter 
encounters every day have been explicitly separated from the non­
recurrent congestion that accounts for day-to-day variability in 
travel times. In addition, a discrete lateness penalty, which was orig­
inally detected empirically by Small (2) has also been introduced. 

Using one set of empirically estimated parameters, the expected 
cost of schedule delay is found to be a relatively minor component 
of costs when the uniform distribution is used but quite large when 
the exponential distribution is assumed. In both cases the residual 
probability of being late is set by the commuter at a small enough 
value that the expected discrete lateness penalty is only a small 
fraction of the total costs. 

The model described in this paper enables the analyst to predict 
the expected cost of schedule delay, including penalties for lateness, 
taking into account how the traveler adjusts the trip schedule in 
response to the travel environment. Our numerical example 
suggests costs of several dollars per trip, arising from standard devi-

TABLE 4 Expected Costs of Scheduling and Incident Delay with Uncertain Travel 
Time (4 = 0) 

Uniform Distribution 

Tm I JU. = Std. Dev. EC* cs· % 0PL• % 

5 1.0375 0.0564 5.43% 0.0574 5.53% 
10 1.9765 0.0411 2.08% 0.0879 4.45% 
15 2.9054 0.0360 1.24% 0.0980 3.37% 
20 3.8317 0.0335 0.87% 0.1031 2.69% 
30 5.6817 0.0309 0.54% 0.1082 1.90% 

Exponential Distribution 

b =Std. Dev. EC* c· s % 0PL"' % 

5 1.1508 0.5307 46.11% 0.0868 7.54% 
IO 2.2084 1.0416 47.17% O.IOOl 4.53% 
15 3.2612 1.5557 47.70% 0.1056 3.24% 
20 4.3126 2.0708 48.02% 0.1085 2.52% 
30 6.4139 3.1023 48.37% 0.1116 1.74% 

Note: Costs in dollars per morning commute. 
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TABLE 5 Expected Costs of Scheduling and Incident Delay with Uncertain 
Travel Time (SD = 10) 

Uniform Distribution 

.1 EC* c. 
s % 9pL• % 

-0.1 1.9827 0.0279 1.41% 0.1073 5.41% 
0 1.9765 0.0411 2.08% 0.0879 4.45% 

0.1 1.9827 0.0667 3.37% 0.0685 3.45% 

Exponential Distribution 

.1 EC* cs· % 0P, • % 
-0.1 2.2163 1.0331 46.61% 0.1166 5.26% 

0 2.2084 1.0416 47.17% 0.1001 4.53% 
0.1 2.2183 1.0679 48.14% 0.0837 3.77% 

Note: Costs in dollars per morning commute. 

ations of travel time varying from 10 to 30 min. Furthermore, if the 
exponential distribution applies, about half this cost is due purely to 
the variance of travel times (the other half being the expected value 
of the incident delay). 

If the expected cost of schedule delay is indeed a major cost of 
unreliable commute trips, as this suggests, then policies that reduce 
travel time variance may be preferable in many cases to policies that 
reduce travel times, especially when the latter are costly. Policies 
that decrease the response time needed to clear incidents, for exam­
ple, may be much cheaper than and provide cost savings compara­
ble to capacity expansion. 

The information the commuter has about congestion will influ­
ence the departure time decision and ultimately the expected cost of 
commuting. Future work will analyze the impact of providing 
commuters with accurate information about changes in congestion 
levels and travel time variance. For example, how will changing 
information affect head start times when combined with a supply­
side congestion model? What are the impacts on congestion when 
commuters have varying degrees of information about both 
congestion and reliability? The model presented here offers a start­
ing point for addressing such questions, which are central to the 
evaluation of intelligent transportation systems. 
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