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Foreword 

The papers in this volume focus on mode choice models, traffic assignment, hazard models, and var
ious modeling systems to improve urban transportation planning, a model of origin-destination route 
choice, and trip generation for shopping travel. 

A series of papers focuses on residential relocation, impact of mobility policies, household travel 
behavior, driver's route choice, and multipath transit assignment. 

Another set of papers addresses travel time, including commercial vehicle operations, route choice 
behavior, day-to-day dynamic simulation, data collection procedures, in-time use research, temporal 
variations on the allocation of time, and travel time uncertainty. 
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Analysis of the Temporal Trans£ er ability of 
Disaggregate Work Trip Mode 
Choice Models 

DANIEL A. BADOE AND ERIC J. MILLER 

An empirical study is presented of the long-range temporal transfer
ability properties within a fixed geographic area of disaggregate logit 
models of work trip mode choice. The study area is the greater Toronto 
area, Ontario, Canada. The two temporal contexts are 1964 and 1986, 
with models estimated from 1964 data being used to predict 1986 travel 
choices. In addition to the very long transfer period (which does not 
appear to have been previously examined), a major feature of this study 
is that a wide variety of model specifications, ranging from the simplest 
possible market share model to a complex market segmentation model, 
are tested to investigate the relationship between model specification 
and transferability. Major findings of the study include (a) as in most 
transferability studies, model parameters are not temporally stable; (b) 
pragmatically the transferred models provide considerable useful infor
mation about application context travel behavior; (c) in general, 
improved model specification improves the extent of the model's trans
ferability; (d) an important exception to Point c is the complex market 
segment model, which appears to be "overspecified" and, in the face of 
changing contextual factors during the 22-year period predicts 1986 
conditions quite poorly; (e) Point c notwithstanding, simple level-of
service models perform very well in terms of their spatially aggregate 
predictions (which are often of primary practical importance to plan
ners); (f) the models that best fit the estimation context (1964) data 
do not always transfer the best to 1986 conditions; and (g) "transfer 
scaling," in which modal utility constants and scales are updated, can 
significantly improve model transferability. 

An important expected benefit from use of random utility models in 
transport modeling is transferability, that is, application of a model 
to a context different from which it was estimated. This expectation 
is based on the belief, first, that these models better represent the 
travel decision-making process and, second, that in the estimated 
model parameters the values associated with the different socio
economic classes are built in. Hence, once a model is well specified 
to capture the decision process in one context, it should be applica
ble in other contexts so long as the basic nature of the decision
making process remains the same. 

Consequently, transferability has been a subject ofresearch inter
est for the following reasons: first, if it is feasible, the costs and time 
associated with transport decision-making, in a number of 
instances, can be reduced significantly; and second, it provides 
direct evidence of how well models that were estimated in one 
context perform in forecasting free of errors that would arise from 
having to forecast explanatory variables, thus making a statement 
about the range of validity of these models. Several empirical stud
ies have been conducted to assess the effectiveness of model trans-

D. A. Badoe, Joint Program in Transportation, University of Toronto, 42 St. 
George Street, Toronto, Ontario, MSS 2E4 Canada. E. J. Miller, Department 
of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, 
Ontario, MSS I A4 Canada. 

fer from one context to another (J-7). Some of these studies have 
examined model transfer from one spatial context to another 
(1,3,5,8,9), whereas others have examined the temporal transfer of 
these models (2,4,10-12). The temporal dimension of transferabil
ity is the focus of this paper. 

The assessment of transferability in the temporal domain has 
been mixed. The studies reported elsewhere (2,4,10,12), even 
though in some cases they involved simple specifications [e.g., 
Hensher and Johnson (2) used only level-of-service variables in 
their models], found disaggregate demand model explanatory vari
able coefficient estimates to show stability and provide a great 
degree of useful information in the transfer context and concluded 
that the developed models were temporally transferable. On the 
other hand, the transferability studies of Talvitie and Kirshner (3) 
and Train (11) reject temporal transferability. Train found the fore
cast errors from transferring estimated models on a pre-BART (Bay 
Area Rapid Transit) context to a post-BART context to be large and 
therefore rejected temporal transferability. Train's study, however, 
was clouded by problems of introduced new modes; therefore his 
findings are not entirely surprising. Talvitie and Kirshner assessed 
transferability on the basis of a statistical test of the set of model 
parameters from the pre-BART context being equal to the set of 
post-BART model parameters (this included the modal constant 
terms, which are contexf specific). As argued by Ben-Akiva (13) 
and Koppelman and Wilmot (5), assessing model transferability 
only on the basis of the set of model parameters being equal in the 
two contexts is stringent and unlikely to be met because no model 
is perfectly specified; as a result, all model~ are in principle context 
dependent (6). A more pragmatic evaluation of transferability is 
achieved by assessing the extent of useful information provided in 
an application context by transferred models ( 6, 13). This viewpoint 
for assessing model transferability is also adopted in this paper. 

Basically all the temporal transferability studies to date have been 
limited to short intervening times between estimation and applica
tion contexts, where differences in urban conditions between the 
two contexts are unlikely to be large. Nevertheless, these models are 
also applied in long-range forecasting in which significant changes 
in urban conditions occur. Horowitz (14, p.145) writes: 

An issue in temporal transferability that has arisen relatively recently 
concerns whether random utility travel demand models are likely to be 
transferable over time in periods of significant macroeconomic struc
tural change, such as appear to be occurring now in some Western 
countries. There is, at present, no empirical evidence on this issue. 

This paper examines the temporal transferability of morning peak 
period work-trip disaggregate multinomial logit mode choice mod
els in the greater Toronto area (GT A), Ontario, Canada. Three travel 
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modes are considered: automobile drive, public transit, and walk 
modes. The two urban contexts used in the study have an interven
ing period of 22 years between them, during which significant urban 
changes occurred. The validity of the assumptions inherent in the 
use of cross-sectional random utility models in such long-term tem
poral transfer has not yet been rigorously tested. From a theoretical 
perspective, Horowitz (14) points out that the ability of random 
utility models to transfer successfully over time during periods of 
structural change depends on whether such change entails substan
tial alterations of people's tastes or whether it consists mainly of 
changes in the attributes of the alternatives people face. In the for
mer case, Horowitz states that it is unlikely that models can be trans
ferred, whereas there is reason for cautious optimism in the latter 
case. He goes on to state (14, p.145): 

. . . if structural change influences mainly the attributes of available 
travel alternatives, then disaggregate random utility models can be 
expected to be transferable if they are free of serious specification error 
and if their explanatory variables encompass all attributes relevant to 
the choices of interest whose levels change significantly. 

The other area in which this paper differs from existing empiri
cal temporal transferability studies is in model specification; a sin
gle areawide model specification is not assumed, a priori, to be the 
most appropriate to capture traveler mode choice behavior. Instead, 
alternate specifications are explored. [It is noted, for example, that 
Train (11) and Koppelman and Wilmot (9) tested alternate specifi
cations; however, the tested specifications had the underlying 
assumption that all travelers placed the same weight on transport 
system attributes.] Some of these specifications allow for taste dif
ferences among defined subgroups in the travel market. This testing 
of alternate specifications permits an assessment of the relationship 
between long-term transfer effectiveness and model specification. 

The impact reestimation of modal constants and utility scale 
parameter has on transfer effectiveness is also discussed, thus 
allowing comments on whether tastes changed over time in 
response to significant macroeconomic changes. 

The next section of this paper describes the two data sets used for 
the analysis. The section on comparison of urban structure attrib
utes discusses briefly the differences in urban conditions between 
1964 and 1986. The section on model specification presents the 
alternate model specifications investigated. The section on model 
estimation results presents the statistical estimation results of the 
estimation context models. The section on evaluation of transfer
ability presents the results and discussion of the various transfer
ability tests conducted. The impact reestimating modal constants or 
utility scale parameters, or both, has on transfer effectiveness is dis
cussed in the section on updating constants or utility scale parame
ter. Finally, the conclusions and findings drawn from this study are 
outlined. 

DATA 

The two sources of data for this study are the 1964 Metropolitan 
Toronto and Regions Transport Study (MTARTS) data base and 
1986 Transportation Tomorrow Survey (ITS) data base. The 1964 
data were collected in a home interview survey conducted in met
ropolitan Toronto and its neighboring regions. The total usable 
questionnaires from this survey totalled 24,000, representing 
3.3 percent of all households in the survey area. It provides detailed 
information on trips and personal characteristics of all household 
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members in the sample. The 1986 ITS data, collected in a telephone 
interview survey conducted throughout the entire GT A, also pro
vide detailed information on trips and personal characteristics of 
each household member in the sample. The number of usable 
household questionnaires totalled 67,000, representi9g 4 percent of 
all households in the sampling frame. The data sets do not contain 
identical information. For example, the 1964 survey collected infor
mation on occupation of household members and household 
income, whereas the 1986 survey did not. These data inconsisten,.. 
cies are considered in model specification. Census data obtained 
from Statistics Canada are used to augment the travel survey data in 
the brief descriptive comparison of urban conditions. 

All level-of-service data required_ for model development, with 
the exception of parking costs and transit fares, were generated 
using computerized representations of the GT A automobile and 
transit networks maintained within the EMME/2 modeling system . 

The 1964 travel data base is used for estimation of models that 
are to be transferred. The 1986 data base represents the travel 
context to which the estimated 1964 models are transferred for eval
uation of transferability. 

Although automobile passenger, automobile access to transit 
(park and ride or kiss and ride), and (in 1986) commuter rail modes 
were also observed to be used by workers in the data bases, these 
modes were excluded from this analysis to reduce modeling com
plexity with respect to specification, decision structure (e.g., avoid
ance of nested decision structures associated with access mode 
choice), and introduction of new modes (the commuter rail service 
did not exist in 1964). 

COMPARISON OF 1964 AND 1986 
URBAN CONDITIONS 

Table 1 presents figures on the various characteristics of urban 
structure in the GT A for 1964 and 1986. The population of the GT A 
grew from about 2. 7 million in. 1964 to 4.1 million in 1986, repre
senting a 53 percent increase in the 22-year period, whereas the 
numberofhouseholds grew from 0.71 million to 1.47 million, a 106 
percent increase. Average household size thus declined from 3. 7 
persons per household to 2.8 persons per household. A predictable 
outcome was the increase in percentage of single- and two-person 
households. 

The labor force participation rate for females rose from 45 per
cent in 1971 to 66 percent in 1986, with the corresponding figures 
for males being 78 and 81 percent, respectively. This contributed to 
an increase in the proportion of multiple-worker households. The 
rate of driver license ownership among female workers also rose 
from 43.4 percent in 1964 to 77.8 percent in 1986. The correspond
ing figures for males were 88.6 percent and 93.8 percent, respec
tively. Private car registration in the GT A rose dramatically from 
0.54 million in 1964 to 2 million in 1986, representing close to a 
300 percent increase. Household car ownership consequently rose 
from 0.80 cars per household to 1.4 cars per household in the 
respective years. 

The economic base of the GT A also changed, with the service 
industry superseding the manufacturing sector as the major 
employment source for GT A residents. Location patterns for these 
two industry types are different. The service industry is oriented 
more to the central business district (CBD), whereas the manufac
turing industry, which in 1964 was largely located within the 
bounds of metropolitan Toronto, is primarily located in the subur-
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TABLE 1 Comparison of Urban Attributes of GTA in 1964 and 1986 

I Attribute I Year I 
1964 1986 

Population (thousands) 2.657 4,063 

Average Weekday Travel (thousands) 3.800 8.800 

Average Household Size 3.7 2.8 

Private Auto Registration (thousands) 542 1,996 

Transit Route Kilometres 953 1345 

Transit Vehicle Kilometres (millions) 88 189 

Source: ITC Annual Report. 1964 and 1986 
Canada Statistics. Road Motor Vehicle Registration 
1964 MTARTS and 1986 TIS Travel Sur~ey Data 

ban areas of neighboring regions to metropolitan Toronto, where 
space is available and cheap. Decentralization resulted in the per
centage o_f total population residents in the suburban regional 
municipalities rising from 34 to 47 percent. These spatial trends in 
employment and residential locations in turn altered trip distribu
tion patterns within the GT A. 

The transport system also experienced expansion. However, the 
balance of investment was in favor of public transport, which 
increased its output, measured in transit vehicle kilometers, from 88 
million in 1964 to 189 million in 1986. 

Average weekday travel in 1964 was about 3.8 million trips, 
whereas in 1986 this was about 8.8 million trips, representing a 
158 percent growth in travel. Notwithstanding the decline in aver
age household size, the number of trips made per household rose 
from 5.50 to 5.85, and the number of trips per person rose from 1.4 
to 2.1. Car use increased by 120 percent from 2.2 million trips in 
1964 to 4.8 million trips in 1986. However, the passengers carried 
in these cars increased less than 60 percent from 0.8 million trips to 
1.3 million trips in the respective years, resulting in a decline in the 
car occupancy rate. Use of public transport increased over 90 per
cent, from 0.7 million daily trips to 1.35 million daily trips. The 
average work trip length (Euclidean distance) increased from 
7 .9 km in 1964 to 11.5 km in 1986, the increase being particularly 
pronounced for trips by car and transit. 

MODEL SPECIFICATIONS 

Seven different model specifications are explored. The first is a 
simple market share model, with the interpretation that each of the 
considered modes retains its relative share in the forecast context or 
that no explanatory variables are necessary to explain choice varia
tions in the forecast context. It gives a lower bound on model trans
fer performance. The second and third models are simple level-of
service models. The first of them treats all the variables, with the 
exception of in-vehicle costs, as mode specific. The second level-of
service model treats the in-vehicle cost and in-vehicle time of the 
variables as generic attributes in the automobile drive and transit util
ities. Further, it assigns the same importance weight to transit wait 
time and transit access and egress times. The fourth is termed a fully 
specified model. In addition to level-of-service attributes, it includes 
spatial, personal, and household characteristics of the tripmaker. 

These four models assume the same coefficient estimates for all 
travelers in the GT A. The next three model specifications are 
defined for subgroups of workers that are determined to be rela
tively internally taste homogeneous. In line with this, the fifth model 
uses a heuristic segmentation procedure, which essentially consists 
of applying the automatic interaction detector (15) with multi
nomial lo git models to identify 10 multivariately defined market 
segments with relatively homogeneous tastes. These mutually 
exclusive segments, which are defined by socioeconomic and spa
tial variables, are shown in Figures 1 and 2. Simple level-of-service 
models, similar in specification to the first level-of-service model 
mentioned, are estimated using data from each subgroup. For a 
complete description of the segmentation procedure used, see work 
by Badoe (16). Although such an extensive segmentation scheme 
would not generally be practical in most forecasting applications, it 
was supportable in this study given the large data sets available. 
Given this, it was felt that as a research exercise it was worthwhile 
to explore the impact that multivariate segmentation would have on 
model performance relative to more conventional nonsegmented or 
univariate segmentation schemes. 

The sixth model takes the first pair of subgroups to emerge from 
application of the segmentation procedure mentioned earlier to the 
1964 data (here the entire sample is stratified by gender to yield 
subgroups of male and female workers) and estimates models 
similar in specification to Model 4 mentioned earlier but excluding 
the gender alternative-specific socioeconomic variables on the two 
gender worker groups. The seventh model takes the first set of 
homogeneous subgroups to emerge from application of the seg
mentation procedure to the 1986 data set. In this case, the worker 
subgroups were defined according to household automobile owner
ship level. Models similar in specifications to Model 4 were esti
mated on the obtained subgroups. The structure of all the models 
mentioned earlier is the multinomial logit model with three modes: 
automobile drive, transit, and walk. 

MODEL ESTIMATION RESULTS 

Table 2 defines the variables included in the models considered. 
Estimation results for these models are presented in Tables 3 and 4. 
Most of the models' estimated parameters are statistically well 
determined and have signs consistent with a priori expectations. 
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01 
Total 
N=8066 

l 

I I 
D2 D3 

Female Male 
N=1730 N=6336 

-
I I 

I I See Figure 2 
I D4 D5 

nveh < 2 nveh > 1 
N=l254 N=476 

I 
I l I 

DB * D9 * DlO * 011 * 
nlic.< 2 nlic. > 2 den.cl < 5 den. cl.> 4 

N=722 N=532 N=284 N=l92 

Abbreviations _ . 
nveh. number of vehicles available to household. 
den.cl. trip-end density class (ranges from 1 to 6, higher class 

- numbers mean great~r trip-end density). 
nlic. number of persons in household with driver's licence. 
orig. work-trip origin. 
dest. work-trip destination. 

FIGURE 1 Multivariately defined market segments, Part 1; selected samples indicated by asterisk. 

However, the multivariately defined market segment models have 
some parameters of counterintuitive sign. For forecasting purposes, 
the affected models are reestimated constraining parameters of 
counterintuitive sign to 0 values. 

Log-likelihood values for these models indicate the multivariately 
defined segment models to give the best fit to the 1964 data. This is 
followed by the gender-based models and then the conditional 
household automobile ownership models, and so forth, ranked 
according to log-likelihood value. However, when penalty is applied 
for the number of estimated parameters, as given by the adjusted 
likelihood ratio index, the gender-based models and the multivari
ately defined segment models have similar goodness-of-fit. 

MEASURES OF TRANSFERABILITY 

The following are criteria for judging model transferability: 

1. Statistical similarity of estimation and application model co
efficients: A nested likelihood ratio test is conducted for this purpose. 

2. Ability of the transferred model to replicate individual choice 
in the application context: In absolute terms, performance here is 
assessed by the transfer log-likelihood value, which indicates rela
tive disaggregate prediction performance of alternate model speci
fications. Relative performance measures that indicate how well_ 
the 1964 models perform in disaggregate prediction relative to 

locally estimated similarly specified models on the 1986 data set are 
provided by the transfer index (Tl) and transfer goodness-of-fit 
measures (5). The transfer index has a maximum value of 1.0. 

3. Ability of the transferred model to replicate observed aggre
gate shares: Aggregate predictions of mode use are obtained for 
seven destination regions of the GT A, which comprise the six con
stituent municipalities of the GT A, with metropolitan Toronto (by 
far the largest of the six regions) being split in two, for example, the 
CBD (Planning District 1) and the remaining districts of metropol
itan Toronto. Root-mean-square error (RMSE) and mean absolute 
error (MAE) values, which are absolute measures of predictive 
accuracy, are computed using the aggregate predictions to assess 
forecast accuracy. The relative aggregate transfer error (RATE), 
which is the ratio of the RMSE value from application of the trans
ferred model in the application context to the RMSE value from a 
locally estimated model on the application context is also com
puted. Expressions for these error measures can be found elsewhere 
(5). In addition, 95 percent prediction intervals are constructed (J 7) 
to determine whether the intervals given by each of these models 
include the observed mode use for each destination region. The 
rationale for obtaining confidence intervals is that the 1986 fore
casts are based on relationships between dependent and indepen
dent variables that are not precise but subject to random errors. A 
point estimate alone would therefore be suggestive of a precise rela
tionship not subject to random errors. Thus, the observed mode use 
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Abbreviations 
nveh. number of vehicles available to household. 
den.cl. trip-end density class (ranges from 1 to 6, higher class 

numbers mean greater trip-end density) 
nwrkh. number of workers in household. 
orig. work-trip origin. 
dest. work-trip destination. 

FIGURE 2 Multivariately defined market segments, Part 2; selected samples indicated by asterisk. 

value, if the confidence interval bounds it, confirms the appropri
ateness of the model specification. 

RESULTS 

Test of Parameter Equality 

As in other transferability studies, results of the nested likelihood 
ratio test of 1964 and 1986 model parameters being statistically 
equal (Table 5, Column 2) reject the null hypothesis for all model 
specifications. As discussed earlier, this is not surprising given the 
errors in the modeling procedure. The emphasis is thus on the more 
pragmatic measures of transferability assessment reported below. 

Disaggregate Measures of Transferability 

The transfer log-likelihood values for each model are indicated 
in the Column 3 of Table 5. The worker mode choice model con-

ditional on household automobile ownership level, with a log
likelihood value of - 10,304, is found to give the best disaggregate 
predictions on the observed 1986 data. This is followed by the gen
der segment models and then the single areawide fully specified 
model. The multivariately defined segment models, which gave the 
best data fit in the estimation context, performed quite poorly yield
ing a log-likelihood value of -11,366. With this exception, however, 
improved model specification in general translates into improved 
disaggregate predictive performance in the application context. 

TI values range from 0.132 for the multivariately defined seg
ment models to 0.894 for Level-of-Service Model I, indicating that 
some of the 1964 models provide a significant component of infor
mation obtained from local 1986 models. The less well specified 
models have higher TI values than the better-specified models. 
Computed transfer goodness-of-fit measures (Table 5, Column 5), 
in general, compare favorably with the goodness-of-fit index values 
given by the locally estimated models on the 1986 data set (Col
umn 6). The negative goodness-of-fit value for the transferred 1964 
market share model means its log-likelihood is lower than the log
likelihood given by the 1986 market share model. 
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TABLE 2 Definition of Variables Specified in Mode Choice Models in Table 3 

dauto =l in auto-drive mode utility (modal constant); = 0 otherwise 

dwalk =I in walk mode utility (modal constant); = 0 otherwise 

aivtt =auto in-vehicle travel time (min.), enters into auto-drive mode utility; = 0 
otherwise 

ivtt = aivtt (auto in-vehicle travel time) in auto-drive mode utility; = tivtt (transit in-
vehicle travel time in transit mode utility; = 0 in walk mode utility. 

tivtt = transit in-vehicle travel time (min.) in transit mode utility; = 0 otherwise 

twait = transit wait time (min.) in transit mode utility: = 0 otherwise 

twalk = transit access +egress + transfer time (min.) in transit mode utility; = 0 
otherwise 

tovtt =transit out-of-vehicle time (min.) (access+egress+transfer+wait times) in 
transit mode utility: = 0 otherwise ~ 

ivtc = aivtc (the auto in-vehicle travel costs ($) for auto-drive mode): = 0 in walk 
mode utility: = tfare (the transit fare) in transit mode utility. 

apkcst = auto daily parking cost (S) in auto-drive mode utility: = 0 otherwise 

wdist = walk distance (km.) in walk mode utility; = 0 otherwise 

avplic = number of vehicles per licensed person in household. Enters into auto-drive 
mode utility; = 0 otherwise 

-wcod = I in walk utility if worker's employment location is in Central Business 
District: = 0 otherwise 

amal = 1 in auto-drive utility. if worker is male: = 0 otherwise 

tcbd = l in transit utility if worker's employment location is in Central Business 
District; = 0 otherwise 

tgend = 1 in transit mode utility. if worker is female: = 0 otherwise 

Aggregate Measures of Transferability 

Aggregate transfer measure values based on aggregate predictions 
given by naively transferred models from the 1964 context are 
presented in Table 5. Even though RMSE and MAE penalize the 
prediction error differently, they both indicate that the Level-of
Service Model I, which treats nearly all the system attributes as 
alternative specific, notwithstanding its simplicity in specification, 
to yield the best spatial predictions of mode use. Level-of-Service 
Model II and the worker choice model conditional on automobile 
ownership level have comparable aggregate forecast performance. 
The forecast performance of the single areawide fully specified 
model and the multivariately defined segment models are disap
pointing given their superior specification to the simple level-of
service models. 

RATE values range from 1.0 for the market share model to 5.6 
for the market segment models. In general, the better the model 
specification the higher the RA TE value. this is understandable, 
given the fact that a well-specified model estimated on the 1986 
context yields far superior aggregate predictions compared with a 
poorly specified local 1986 model. 

Table 6 is a summary table that shows whether the confidence 
intervals for predicted mode use by destination region, given by 
each of the 1964 models, does include the observed mode use. 
Where the confidence interval given by a particular model type 
bounds the observed mode use for a destination region, the abbre-

viation for that model is recorded in the cell described by that mode 
and destination region. The results indicate that with the exception 
of the market share model, most models do not yield confidence 
intervals that include the observed walk mode use for most of the 
destination regions. This, however, improves for the transit and 
automobile drive modes. Hamilton is the only region for which the 
confidence interval given by most of the models bounds the 
observed mode use for all the three modes. Interestingly this desti
nation region, which is self-contained in terms of trip distribution, 
underwent comparatively minor change in urban conditions in the 
22-year period (16). None of the models yields modal confidence 
intervals that bound the observed for work trips destined to Plan
ning District 1, the downtown district of Toronto. This is disap
pointing because in any long-range planning mode split of trips to 
this district would be of considerable interest. The three models 
here, which are of superior performance compared with the others, 
are the Level-of-Service Model I, the gender segment models, and 
the automobile ownership models. 

Reestimation of Modal Constants and Utility Scale 

Modal constants are in principle context specific because they cap
ture those aspects of the choice process for which the included model 
explanatory attributes do not account. Hence, their transferability 
from one context to another is expected to be weak. Thus, these con-



TABLE 3 1964 Model Parameter Estimates 
--

Yariahles Markel Level of Level of Fully Male Model Female 0 Yeh. I Yeh. 2+ Yeh. 
Share Service (I) Service Specified Model Model Model Model 

(II) 

daulo 1.348 0.090 * -0.133 * -1.266 -0.583 -2.298 -0.978 -1.636 

dwalk -1.139 0.924 0.626 1.592 1.050 1.927 0.661 * 1.423 1.597 

aivtt -0.031 -0.009 -0.009 -0.014 -0.015 

ivtl -0.037 

li Vtl -0.043 -0.029 -0.036 -0.0 I I * -o.o:n -cu no 
twait -0.205 -0.202 -0.209 -0.202 -0.284 -0.182 -0.216 

twalk -0.046 -().()26 -0.037 -0.051 * -0.032 -0.003 * 

tovll -0.123 

wdist -1.961 -1.918 -1.884 -1.675 -2.347 -2.253 -1.758 -1.810 

ivtc -0.389 -0.040 * -0.388 -0.386 -0.468 -2.190 -0.278 -0.695 

pkcst -0.333 -0.314 -0.282 -0.273 -0.332 -0.317 -0.199 

avplic 1.540 3.487 1.523 2.739 

am al 0.672 0.649 

tchd 1.252 1.014 0.293 * 1.061 1.559 

tgcnd 0.546 0.973 0.734 

wchd 0.773 0.984 0.773 1.304 

No. of Ohs. 8066 8066 8066 8066 6336 1730 640 5150 2276 

Log-Likelihood at Zero -5929.6 -5929.6 -5929.6 -5929.6 -4677.6 -1251.9 -434.7 -3836.7 -1658.2 

Log-Likelihood at Conv. -3847.3 -2839.4 -2883.4 -2590.5 -1990.7 -566.1 -165.1 -1785.3 -614.8 

Adjusted Likelihood 0.3511 0.5204 0.5134 0.5625 0.5737 0.5452 0.6159 0.5336 0.6274 
Ratio Index 

veh. - number of vehicles available to household. 

Note: Parameter estimates with asterisk (*) sign are insignificant at the 5% level. 
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TABLE 4 Parameter Estimates of Multivariately Defined Market Segment Models 

Parameters 
Sample 

dauto dwalk aivtt tivtl lwait lwalk wdisl ivtc apkcst 

08 1.280 2.508 -0.051 -0.017* -0.244 0.012* -2.666 -0. I 09* -0.308 
09 -0.0 I 9* 2.563 -(l.O 12* 0.003* -0.199 0.036* -2.297 -0.159* -0.951 
010 -0.951 * 0.201* -0.108 -0.098 -0.175 -0.1 15* -2.675 - I .387 -0.282* 
Oil -0.233* 0.415* 0.002* -(l.{)30* -0.189 0.082* -1.527 -1.878 -0.281 
013 1.208 1.254 -0.040 -(l.C)38 -0.168 -0.066* -1.518 ().()39''' .().()73* 

015 -1.978 -1.881* ().()06* -0.039 -0.498 -0.065* -1.587 -0.916 -O.J2(1 

018 -1.092 -0.463* -0.021 -0.039 -0.235 -0.121 -1.739 -0.92(1 -0.089* 

019 2.884 3.862 -0.048 -0.025* -0.163 0.049* -2.139 -0.363* -0.172* 
020 6.333* 5.952* -O.<l97* -<l.000* 0.051 * 0.038* -1. I 71 1.804* -0.216* 
021 -1.069 1.740 -C>.005* -0.057 -(l.{)93 -0.017* -2.376 -0.429 -0.337 

Nole: Parameter estimates with asterisk sign are insignificant al the 5% level. 

stant terms are reestimated while the remaining utility function para
meters are transferred to explore how well these models would have 
performed free of these purely contextual parameters. In another sce
nario, the remaining utility function parameters are rescaled. Rescal
ing is equivalent to reestimating the variances of the distributions of 
the random utility components. The necessary mathematics for this 
can be found elsewhere (7). The intent of the analysis here is to 

investigate whether shifts in constants or scale, or both, are respon
sible for the models not yielding better transfer performance. 

Evaluating transfer assessment measures reported in Table 7 after 
reestimating the modal constants using information from the appli
cation context indicates that this results in considerable improve
ment in model predictive performance. Across models, the log
likelihood values increase significantly compared with their naive 

TABLE 5 Results from Transferring 1964 Models to 1986 Application Context 

I 964 Model Type Nested 
Absolute and Relative Disaggregate Transfer Measures Aggregate Transfer Measures 

Likelihood Ratio 

Market Share 45 
Level of Service (I) 158 
Level of Service (II) 107 
Fully Spc1.:ified 371 
Auto Ownership 347 
Gender Segments 306 
Markel Scg111cn1s ~67 

11 
LLK<> (06~) - LL.,,,6 (c:KC,) 

llX<, (086 ) - ll86 (ex<) 

(LLx1.(964 ) Tl 

-15115 
-11352 0.894 
-I 1378 0.891 
- I 0787 0.759 
-10304 0.787 
-10494 0.789 
-11 J()6 0.132 

Rho(91,4 ) Rho(9xi.l RMSE"4 MAE RATE 

-0.008 0.000 0.35 0.28 1.0 I 
0.243 0.272 0.09 0.06 1.82 
0.241 0.271 0.12 ().()8 2.21 
0.281 o.:no 0. I 8 0.1 () 5.21 
0.259 0.329 0.13 0.07 4.09 
0.280 0.355 0.17 0.09 4.92 
().()24 0.179 0.16 0.10 5.57 

where Tl is lhc TJ<}nsfer lnd~x Com])uted with 1986 context Lo_g-Likclihoocj given by I 986 Markel Share model (cxh) as Base; and 
LLx6(9;) 1s the I %6 context log-liker1hood using parameters 0; tfom year i (1 E 164,8'6}) 

Rho(0;) is the Likelihood Ratio Index computed with LL(c~,.) using model parameters 9; from Year i (i E { 64.86} ). 

mg 

RMSE 

(Niii~ - N,,,)2 

fl 
111g 

mg 

where N01 ~ and Nm~ arc the number of persons observed and predicted to choose alternative m from group g respectively. 

RMSE
64 RATE= 

where RMSE; represents the I 986 context root-mean-square error computed with estimated model parameters from year i (i could be 64 or 86). 
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TABLE 6 Models Yielding Confidence Intervals That Include Observed Mode Use 

Mode 

Destination 
Region Auto Drive Transit Walk 

PDI MC 

R.O.M AO, GEN LOS l,FS, 
AO, GEN 

Durham GEN, MS MC 

York LOS I. LOS II. AO. LOS I, MS, LOS II, 
GEN.MS FS, AO, GEN 

Peel LOS I, LOS IL AO, 

Halton 

Hamilton LOS I. FS. AO. 
LOS II, GEN. MS 

Model Definition 

MC 
LOS I -
LOS II -
FS 

Market Share Model 
Level of Service Model (I) 
Level of Service Model (II) 
Fully Specified Model 

GEN, MS 

MC 

LOS I, LOS II, FS. MC, AO. FS, LOS I, 
AO, GEN, MS GEN, MS 

AO 
GEN 
MS 

Choice Model Conditional on Auto-Ownership 
Choice Model Conditional on Worker Gender 
Multivariately Defined Segment Models 

Destination Region Definition 

Planning District I POI 
R.O.M - Remaining Planning Districts of Metro Toronto Region 

transfer performance, particularly so, for the multivariately defined 
segment models. TI values correspondingly show an increase across 
specification. 

Aggregate error measure values decline for all models and, con
sequently, the RATE values also decline very significantly. As in an 
earlier case, the improvement in aggregate performance is particu
larly pronounced for the multivariately defined segment models. 
This is because far more model parameters are reestimated for this 
model compared with the remaining models. Notwithstanding its 
big improvement, the multivariately defined segments' models 
yield a lower transfer log-likelihood than the gender or conditional 
automobile ownership models. Aggregate error measures are 
smaller though, but this is largely due to the update of several modal 
constant terms. From a practical viewpoint, updating such a model 
compared with the others would require substantially far more data 
and therefore would be unattractive. 

Rescaling the model parameters yields additional significant 
improvement in transfer Jog-likelihood values, and hence TI, with 
the TI values for the simple level-of-service models attaining value 
close to I (Table 7). This would suggest that the scale parameter 
changed between the two temporal contexts presumably in response 
to the significant changes in urban character. The implication of 
these results is that if the constants or scales, or both, can be 
updated, then existing models estimated on richer data sets, col
lected at periods when more resources were available, can be 
employed in forecasting in present-day contexts. This issue is 
addressed in more detail in a paper by Badoe and Miller in this 

Record. TI values after reestimation of the modal constants and util
ity scale parameter do not attain a value of 1 for the better-specified 
models, which suggest that in addition to scale and constants chang
ing from one context to the other, the underlying utility function 
parameters also may have changed. 

Overall, both disaggregate and aggregate transferability mea
sures show fairly similar trends in results. That is, in general as 
specification is improved the absolute and relative disaggregate 
transfer measures show increase, whereas the aggregate error mea
sures show a decline in magnitude. 

SUMMARY AND CONCLUSIONS 

This paper examines the transferability of disaggregate demand 
models for a fixed urban area at two points in time-1964 and 
1986-with major differences in urban conditions. It also examines 
the issue of model specification and transfer effectiveness. Alternate 
model specifications ranging from simple to complex were esti
mated on the 1964 work trip data, which represented the estimation 
context. These models were then naively transferred to the 1986 
application context for forecast purposes. 

Pure statistical tests of model parameters from the two urban con
texts being equal reject the null hypothesis of equality, indicating 
that model parameters have not remained stable over time. Thus, 
from a theoretical viewpoint, long-range transferability is rejected. 
However, from a pragmatic perspective, relative measures of trans-
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TABLE 7 Measures of Transferability after Updating Estimation Context Models 

Transferability Measures after Re-estimation of Constants Transferability Measures after 

1964 Model Type 

Transfer Transfer Root Mean 
Log- Index Square Error 

Likelihood 

(LL8<,(8M) Tl(chr) RMSE 

Market Share -14996 0.35 
Level of Service (I) -11229 0.92 0.06 
Level of Service (II) -11143 0.95 0,07 

Fully Specified -10323 0.84 0.11 
Auto Ownership -10039 0.84 0.09 

Gender -10154 0.85 0.12 
Market Segment -10451 0.57 0.03 

Transfer Index Computed with 1986 Log-Likelihood 
of Market Share model as Base. 

Rho(0.) - Likelihood Ralio Index computed on 1986 Data Using 
Model Parameters of Year i, (i E {64,86}). 

ferability indicate that the transferred models yield useful informa
tion in the application context. TI values show that with the excep
tion of the models of the multivariate segments, transferred models 
provide at least 76 percent of the log-likelihood provided by locally 
estimated 1986 models and, with updating, this percent figure rises 
to 84. RMSE values, which range from 0.09 to 0.18, are comparable 
to values encountered in the literature for short-range and interurban 
transferability. RATE values show that use of naively transferred 
models result in comparatively significant aggregate error, with this 
error increasing with improved specification. Updating the modal 
constant terms significantly reduces this aggregate error. 

Consistent with the findings of other transferability studies, 
model transferability is found to improve with improved model 
specification. However, the best fitting model in the estimation con
text did not give the best predictive performance on transfer to the 
application context. The choice models conditional on household 
automobile ownership level generally give the best model transfer 
performance, especially when disaggregate measures are used to 
evaluate transfer performance. However, simple level-of-service 
specifications appear to be surprisingly robust and performed very 
well at aggregate levels of typical planning interest. Full market 
segmentation specifications in the face of changing contextual fac
tors resulted in poor transferability performance. A possible reason 
for this might be that extensive segmentation resulted in the models 
being so "trained" to the urban conditions of the estimation contexts 
that under the major changes that occurred in urban character, the 
models lost severely in predictive power. 

As indicated earlier, reestimation of the modal constants or util
ity scale translates to significant improvements in model predictive 
performance, suggesting that these parameters may not have 
remained stable over time. Where possible, the evidence presented 
in this work suggests that this subset of parameters (at a minimum 
the modal constants) be reestimated to enhance transferability. 

In sum, the reported results and findings in this work are gener
ally consistent with and support those reported in the literature on 
short-term temporal transferability analysis. 

Re-estimation of Modal 
Constants and Scale 

Parameter 

Mean Relative Transfer Transfer 
Absolute Aggregate Log- Index 

Error Transfer Likelihood 
Error 

MAE RATE (LLxc,(81,4 ) Tl(cxr) 

0.24 1.00 -14996 
O.Q3 1.20 -11042 0.97 
0.04 1.32 -10992 0.99 
0.o7 3.03 -10070 0.89 
0.06 2.71 -9737 0.91 
0.08 3.32 -9894 0.90 
0.01 I. I I -9810 0.88 
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Trip Generation for Shopping Travel 

KWAKU AGYEMANG-0UAH, WILLIAM P. ANDERSON, AND FRED L. HALL 

The effect of the geographic location of households on weekday, home
based shopping trips in the greater Toronto area (GTA) is reported. Five 
zones within the GT A were chosen to reflect different types of location 
and accessibility. An ordered response model, which maintains the ordi
nal nature in trip-making decisions, was used in the analysis. The 
statistical results show that, after controlling for a household's socio
demographic characteristics, a household's location within the metro
politan area has some effect on its weekday, home-based shopping trip 
generation. In particular, households located in the older urban area are 
likely to make fewer trips than those living in the suburbs. 

The relative importance of discretionary travel (defined as all non
work travel for shopping or social or recreational purposes) has 
grown over the years and has also captured the attention of both pol
icy makers and transportation demand modelers. In large metropol
itan areas, the ratio of discretionary trips to mandatory trips (work 
and school) is often greater than 1 (J). In the Transportation Tomor
row Survey (TTS) in the greater Toronto area (GT A) in 1986, 68 
percent of all household trips were for discretionary purposes. The 
National Personal Transportation Survey in the United States indi
cated that the number of discretionary trips grew faster than the 
number of work trips between 1977 and 1988, with discretionary 
trips making up three-fourths of all household trips in 1988 (2). A 
recent study in the regional municipality of Ottawa-Carleton, 
Canada, showed that shopping, leisure, and social trips accounted 
for more than 52 percent of total trips (3). 

Despite their sheer volume, discretionary trips have been treated 
crudely in most operational models. For instance, one way to esti
mate the number of discretionary trips is by applying a constant 
factor to the number of work and school (mandatory) trips. Discre
tionary travel, however, may have different temporal and spatial 
patterns than mandatory travel. Studies on work and school trips 
focus on maximum peak periods because their purpose is primarily 
to aid in facility design. The bulk of discretionary trips, however, 
take place after the morning and evening rush periods when most 
work trips are over (4). Compared with work and school trips, the 
number of discretionary trips may be more sensitive to such factors 
as the cost of travel; accessibility, or the land use pattern, all of 
which tend to vary spatially within a metropolitan area. 

In light of the ongoing shift in the focus of transportation 
planning from plans to build more infrastructure to plans aimed at 
modifying travel behavior, the development of better models of 
discretionary travel should be high on the transportation research 
agenda. The purpose of this paper is to start moving toward 
improved trip generation models for discretionary travel that are 
more responsive to locational factors. 

The rest of the paper is organized as follows. The next section pro
vides the background for the study. It contains a review of the Urban 
Transportation Modeling System (UTMS) methods for trip genera-

Department of Geography, McMaster University, 1280 Main Street West, 
Hamilton, Ontario LSS 4Kl, Canada. 

ti on analysis and of some past studies of the relationship between trip 
frequency and the location of trip makers·. The next sections discuss 
the following: (a) the data and the rationale for selecting the loca
tions used; (b) a brief description of the analytical method used and 
how it addresses the weaknesses identified in the UTMS approaches; 
(c) a discussion of the statistical results; and (d) conclusions. 

STUDY BACKGROUND 

Three things are discussed in this background section: current mod
eling approaches; the nature of explanatory variables currently used 
for discretionary trip generation; and recent studies that directly 
address the relationship between trip generation and location. 

Modeling Approaches 

Regression models and category analysis are the two main methods 
used for trip generation in the UTMS. Regression models treat the 
number of trips generated per household (or individual) as a linear 
function of a set of explanatory variables. Category analysis divides 
households into categories on the basis of a cross classification of 
their characteristics and applies a constant trip generation rate for 
each category. Both methods have a number of shortcomings. 

One problem with the standard regression model is the lack of 
any built-in upper limit to household trips as the values of explana
tory values, such as household size and vehicle ownership, increase. 
There is also the possibility of the regression models predicting neg
ative trips. In an attempt to deal with these problems, the regression 
model is sometimes given a probabilistic interpretation. Greene (5) 
has noted, however, that such a model can predict probabilities 
greater than l or less than 0. 

The difficulty with category analysis is the lack of any effective 
way to choose the best groupings of household characteristics and 
hence the best categories. One way is to minimize the standard devi
ations among the categories. In situations in which there are many 
variables and hence many categories, this involves extensive trial 
and error. Hutchinson (J) describes a study by Vandertol using trip 
data.from Hamilton, Ontario, Canada, that produced wide margins 
of error for households within various categories. The error margins 
range from l 0 percent of the average trip rate for one-worker house
holds to 37 percent for four-worker households. (Although the 
analysis was based on work trip data, it illustrates the problem of 
defining the best categories.) Another drawback of category analy
sis is the lack of inferential statistics. In the absence of such mea
sures, there is no way to assess the statistical significance of the 
explanatory variables in trip generation. 

A problem with both models is that they treat the number of trips 
per household as a continuous dependent variable. One can of 
course make a statistical defense of this, but to develop a behavioral 
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basis for trip generation, the dependent variable must be discrete 
rather than continuous. One possible solution to this problem is to 
use the poisson regression model in place of the linear regression 
model. The poisson regression model has been shown to be appro
priate in applications to count data, especially when the count for 
some observations is small or 0 (6). An alternative solution is to use 
one of the family of discrete choice models, which are based on a 
probabilistic theory of choice among a finite set of options. 

Additionally, there is a definite order to the trip-making decision. 
If a person makes two trips, that person also necessarily makes one 
trip. The ordinal nature of the trip-making decision is not, and can
not be, captured by either of the regression or category approaches 
or by the Poisson regression model. The ordered categorical prop
erty of the outcomes of the trip-making decision makes it impera
tive to look for an alternative approach that can exploit the ordering 
of the information. The ordered response model, a type of discrete 
choice model that maintains the ordinal nature in the dependent 
variable in situations in which there are more than two responses, is 
therefore the best candidate for trip generation analysis. This 
approach is adopted in this study. 

Nature of Explanatory Variables 

The types of explanatory variables that are usually used in regres
sion models and category analysis are either the socioeconomic 
characteristics of households within a zone (for example, income, 
car ownership, family size), or if these are not available, the char
acteristics of the zone itself (for instance, population and employ
ment densities). Although cost of travel, accessibility or locational 
factors have been identified as influencing travel decisions, they are 
generally excluded from operational models. Ortuzar and Willum
sen (7) report that attempts to incorporate accessibility measures 
into UTMS trip generation models have been unsuccessful, noting 
that the accessibility index is either nonsignificant or has the wrong 
sign in regression models. 

A good indication of the range of explanatory variables currently 
in use is found in the extensive compilation of trip generation rates 
by ITE in 1987 (8). For generation of shopping trips from residen
tial neighborhoods, for instance, regression models included in the 
ITE report use household size, the number of vehicles, and the num
ber of dwelling units as explanatory variables. (The report does not 
distinguish between mandatory and discretionary trips so it is 
assumed that the model is applicable to all types of trip.) There is a 
suggestion in the ITE report that location might affect trip genera
tion, but that is not explicitly followed up in the regression result 
tables. ITE noted that 

dwelling units that were larger in size, more expensive, or farther away 
from the central business district had a higher trip generation rate per 
unit than those smaller in size, less expensive, or closer to the CBD. 
However, other factors, such as geographic location and type of adja
cent and nearby development, also had an effect on the trip generation 
rates. (8, p. 256) 

The ITE trip generation rates employ adjustment factors for house
hold size, vehicles owned, and density (dwelling units per acre). 
Although density might be correlated with distance from the cen
tral business district, the regression models used to produce the ITE 
trip generation rates do not take explicit account of location within 
the city. 
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Past Studies 

Very few studies investigate the relationship between observed trip 
frequency and location within the city. Two studies that do are 
reviewed here. The first one is a study carried out in the Canadian 
regional municipality of Ottawa-Carleton (3). The objective of the 
study was to explore the observed relationship between transporta
tion, land use, and the environment. (The review of the IBI study in 
this paper concentrates only on the relationship between trip rates 
and location within the study area.) The study region was divided 
into nine distinct areas according to similarity in land use mix and 
density patterns. The major conclusion is that there are no signifi
cant differences in the total trip (both work and nonwork) genera
tion rate among the nine areas. The mean daily trips per person 
range from 2.57 to 3.11 in the nine areas. 

This conclusion may be questioned on several grounds. For 
example, the dispersion of trip rates within areas may vary more 
than the mean number of trips. Additionally, a different conclusion 
might have been reached if separate analyses were done for manda
tory and discretionary trips because the former is fairly inelastic to 
locational factors whereas the latter may not be. Thus the results do 
not really exclude the possibility of some variation in trip-making 
behavior over space-especially for discretionary trips. 

Friedman et al. (9) examined trip frequency in older neighbor
hoods and the newer suburbs in the San Francisco Bay Area. Using 
1980 travel data, the study revealed that the number of total trips per 
household in the two areas differs significantly: 9 and 11 trips for 
the older neighborhoods and the suburbs, respectively. The study 
failed to address the following two questions: To what extent does 
household size correlate with suburban living? Is the difference in 
trip frequency associated with differences in car ownership in the 
two areas? (This last question is important because the researchers 
reported marked differences in mode split for the two areas: 86 per
cent of trips were by automobile in the suburbs versus 64 percent in 
the older neighborhoods.) For this reason it is impossible to deter
mine whether the results indicate a "pure" locational effect on trip 
generation or simply reflect differences in household characteristics 
over space. 

This review has shown that there are problems with the existing 
approaches to modeling trip generation and that the results of stud
ies on the trip generation-location relationship are inconclusive. The 
analysis that follows constitutes an attempt to address some of the 
methodological problems mentioned above and to provide new 
empirical evidence on the effect of locational factors on discre
tionary trip making. 

DATA 

The data for the analysis were obtained from the Transportation 
Tomorrow Survey conducted between September and December 
1986 by the Joint Program in Transportation Studies, University of 
Toronto, and supported by the Ontario Ministry of Transportation. 
The ITS was a telephone interview survey of a random sample of 
1.5 million households in the GT A, Canada. Completed, usable 
surveys were obtained for 61,453 households. The GT A is an 
expanded metropolitan definition that contains 3 of the 25 census 
metropolitan areas in Canada: Toronto census metropolitan area 
(CMA) and two contiguous CMAs: Oshawa and Hamilton. For the 
purpose of the ITS, the GTA was divided into 46 macrozones. 
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The survey collected data on the sociodemographic characteris
tics and weekday travel patterns of households. Household charac
teristics of interest for this analysis are household size, which is the 
number of persons in the household; the number of household mem
bers who are fully employed outside the home, who are employed 
part time outside the home, who are working at home, and who are 
unemployed; the number of children (under 16 years); the number of 
vehicles and the zone of residence. Unfortunately, the survey does 
not include information on household income or occupation. Census 
data on income for 1986 for each zone are available in.10 categories. 
These data cannot be used for detailed analysis, however, because an 
income level for each household is needed. Data on average zonal 
income, which are also available, were considered too gross and 
therefore unsuitable to use in the analysis. The total number of week
day, home-based shopping trips made by automobile and transit is 
used to calculate household trip generation rates. There were no walk 
(shopping) trips in the data set for the five zones studied. It was 
decided to include only home-based shopping trips in the analysis to 
allow a more direct behavioral interpretation of the results. than 
would be possible with a broader definition of discretionary trips. 

The use of observed trip rates raises the question of latent shop
ping travel demand. This is particularly so when the data used in the 
analysis were collected for one weekday, despite the fact that many 
shopping trips take place at the weekend. The unavailability of 
weekend shopping trip data, however, is less of a problem given that 
the goal of this study is to search for improved trip generation mod
els rather than to predict the total number of shopping trips. 

The use of weekday, home-based shopping trips raises the ques
tion of whether these trips constitute a major proportion of total 
shopping trips. TTS Report 5 provides a table of total (weekdays) 
shopping trips from each zone. As indicated in Table 1, home
based shopping trips are a relatively constant fraction of the total 
number of weekday shopping trips. Home-based shopping trips as 
a percentage of total shopping trips vary from 59 to 66 percent in 
the five zones, confirming the importance of home-based trips and 
the need to study them. One should note, however, that shopping 
trips are defined in the TTS report as all trips that have their desti
nation purpose as shop. It is not clear whether this definition 
includes trip chains. 

The principal hypothesis of this study is that geographic location 
is an important factor in determining trip generation rates. One sim
ple reason is that location affects people's accessibility, defined as 
the ease of travel between one point and a set of other points. Ide
ally, household accessibility measures would have been included in 
the analysis. However, the data for calculating the accessibility 
indexes were not readily available. The location of each household 
in one ~of five zones within the urban area is therefore used as a 
proxy for accessibility-although it may also reflect other spatially 
variant factors such as "lifestyle" differences. Five zones were cho
sen to reflect different types of location and accessibility (Figure 1 ). 

TABLE 1 Comparison of Weekday Home-Based 
and Total Shopping Trips per Household 

Zone 
1 
2 
3 
4 
5 

Home-based 
0.18 
0.16 
0.31 
0.31 
0.35 

Total 
0.30 
0.27 
0.47 
0.49 
0.57 

*percentage of weekday home-based shopping trips lo 
total nwnber of shopping trips reported. 

%* 
60 
59 
66 
63 
61 
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Two zones (1 and 2) are within the older urban area and are well 
served with public transportation, including buses, trolleys,. and 
subways. A third zone is in the inner postwar suburbs, and it is also 
well served by the transit system. Zones 4 and 5 represent locations 
that are recently developed suburbs superimposed on older towns. 
Each of the last three zones has good expressway access. Zones 4 
and 5 have, in addition, a network of rural roads but relatively poor 
public transportation service. The total number of households inter
viewed in the TTS in the five planning zones were 10,867. Table 2 
gives a profile of the five zones. 

ORDERED RESPONSE MODEL 

The model presented in this section is similar in structure to the pro
bit model developed by McKelvey and Zavoina (JO) for the analy
sis of Congressional voting on the 1965 Medicare Bill and by Bhat 
and Koppelman (11) for modeling household income and employ
ment, but with a different set of assumptions. The ordered response 
model is an extension of the better-known binomial and multino
mial logit models. The binomial logit model is used to predict the 
probability that a categorical variable will take on one of two pos
sible values. In this case it does not matter whether the variable is 
measured on an ordinal or a nominal scale. The multinomial logit 
model predicts probabilities for three or more values that a categor
ical variable can take on. In this case, it is assumed that the variable 
is measured on a nominal scale. (A common application is the 
choice among three or more travel modes.) The ordered response 
model is appropriate when the categorical variable takes on three or 
more possible values that are subject to some logical ordering. For 
example, the categorical variable may be successive levels of edu
cational attainment, ratings from an opinion survey, or employment 
status (unemployed, part-time employed, and full-time employed.) 
The number of trips generated from a household is clearly such an 
ordinally scaled categorical variable. 

The ordered response model is based on the definition of an 
abstract score for each household, which can be interpreted in this 
application as the utility derived by a household from making shop
ping trips. 

U,, = V,, +En (1) 

where 

Un = "total" utility that household n derives from making trips, 
V,, = systematic or "observed" utility, and 
En = random component. 

The V11 is defined as a linear function of attributes of the household: 

(2) 

where 13 and X11 are, respectively, a vector of parameters and a vector 
of household attributes used as independent variables. (A more gen
eral specification would include attributes of the choice alternatives 
in X; however, no such attributes were employed in this analysis.) 
The random component is the part of the utility that is unknown to 
the researcher. It reflects the idiosyncrasies and tastes that vary ran
domly for each household together with the effect of omitted vari
ables or measurement errors (12). The ordered response model 
assumes "local" instead of "global" utility maximization. Local util
ity maximization implies a choice situation in which each binary 
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FIGURE 1 Five macrozones in GTA. 

decision consists of whether to accept the current value or "take one 
more" (J 3). The decision maker stops when the first local optimum 
is reached. Global utility maximization occurs when all alternatives 
in the choice set are simultaneously considered. The ordered 
response model was chosen over the ordered generalized extreme 
value model of Small (14), which maximizes global utility because 
of its simple mathematical structure, which makes it more conve
nient for applied analysis. 

The model also defines a set of "cut points" associated with each 
of the possible outcomes. For example, suppose a household can 
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make 0, 1, 2, ... , J trips, where J is a maximum defined through 
inspection of the data. Define a cut point A. 1 such that household n 
will make zero trips if U,, is less than A" or in probabilistic terms 

P,,0 = Pr(r3X,, + E,, ::::; A1) (3a) 

where P110 is the probability that household n makes zero trips. 
The probability that the household makes one trip is now defined 
as the probability that U11 is greater than A. 1 but less than a second 
cut point A2: 



16 TRANSPORTATION RESEARCH RECORD 1493 

TABLE 2 Profile of Five Zones 

Indicators Zone 1 Zone2 Zone3 Zone4 Zone5 

No. of hid* 3210 3723 930 2410 594 
Children** 0.46 0.30 0.66 0.79 0.74 
Avg. hid size 2.70 2.13 3.22 3.17 3.06 
Vehicle/hld l.11 1.05 1.60 1.76 1.86 
Avg. trie*** 0.18 0.16 0.31 0.31 0.35 

* total number of households interviewed 
**average number of household members who were under 16 years 
*** average number of home-based shopping trips per weekday 
h1d =household 

(3b) 

or, more generally, 

P11j = Pr(A.j < j3X11 + E11 :5 Aj+I) for j = 1, ... , J - 1 (3c) 

and 

(3d) 

Because it is not possible to observe the values of the random 
components E,,, the empirical model is derived by making an 
assumption about their distribution. The random components are 
assumed logistically distributed: 

F(En) = 11[1 + exp(-µEn)] (4) 

whereµ is a positive scale parameter that is unobservable; therefore 
it is assumed thatµ = I. Given these assumptions, an explicit form 
for Equation 3a can be written: 

P11o = 11[1 + exp(j3X11 - A. 1)] (5a) 

P111 = 11[1 + exp(j3X" - A.2)] - 11[1 + exp(j3X11 - A. 1)] (5b) 

P11j = 11[1 + exp(j3X11 - Aj+ 1)] - 11[1 + exp(j3X,; - A.)] 
for j = 2, 3, ... , J - 1 (5c) 

P 11j = I - 11[1 + exp(j3X11 - A.1)] (5d) 

Estimates of 13 and A. 1 ••• A.1 may be obtained using the maximum· 
likelihood method based on a set of observations (households) 
making 0, 1, ... , or J trips for which the attribute data in X 11 are 
available. An application of the ordered response model in travel 
choice situation was the analysis of trip generation behavior· of 774 
elderly persons in the Washington, D.C., metropolitan area (15). 

The ordered response model has the following advantages over 
the standard regression model of trip generation. First, the property 
that choice probabilities are necessarily between 0 and 1 means that 
in prediction mode, the model cannot forecast negative or infinite 
trips. The second advantage is that the model predicts the whole dis
tribution of the response levels unlike the standard regression 
approach, which will at best predict the mean of the dependent vari
able. These advantages of the ordered response model are in addi
tion to what was stated earlier: that the model offers a way to exploit 
the ordering of information. 

STATISTICAL ANALYSIS 

The discussion of statistical analysis covers three main areas. First, 
a brief discussion of the variables used in the estimation of the 
model is presented. This is followed by a comparative analysis of 
alternative utility specification functions. Finally, the estimated 
results are discussed including tests of the estimated parameters and 
a comparative analysis to assess the overall fit of the model and to 
demonstrate the extent of zonal variation in trip-making behavior 
indicated by the model. 

Variables Used 

The total number of home-based shopping trips over a 24-hr period 
made by all persons in the household is used in the definition of 
observed probabilities. ("Trip" as used in the paper is defined as a 
one-way movement between two places.) If a household is observed 
to make two trips, the observed probability of making two trips is 
defined as 1 and the probability of making any other number of trips 
is defined as 0. 

The explanatory variables may be put into two groups: household 
characteristics and zonal dummy variables. The household charac
teristics include household size, number of vehicles owned by the 
household, number of children, and employment status of house
hold members. The household size is expected to be positively 
correlated with the number of trips because it should influence the 
level of demand for goods or services, or both. The presence of 
children in the family may have a dual influence on travel. On the 
one hand, it may lead to some restrictions on the time available for 
shopping. Alternatively, it may be regarded as a scale factor lead
ing to increased shopping trips. (The inclusion of household size 
controls for this scale effect to some extent so that one might expect 
the number of children to have a negative effect.) Vehicle owner
ship dramatically improves mobility; hence one might expect more 
trips in a household with more cars. 

The four categories of employment status-full time, part time, 
working at home, and unemployed-may exert different time bud
get constraints on shopping trips. Full-time and, to some extent, 
part-time work is expected to have a negative impact on weekday 
home-based shopping trips. There is no expectation of the nature of 
effects of working at home on shopping. Two opposing effects of 
unemployment may be hypothesized. One effect is that the un
employed person has more time and therefore can make more 
shopping trips. The other hypothesis is that because a person is un
employed, he or she does not have enough money for shopping. 
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The four zonal dummy variables were introduced into the ordered 
response model in both additive and interactive manner. Implicit in 
the use of additive dummy variables is the assumption that zonal 
effects are independent of the effect of any household characteris
tic. It is possible that, for example, household size will have a . 
different impact on trip generation in one zone as opposed to 
another. To test this hypothesis, the zonal dummies were interacted 
with household size in the model. 

Specification and Comparison of Two Utility Functions 

Two utility functions were specified, leading to two types of model. 
In Model 1, the effects of household size, number of children, and 
number of vehicles are specified as dummy variables. The utility 
function in Model 2 is a restricted form of Model 1 in which these 
same variables were entered in generic form. ("Generic form" 
means that the explanatory factors are treated as continuous vari
ables. Because of the computational difficulties of including large 
numbers of dummy variables, the employment variables are entered 
in generic form for both models.) The two models were estimated 
in STATA Version 3.0, which uses a Newton-Raphson algorithm. 
There was some difficulty in estimating Model 1 because of the 
small number of observations for households of a size greater than 
six, with five or more children, with more than four vehicles or 
households making five or more trips. These households were 
dropped from the data set. The omitted observations constitute only 
1.5 percent of the whole data set, leaving 10,701 observations for 
the estimation of the models. 

Using a backward stepwise procedure, all the interactive terms 
were dropped from both models at a significance level of 0.15, 
which leads to the conclusion that the dummy variables for the 
zones have an additive, independent effect on trip generation. The 
variable working at home was also eliminated from the utility func
tions as a result of a problem of collinearity with full- and part-time 
employment. The remaining variables were used to estimate the two 
models for comparison. 

A likelihood ratio test was performed to test the hypothesis that 
the two models are equal. The test statistic used is -2(£-i - L,) 
which is distributed chi-square. L, and Li are, respectively, log like
lihood values for Model Types 1 and 2. A chi-square value of 32.97 
with 10 degrees of freedom was found, which is significant at 0.01, 
indicating that the two models are unequal. Models 1 and 2 have 
pseudo R2 values of 0.0463 and 0.0435, accordingly. (Pseudo R2 for 
each model is defined as 1 - L(J3)1L(c), where L(J3) and L(c) corre
spond to the log likelihood of a model with all parameters and with 
only constants, respectively). Model 1 was chosen for further analy
sis because it had a higher log likelihood value, as evidenced in both 
the pseudo R2 and the likelihood ratio test. 

Estimated Results 

There were two runs of Model 1. The first run had all the household 
size, number of children, and vehicle dummy variables. (Household 
size variable has a minimum value of 1 and a maximum of 6 and the 
number of children and vehicles in each ranges from 0 to 4.) Pair
wise significance tests were separately performed for the estimated 
coefficients of household size and number of children and vehicle 
dummies. The results showed that the coefficients of all the number 
of vehicle dummy variables are significantly different from each 
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other. However, household-size dummy. variables specific to 4 
through 6 and the coefficients for children dummy variables specific 
to 2 through 4 are not significantly different. Dummy variables 
specific to household size 4 through 6 and number of children 2 
through 4 were therefore constrained to be equal, and the model was 
run again. 

The estimated parameters, together with their standard errors and 
z-values (used rather than t-values because of the large sample size) 
for the second run are presented in Table 3. The estimated model is 
highly significant: a likelihood ratio test of the model against the 
hypothesis that all the coefficients except the cut points are 0 gives 
a chi-square value of 556 with 16 degrees of freedom. 

As one would expect, the dummy variables for household sizes 
and number of vehicles are significant. The magnitude of the co
efficients of these dummies increases with increasing household 
size and number of vehicles but at a decreasing rate. The implica
tion is that household sizes and number of vehicles have nonlinear 
effects on discretionary trip generation. 

Two of the three categories of employment status are negatively 
weighted. Full- and part-time employment is significant, which may 
be symptomatic of time budget constraints on weekday, home
based shopping trips. The relatively high negative coefficient of 
full-time employment is indicative of the severe limitations that this 
variable has on home-based, weekday shopping trips. The effect of 
unemployment is not statistically significant at 0.1. 

The estimated parameters for the two dummy variables for chil
dren are negative and are significant. In interpreting the negative 
coefficients for the children dummies, one should not lose sight of 
the fact that the data were collected on the weekdays between 
September and December when children of school age were at 
school. Child care responsibilities might have had some time budget 
effects on trip making. 

Zonal dummies specific to Zones 3, 4, and 5 are positive and sig
nificant, implying that these locations have an effect on trip making 
relative to the Base Zone 1. The coefficient of the dummy variable 
for Zone 2 is negative and not statistically significant. (The corre
sponding value for Zone 1 is 0 by construction.) Pairwise signifi
cance tests based on a quadratic approximation to the likelihood 
function were performed to determine whether the coefficients of 
these zonal dummy variables are equal. The test results indicate that 
the differences between the dummy variables for zone pairs 3-4, 
3-5, and 4-5 are not significantly different from 0. The test, how
ever, rejects the equality constraint imposed on Zone Pairs 2-3, 
2-4, and 2-5. The implication is that Zones 3 through 5 show trip
making propensities distinctly different from those of Zones 1 and 
2. There is the possibility that the difference in shopping trip fre
quency among the zones may be partially because of unobserved 
income effects. The 1986 average household incomes for Zones 1 
and 2 are, respectively, Canadian $32,000 and $39,000. On the 
other hand, each of Zones 3 through 5 has a comparatively higher 
average household income of approximately Canadian $45,000 
(16). However, it is not possible to draw any conclusions about the 
effect of income on shopping trip frequency in the absence of 
adequate, reliable data. 

Assessment of Prediction Ability 

The following exercise is conducted to illustrate the ability of the 
model to predict aggregate trip-making propensities and also to 
illustrate the contribution of the zonal dummy variables to the pre-
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TABLE 3 Ordered Response Model Estimates 

Variable name Coefficient Standard error z-values 

Cut point specific to 
trips= l(A.,) 2.429 0.119 20.412 
trips=2{A..J 3.873 0.125 30.984 
trips=3(A.J 5.690 0.160 35.563 
trips=4(A.J 7.135 0.252 28.310 

Household size (HHS) dummy variables specific to: 
HHS=2 
HHS=3 
HHS=4 

Household members: 
fully employed 
working part-time 
unemployed 

Children (CHO) dummy variables specific to: 
CHD=l 
CHD=2 

Vehicles (VEH) dummy variables specific to: 
VEH=l 
VEH=2 
VEH=3 
VEH=4 

Zone (ZN) dummy variables specific to: 
ZN=2 
ZN=3 
ZN=4 
ZN=5 

Summary statistics 

Number of observations 
Chi-square 
Degree of freedom 
Prob > chi-square 
Log likelihood (c) 
Log likelihood (P) 
Pseudo R1 

z-values = coefficient I standard error 

0.578 
0.921 
1.174 

-0.567 
-0.234 
0.085 

-0.354 
-0.533 

0.587 
0.885 
1.170 
1.524 

-0.019 
0.457 
0.446 
0.562 

10701 
556.3 
16 
0.0000 

-6033.79 
-5155.64 
0.0461 

0.108 5.351 
0.163 5.661 
0.236 4.975 

0.700 -8.095 
0.084 -2.796 
0.064 1.319* 

0.091 -3.879 
0.112 -4.749 

0.960 6.114 
0.108 8.184 
0.143 8.192 
0.214 7.126 

0.074 -0.259* 
0.099 4.614 
0.077 5.768 
0.112 5.010 

All variables except those marked by asterisk(*) are significant at 0.01 
Trips=O, HHS=l, CHD=O, VEH=O and ZN=l were normalised to zero 

dictive ability of the model. Define Akj as the aggregate probability 
that households in Zone k generate j trips, calculated as a relative 
frequency: 

where . 

P11 j = probability that household n makes j trips, 
Zk = set of all observations in Zone k, and 
Nk = number of observations in Zone k. 

Akj is calculated fork= 1, 2, 3, 4, 5 andj = 0, 1, 2, 3, 4. This cal
culation is done first on the observed number of trips for households 
in the data and then on the fitted trip-making probabilities for the 

same households on the basis of the estimated model. For the pur
pose of comparison, these observed and predicted probabilities are 
presented in columns 2 and 3 of Table 4. The results suggest that 
the model should perform well for the purpose of estimating aggre
gate trip generation from zones. 

To assess the contribution of the zonal dummy variables to the 
accuracy of prediction, the model was reestimated with the zonal 
dummies omitted from the specification. Aggregate probabilities 
calculated on the basis of this model are presented in the fourth 
column of Table 4. There is some zonal variation in these fitted 
probabilities, which occurs because of differences in household 
characteristics in various parts of the metropolitan area. However, 
these probabilities do not correspond to the observed probabilities 
nearly as well as those calculated from the original model. This indi
cates that, even after controlling for spatial variations in household 
characteristics, there are differences in trip-making behavior at 
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TABLE 4 Observed and Fitted Aggregate Probabilities 

Zone 1 

Trips Observed Model with zonal Model without zonal 
dwrun;[ variables dwrun;[ variables 

0 0.8677 0.8672 0.8470 
1 0.0938 0.0967 0.1100 
2 0.0319 0.0300 0.0355 
3 0.0054 0.0047 0.0056 
4 0.0013 0.0014 0.0017 

Zone 2 

0 0.8726 0.8733 0.8529 
0.1001 0.0924 0.1060 

2 0.0246 0.0285 0.0342 
3 0.0022 0.0044 0.0054 
4 0.0005 0.0014 0.0017 

Zone 3 

0 0.7854 0.7838 0.8206 
1 0.1427 0.1525 0.1281 
2 0.0619 0.0526 0.0424 
3 0.0077 0.0085 0.0068 
4 0.0022 0.0026 0.0021 

Zone4 

0 0.7886 0.7866 0.8185 
1 0.1441 0.1511 0.1297 
2 0.0532 0.0515 0.0428 
3 0.0106 0.0083 0.0068 
4 0.0034 0.0026 0.0021 

Zone 5 

0 0.7435 0.7452 0.8003 
I 0.1842 0.1771 0.1418 
2 0.0534 0.0639 0.0479 
3 0.0120 0.0104 0.0077 
4 0.0069 0.0033 0.0024 

Columns may not add to one due to rounding error. 

different locations. These differences may be because of differences 
in accessibility or other spatially variant factors. 

CONCLUSIONS 

The objective of this paper was to investigate the effects of location 
on discretionary household trip generation. Data on weekday, 
home-based shopping trips, socioeconomic characteristics, and loca
tion of households in five widely spaced zones in the GT A were 
obtained from the TTS. Weekday, home-based shopping trips 
constitute 59 percent or more of total shopping trips in each zone. 
An ordered response model was used to analyze the data. House
hold size, number of vehicles and children, employment status and 
location of households were included as explanatory variables in 
the analysis. 

The results of the analysis, in terms of the likelihood ratio test of 
all the explanatory variables, suggest that the estimated model is 
significant. The z-scores indicate that full- and part-time employ
ment and the dummy variables for household sizes, number of 
children, number of vehicles, and for Zones 3 through 5 produce 

significant effects on weekday, home-based shopping travel behav
ior. The significance of the positive coefficients of dummy variables 
for Zones 3 through 5 suggest that suburban living is positively cor
related with weekday, home-based shopping trips. A comparison of 
observed and fitted values of aggregate probabilities of making 
0, 1,2,3, and 4 trips for households in all five zones indicates that the 
model has good predictive ability and that the inclusion of zonal 
dummy variables contributes significantly to that ability. 

Two implications can be identified from this analysis. First, the 
ordered response model provides a viable methodology for trip gen
eration. The trip-making decision should no longer be treated as a 
continuous variable or as a dichotomous response but as a multiple 
response with a natural order. The other implication is that trip
making behavior appears to be sensitive to location within the met
ropolitan area, even after controlling for spatial variations in 
observed household characteristics. 

There is a need for further refinements in the application of the 
ordered response model to discretionary trip generation. The most 
important is probably the use of accessibility measures in place of 
spatial dummy variables. Accessibility indexes, which take account 
of travel costs in time, money, and human effort and of the spatial 
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distribution of opportunities offer transportation planners a more 
direct way to measure the effect of location on trip-making behavior. 
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Alternative Methods To Iterate a 
Regional Travel Simulation Model: 
Computational Practicality and Accuracy 

W. THOMAS WALKER AND HAIOU PENG 

The results of full-scale testing of the available methods for imple
menting an iterative travel simulation process are presented. These 
methods include simple iteration of the simulation model chain, weight
ing iterative model outputs by the method of successive averages, and 
the Evans equilibrium algorithm. Simulated travel demands for each 
version of the model are compared with regional highway performance 
monitoring system data, 1990 highway traffic counts summarized by 
screenline, and public transit ridership data. These accuracy checks, in 
concert with estimates of the computational effort needed to execute 
each model variation, provide a useful insight into the costs and bene
fits associated with implementing an iterative travel simulation model. 
These comparisons also give guidance with respect to the relative 
efficacy of each iterative approach. 

The Clean Air Act Amendments of 1990 and Intermodal Surface 
Transportation Efficiency Act of 1991 have significantly expanded 
the role of travel simulation models in evaluating the efficacy of 
proposed transportation improvements and in projecting the impact 
of these improvements on progress toward achieving mandated air 
quality standards~ To adequately fulfill this expanded role in deter
mining conformity, the federal legislation also requires that exist
ing travel simulation models be validated with ground counts and 
upgraded to reflect an acceptable level of modeling practice. Per
haps the most significant of these requirements involves starting the 
simulation process with observed free-flow speeds and then iterat
ing the entire simulation until a "reasonable agreement" is achieved 
between the travel speeds assumed for trip distribution and modal 
split and the resulting restrained speeds output by the highway 
assignment model. 

The purpose of this paper is to conduct a full-scale exploration of 
the available methods for implementing this required iterative sim
ulation process using the existing regional travel simulation model 
for the Delaware Valley Region as a test system. Socioeconomic 
data based on the 1990 Census, together with highway and public 
transit networks that reflect the facilities open to traffic in 1990, are 
used as inputs to Delaware Valley Regional Planning Commis
sion's (DVRPC) existing simulation and selected iterative recon
figurations of this model. Simulated travel demands are then com
pared with regional highway performance monitoring system data, 
1990 highway traffic counts summarized by screenline, and public 
transit ridership data. These accuracy checks, in concert with the 
relative computational effort needed to execute the model, provide 
a useful insight into the costs and benefits associated with adopting 
an iterative travel simulation model. These accuracy comparisons 
also provide guidance with respect to the efficacy of alterative iter-

Delaware Valley Regional Planning Commission, Bourse Building, 111 
South Independence Mall East, Philadelphia, Pa. 19106-2515. 

ative approaches. This analysis is limited to accuracy comparisons 
that are based on the existing noniterative calibrations of the travel 
demand models-the starting point for most state and regional 
attempts to implement an iterative simulation procedure. The results 
for all iterative approaches analyzed might be improved by recali
brating the models to better replicate actual travel data within an 
iterative formulation. 

METHODS FOR ITERATING TRAVEL 
SIMULATION MODEL 

The methods that have been proposed to iterate the travel simula
tion model to some degree parallel the evolution of the highway 
assignment from simple iteration to weighted average to equilib
rium, although discussions of iterative methods to date have 
focused on model convergence properties rather than model accu
racy in a calibration sense. Levinson and Kumar (1) opened the cur
rent round of discussion by proposing that the modeling chain be 
simply iterated, starting with free-flow speeds, until· a reasonable 
degree of convergence is obtained between the times used as input 
to the gravity and modal split models, and the congested times 
resulting from the subsequent highway assignment. The assignment 
results from the last iteration of this process form the basis for plan 
evaluation, conformity determination, and so on. Failure to iterate 
was found to overestimate congestion levels resulting from long
range socioeconomic and land use forecasts. 

Although the convergence of travel times is monitored in the 
simple iteration method, it is not clear whether the simulated link 
volumes converge to a stable solution. For this reason Putman 
(2, 3), in work done in association with the Southern California 
Council of Governments, weighted together the highway link vol
umes from each simple iteration of the model chain using the 
method of successive averages (MSA). This successive weighting 
technique, proposed by Sheffi ( 4), uses a fixed weighting sequence, 
where the weight given to the link volume difference between the 
current iteration (n) and the weighted average resulting from the 
previous iterations is ll(n + l ). The link volumes resulting from this 
method are easily shown to converge for any pattern of highway 
assignments. As the overwhelming proportion of the overall weight 
is given to the first few iterations, this method is often started with 
congested rather than free-flow speeds. This algorithm is usually run 
for a fixed number of iterations because the degree of convergence 
is directly determined by the progression of the weighting sequence. 

The so-called Evans algorithm also uses a successive averaging 
technique to weight together the results of subsequent iterations of the 
modeling chain. However, instead of using 1/(n + 1) as the weight-
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ing sequence, weights are calculated by a gradient search within a 
Frank-Wolf decomposition. This weighting takes the following form: 

and 

where P;jm and v0 represent the results of successive weighted aver
ages over the previous iteration estimates of trips between zones i 
and j by mode m and travel over link a, respectively. Qij111 and Wa 

represent corresponding results for the current iteration run of the 
simulation models. 

This method is related to the well-known equilibrium assignment 
method; however, the Evans algorithm incorporates the results of 
the entire simulation process from trip distribution to transit and 
highway assignment within the gradient search. The method is 
known to converge rapidly. It requires that only one iteration of 
highway assignment be conducted between successive runs of the 
simulation model chain. These two factors result in large potential 
savings in computation vis-a-vis simple iteration of the traditional 
modeling chain. This algorithm is based on work done by Evans as 
part of her Ph.D. dissertation in the early 1970s (5). Recently, Boyce 
et al. suggested using this method to satisfy the federal iterative 
modeling requirements (6, 7). 

Convergence criteria can be rigorously defined for this algorithm 
using the difference at a given iteration between the numerical value 
associated with the primal and dual of the underlying nonlinear 
impedance minimization problem (primal and dual are equal at 
convergence). Because these criteria are difficult to calculate, a 
convergence criterion similar to the one applied in most implemen
tations of the equilibrium assignment is used. After weighting the 
current iteration trip interchanges and link volumes together with 
the composite results from previous iterations, the new capacity 
restrained link times together with transit travel times, fares, and 
parking charges are used to project system total impedance (S 1). 
This value is then compared with the total impedance resulting from 
the next iteration of the simulation models (S2). The difference 
(error) between these two estimates expressed as a fraction of 
current impedance (S2) is taken as a measure of convergence. This 
assumes that the impact of reiterating the travel simulation becomes 
progressively smaller as convergence nears. This definition of 
convergence has proved to be adequate in practice. 

ITERATIVE FORMULATION 

The existing DVRPC travel simulation model is a classic implemen
tation of the four-step process. All aspects of the model produce esti
mates of daily travel. Trip generation is based on constant trip rates 
imbedded in a cross-classification structure. The trip distribution, 
modal split, and highway assignment models are based on average 
daily highway travel speeds. Bus speeds are taken from the existing 
a.m. peak transit operating schedule and held constant throughout the 
simulation. Trip distribution uses a doubly constrained gravity 
model, stratified into three-person (home-based work, home-based 
nonwork, and non-home-based) and four~vehicle trip purposes. The 
person-trip gravity models utilize a combined highway/transit net
work interzonal impedance measure based on a relative highway/ 
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transit service level bias adjustment (8). Modal split utilizes a binary 
probit-like formulation stratified by trip purpose, transit submode, 
and automobile ownership. The highway assignment is based on the 
equilibrium method using minimum travel time paths. Initial high
way speeds are input through a table lookup stratified by functional 
class and density of development (area type). The transit assignment 
is unrestrained. It uses minimum paths that are based on the modal 
split model definition of impedance. 

The _DVRPC model is among the largest in existence, covering 
a densely developed area of about 10 400 km2 

( 4,000 mi2
) that is 

subdivided into 1,449 traffic zones. The highway network contains 
about 34,000 one-way links, and the transit network contains about 
360 routes, including commuter rail, rapid transit, light rail, and 
bus facilities. Overall, the model has been stable over time, achiev
ing validation with counts for 1960, 1970, 1980, and 1990 with 
minimal structural or parameter changes. A more detailed descrip
tion of this model is given in Walker (9). The DVRPC model 
was originally developed on a mainframe using the PLANP AC/ 
UTPS packages but recently has been converted to a microcomputer 
environment using TRANPLAN. All sensitivity tests reported 
in this paper were done using the TRANPLAN microcomputer 
system. 

Incorporating Actual Highway Speeds 
into Simulation Model 

The DVRPC model has a fundamental problem that prevents it from 
being used directly in an iterative framework. Input highway speeds 
are unrealistically low, particularly on freeways. Furthermore, the 
output speeds from the assignment (via the BPR restraining curve) 
are even more unrealistic, perhaps half the true average daily high
way operating speeds. This is common in simulation models devel
oped during the 1970s. Although these speeds cannot be used for 
emissions calculations, they generally improve the accuracy of the 
highway assignment, which responds favorably to a bias against 
freeways and severe capacity restraint. A postprocessor methodol
ogy is used to reestimate highway operating speeds on the basis of 
assigned volumes before it estimates emissions. 

The most straightforward way to correct this problem is to insert 
"actual" congested speeds into the highway network through a 
revised speed lookup table. However, this substitution increased the 
simulation error to an unacceptable level. Clearly, a more sophisti
cated method is needed to incorporate actual operating speeds into 
the travel simulation model. It was always obvious that some of the 
values in the original highway speed lookup table were not real 
speeds but rather a crude form of impedance. The phenomenon 
being addressed was that drivers consider distance (or operating 
cost) as well as travel time when choosing routes. Freeways move 
faster than arterials, but there is a limit to the route circuity that 
drivers will accept to achieve a savings in travel time. 

The modal split model already had a highway impedance measure 
that considered both highway time and operating cost. A theoretically 
appealing way to incorporate actual congested speeds is to extend this 
impedance measure to the gravity model and highway assignment as 
well. The entire simulation model would then be based on a uniform 
definition of impedance. This impedance definition is similar to the 
one found in most disutility-based modal split models: 
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where 

Z =impedance for given travel mode; 
ET= excess or out-of-vehicle time (i.e., terminal time for 

highway, sum of walk and wait time for transit; 
transit impedance also includes a supplemental trans
fer penalty); 

RT= running or in-vehicle time; 
C = monetary cost (i.e., fare for transit; out-of-pocket 

operating cost plus tolls and parking for highway); 
and 

k1, k2, k3 = calibration constants. 

To test this approach, highway trees were built using the modal 
split impedance definition with actual congested times in the lookup 
table. The resulting impedance skims were found to be perfectly 
collinear with the minimum time skims from the original speed 
lookup table. Only a simple-scale factor was required to make these 
impedance skims usable with the original gravity model friction 
factor curves and terminal and intrazonal times, and so on. Highway 
assignment path building also was based on this impedance defini
tion. However, the capacity restraint calculation was limited to the 
travel time portion of the impedance. To improve the highway 
travel speeds produced by the model, the exponent of the Bureau of 
Public Roads (BPR) restraint curve was reduced from 4.0 to 3.0. 

The accuracy of the resulting assignment was checked on the 
basis of 1990 traffic counts summarized through a series of 
14 screenlines. These screenlines form the basis for FHWA model 
validation within the DVRPC region. Included are circumferential 
central business district and intermediate suburban cordon lines, all 
crossings of the Schuylkill and Delaware rivers, and a series of 
radial cutlines. 

The use of a highway impedance model increased the total volume 
error for all screenline counts from 2.2 percent for the original model 
to 3.8 percent. The number of screenlines with volume errors greater 
than 10 percent increased from two, with the worst screenline having 
12 percent error, to four, with the worst being 13 percent. The R2 

between predicted and actual traffic volumes for all screenline cross
ings 'was reduced from 0.89 to 0.85 by the highway impedance 
model. The simulated highway speeds produced by the impedance
based model, although almost 10 percent low on average, were 
judged to be sufficiently accurate to test iterative simulation methods. 

Implementing Simple Iteration and MSA Approaches 

The simple and MSA methods of iterating the travel simulation 
model are straightforward to incorporate into an existing travel 
simulation model. The simple iterative method requires only that a 
feedback loop be inserted into the model that inputs the highway 
link speeds output from highway assignment of the current iteration 
into the network before rebuilding and reskimming the minimum 
impedance paths, so that trip distribution and modal split model 
runs of the next iteration step will be based on the current iteration's 
congested link travel times. Most, if not all, travel simulation model 
software packages incorporate link travel times. Most, if not all, 
travel simulation model software packages incorporate provisions 
for this feedback loop. The estimates of link volumes produced by 
the simple iterative approach are taken directly from the highway 
and transit assignments of the last iteration that is executed. 

23 

The MSA approach builds on these simple simulation model iter
ations by combining the link volumes of each simple iteration into 
a composite volume, using the weighting scheme outlined earlier. 
This composite link volume is calculated by a postprocessor com
puter program that processes the output of each successive model 
iteration. The MSA software used in this analysis w~s prepared by 
the Urban Analysis Group as part of the TRANPLAN package. 

Implementing Evans Algorithm 

The Evans algorithm is not difficult to implement in a four-step 
travel simulation model that includes a highway assignment model 
based on the equilibrium method, although some extension of the 
modal split and highway assignment models, as well as the associ
ated computer code is required (Figure 1). Evans reexecutes the 
gravity and modal split models after each iteration of highway 
assignment. Therefore, a restart procedure must be available in the 
highway assignment program to access the weighted average high
way link volumes from the previous iteration, load the network for 
the current iteration, calculate the weight for the current iteration 
(A.), and prepare a convex combination of the link volumes for the 
current iteration and previous weighted average. This is not a fun
damental departure from the way things are normally done in the 
equilibrium assignment, and the restart option already exists in 
TRANPLAN and perhaps other packages. 

The second required extension is to include the impedance impli
cations of the highway and transit trip tables into the gradient 
calculation that is used to determine A.. This requires an estimate of 
transit impedance and off-network highway impedance (terminal 
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FIGURE 1 Evans implementation using DVRPC's regional 
simulation model. 
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times and parking charges) for the trip tables of the current iteration 
and the weighted average of the previous iterations. Transit imped
ance is assumed to be independent of the highway link restraining 
process and is calculated as the sum of the products of interzonal 
transit impedances and transit· volumes. It may be theoretically 
desirable to also include the effect of highway congestion on bus 
and trolley travel times. However, this enhancement requires mas
sive changes to the highway assignment computer program and is 
beyond the scope of this study. In any case, only about 4 percent of 
the region's total travel is made by transit. 

In this implementation, it is assumed that weighted average totals 
of transit and off-network highway impedance are linear in A and 
can be calculated directly from the system totals for the current and 
weighted average of the previous iterations. The alternative would 
be to calculate a new A-weighted trip table and multiply this new 
table by the interzonal impedance matrix. This simplification has 
little effect on the accuracy of the calculation. It greatly reduces the 
computational effort in the search routine that is used to determine 
A and the complexity of the required program code changes. For the 
current iteration, the system total for both the off-network highway 
and transit impedance are calculated in the modal split model and 
passed in a scratch ti.le to the highway assignment for inclusion in 
the gradient calculation. Similarly, the weighted transit and off
network highway impedance calculated in the highway assignment 
is passed from iteration to iteration in a scratch file. 

In the Evans algorithm, trip tables are weighted together from 
iteration to iteration using A-based successive averages in exactly 
the same way as highway link volumes. Thus, the transit trip table 
must be calculated with this method before assignment to the tran
sit network. 

COMPARISON OF RESULTS 

This section compares the results of the impedance version of the 
DVRPC simulation model under three alternative methods for iter
ating the model: simple iteration, MSA, and the Evans algorithm. 
All iterative simulation model runs were started with highway speed 
limits, which are assumed to represent the "free-flow speeds" 
recommended in the federal guidance. Congested speeds are un
acceptable as a starting point in iterative processes using the BPR 
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restraining curve shown later because the restrained link times can 
never be lower than the input times T0. 

T = T0 [ 1.0 + 0.15 ( ~ n 
where 

T = adjusted link time, 
T0 = initial input link time, 

VIC= ratio of volume to capacity in current assignment, and 
f = exponent on VIC; 3.0 in these runs, 4.0 default. 

The fact that T0 is not increased leads to errors in mobile source 
emissions because speed increases above current congested speeds, 
perhaps resulting from highway capacity improvements or land use 
changes, cannot be modeled. To standardize the comparisons, all 
three methods were iterated five times after an initial iteration (0) 
execution of the travel simulation models. 

Convergence and Computational Efficiency 

Table 1 compares the systemwide convergence criteria for the 
simple and Evans method. Both the simple and Evans algorithms 
converged to the neighborhood of 0.01 error after five iterations. 
The error statistic in this table refers to highway link impedance 
only in the simple model but also reflects the trip table impedance 
components in the Evans results. For this reason the Evans model 
estimates of S 1 and S2 are somewhat larger. The difference between 
S2 in the simple and Evans cases gives an indication of the relative 
impact of the trip table impedance component within the Evans gra
dient calculation. Overall, the highway links provide about 90 per
cent of the influence in the determination of A. The effect of the trip 
table gradient component is usually to reduce the weight given to 
the first two or three iterations. 

Although not quite reaching the 0.01 criteria, the Evans conver
gence rate was particularly impressive because it is based on only 
six executions of the highway assignment. The DVRPC network is 
slow to converge in equilibrium assignment, requiring 12_ to 15 iter
ations to reach this level of error. For this reason, the simple itera
tion results required a total of 90 executions of the highway assign-

TABLE 1 Convergence Statistics After Five Iterations from Speed Limits 

PROJECTED ACTUAL 
ITERATIVE METHOD TOTAL TOTAL HIGHWAY APPROXIMATE 

IMPEDANCE IMPEDANCE ERROR ASSIGNMENT COMPUTATION 
Xl04(Sl) x 104 (S2) (S l-S2)1Sl ITERATIONS TIME a 

SIMPLE ITERATION 99,508 98,498 0.010 90 78 HRS. 

MSA NA NA NA 90 79 HRS. 

EV ANS ALGORITHM 111,120 109,636 0.014 6 15 HRS. 

EV ANS ALGORITHM 109,486 109,484 0.000 20 26 HRS. 
FULL RESTRAINT 
ITERATION 0 

a 66 MHZ 486 UNDER OSl2. 



Walker and Peng 

ment. The total computation time for the simple method is about 
78 hr on a 66-MHZ 486 microcomputer under OS/2. This is an 
impractical running time for most planning applications. For exam
ple, current federal guidance for the DVRPC region requires a total 
of seven simulations ( 1990 base year plus build and no-build alter
natives for 1996, 2005, and 2015) to demonstrate conformity. 
Including the time needed for program setups and output checking, 
the simple method would require somewhere between 25 and 
35 days to complete the computation. Five iterations of the Evans 
approach will run overnight (15 hr per alternative), or about 7 to 
10 days to complete the required conformity simulations. Despite 
the ongoing advances in microprocessing speed, this is an over
whelming computational advantage. 

The MSA method weights together the results of the five simple 
method iterations with a special postprocessor program. This MSA 
weighting operation requires something less than I additional hr to 
complete (79 hr total for five iterations). The MSA approach does 
not lend itself to the calculation of SI and S2 parameters. Further
more, these parameters reflect only the system total of impedance 
and do not directly measure the variation in link volumes from iter- · 
ation to iteration. To directly measure link level convergence, the 
percent root mean square (RMS) difference in link volumes, from 
iteration to iteration, was also calculated for each of the three itera
tive methods. The results of the calculation are shown graphically 
in Figure 2. As one might expect, the MSA approach had the fastest 
rate of link volume convergence. It significantly improved the con
vergence rate of the simple method, which tended to level out at 
about 5 percent RMS difference per iteration. With the MSA 
method it would seem that it is possible to terminate computation 
after Iteration 2, a savings of 50 percent ( 40 hr of computation per 
simulation). The Evans approach demonstrated a high rate of con
vergence, closing all the way from 78 percent RMS difference 
between Iterations 0 and I to 18 percent between Iterations 4 and 5. 
However, it is clear from Table I and Figure 2 that additional iter
ations of the simulation model are required for the Evans algorithm 
to reach the level of convergence of the simple approach. This lack 
of link-level convergence is also reflected in the error statistics. 

To achieve complete convergence, the Evans algorithm was 
restarted and run for five additional iterations. Convergence to the 
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0.0 I criteria was achieved on Iteration 7 (20 hr of computation 
time), although link-level convergence to 5 percent RMS difference 
was not achieved. On Iteration 7, this measure dropped to just below 
I 0 percent, and stayed around I 0 percent throughout Iterations 8 to 
10. It seems that the 5 percent RMS difference level of link con
vergence requires multiple iterations of the highway assignment 
within each Evans iteration to smooth but the highway assignment 
though traditional capacity restraint. DVRPC's highway network is 
dense in terms of link topology, and the Evans results might also be 
improved by the creation of additional traffic zones. 

When starting from speed limits, a particularly critical point in 
terms of the smoothness of the traffic assignment was Iteration 0. For 
this reason, it seemed probable that the convergence properties of the 
Evans algorithm could be improved by executing a full traditional 
capacity restraint (15 iterations) in Evans Iteration 0, thence contin
uing with the standard single iteration of restraint within each Evans 
iteration. The results of the test are also reported in Table I. In terms 
of total impedance, this variation on the Evans model significantly 
improved the rate of convergence. After five iterations of Evans, the 
error term was reduced to less than 0.00 I, although the link-level 
convergence did not go below 10 percent RMS difference. As the 
0.0 I level of convergence was achieved in Iteration 3 the last two 
iterations could be eliminated saving about 5 hr of computation time 
over the 26-hr required. An alternative to a full restraint may be to 
use congested speeds as the BPR curve T0 value in Iteration 0 and 
then switch to speed limits in subsequent Evans iterations. 

Accuracy and Usability for Emissions Calculations 

The effect of iterating the travel simulation models on assignment 
accuracy is indicated in Table 2. Although the total of predicted and 
counted volumes for all screenline links remains well below a 5 per
cent difference, individual screenline accuracy is degraded versus 
the noniterated travel simulation under all three iterative approaches. 
The R2 between predicted and counted volumes for all screenline 
links is also significantly reduced by the iterative simulations. The 
biggest factor in this error increase is the use of speed limits rather 
than congested speeds as the starting point for the assignment. The 
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TABLE2 Highway Screenline Error Statistics for Simple Iteration, MSA, and Evans Algorithm from 
Speed Limits 

ITERATIVE METHOD OVERALL 
ERROR 

SIMPLE ITERATION 2.2% 

MSA 3.6% 

EV ANS ALGORITHM -3.5% 
FIVE ITERATIONS 

EV ANS ALGORITHM -3.6% 
COMPLETE 
CONVERGENCE 

EVANS ALGORITHM -2.9% 
FULL RESTRAINT 
ITERATION 0 

results for the MSA approach are slightly worse than for the simple 
iteration method but comparable overall. 

The Evans method showed a somewhat larger reduction in accu
racy. In part, this resulted from executing the highway assignment 
only six times. Restarting Evans for two additional iterations re
sulted in some improvement in accuracy of the screenline volumes, 
but the full-capacity restraint in Evans Iteration 0 almost achieved 
screenline validation in terms of volume totals. Only 1 of the 14 
screenlines and cutlines checked had a total traffic volume error 
greater than 11 percent, with the worst (22 percent) being a small 
suburban circumferential cutline. However, this variation of the 
Evans algorithm continued to have a significantly smaller link-level 
R2 than either simple iteration or MSA. The trip table and restrained 
link volumes rapidly converge to a hand-in-glove fit in the Evans 
approach. This tends to magnify the effect of network topological 
and model calibration/specification deficiencies. All three modeling 

#OF SCREEN AVG. ABS. 
LINES > 10% SCREEN LINE R2 ALL 
ERROR (WORST) ERROR LINKS 

4 (19%) 7.17% 0.75 

5 (18%) 7.54% 0.75 

6 (23%) 8.57% 0.66 

4 (24%) 7.61 % 0.67 

3 (22%) 7.38% 0.67 

approaches will require some degree of simulation model enhance
ment and recalibration to achieve screenline validation. This recal
ibration is beyond the scope of this investigation. 

As indicated in Table 3, all iterative approaches produced accept
able estimates of regional highway vehicle kilometers of travel 
(VKMT) and transit ridership; however, all significantly overesti
mated highway operating speed (by 12.4 to 17.6 percent). None of 
these methods can be used to estimate mobile source emissions 
without first reestimating congested speeds with a postprocessor. 

Alternative Capacity Restraining Functions 

In an attempt to improve the accuracy of the speed estimates pro
duced by the iterative simulations, four variations of the capacity 
restraining function were tried. Because the computation associated 

TABLE 3 Selected Regional Travel Statistics for Simple Iteration, MSA~ and Evans Algorithm from 
Speed Limits 

ITERATIVE 
METHOD 

SIMPLE ITERATION 

MSA 

EVANS ALGORITHM 
FIVE ITERATIONS 

EV ANS ALGORITHM 
COMPLETE 
CONVERGENCE 

EVANS ALGORITHM 
FULL RESTRAINT 
ITERATION 0 

HWY. VKMT a x106 

( % DIFF. FROM HPMS) 

143.2 (-2.5%) 

145.1 (-1.2%) 

142.2 (-3.2%) 

141.4 (-3.7%) 

140.8 (-4.2%) 

a VKMT = VEHICLE KILOMETERS OF TRAVEL; 

VEHICLE MILES OF TRAVEL = VKMT + 1. 6093 

HIGHWAY AVG. 
SPEED KM/H 
(%ERROR) 

50.5 (17.6%) 

48.3 (12.4%) 

48.8 (13.5%) 

48.9(13.9%) 

49.1 (14.2%) 

TRANSIT 
BOARDING x 106 

(%ERROR) 

1.26 (7.7%) 

1.26 (7.7%) 

1.24 (5.9%) 

1.24 (5.9%) 

1.26 (7. 7%) . 
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with the simple iteration method is excessive, these tests were 
limited to the Evans algorithm. All three iterative methods produce 
similar estimates of regional VKMT and operating speed in the 
earlier comparisons. 

The first and second alternative restraining function involved 
resetting the exponent of the BPR curve VIC ratio to 4.0 and 7.0, 
respectively, and then running the iterative simulation from speed 
limits. The standard value of the V/C exponent is 4.0, but recent 
research has suggested that larger values, perhaps 7.0, may produce 
better results. The third and fourth variations involved direct use of 
the speed curves from DVRPC's emissions postprocessor method
ology as the restraining function. These speed curves are much 
more complex than the BPR function, being related to the methods 
contained in the Highway Capacity Manual. The exact formulation 
of these curves may be found in Walker (9). Because the times out
put by these curves are not limited by the input T0 values, the post
processor speed curves were used in two ways: one using speed 
limits as the starting point of the simulation process and the other 
using congested speeds. 

The results produced by these tests are presented in Tables 4 and 
5. Resetting the BPR exponent to 4.0 significantly improved the 
screenline accuracy of the Evans algorithm, although the results 
were still not as good as the simple or MSA results shown earlier. 
The exponent value of 7.0 improved the screenline results even 
further, being comparable with those of simple iteration and MSA 
shown earlier. The regional VKMT and transit ridership estimates 
for both exponent values were comparable with those produced by 
the 3.0 case, but average speed estimates produced by the 7.0 expo
nent value had less than l percent error, raising the possibility of 
eliminating the speed estimation postprocessor. This version of the 
Evans model seems to be able to produce reasonably accurate esti
mates of both VKMT and speed. However, the 7.0 BPR exponent 
slowed down the rate of algorithm convergence. Ten Evans itera
tions were required to achieve 0.01 convergence. 

Use of the postprocessor speed curves generally degraded the 
accuracy of travel volumes produced by the Evans algorithm. This 
occurred in part because the modal split model went out of calibra
tion, leading to severe overestimation of center-city transit ridership 
and corresponding underestimation of some highway screenline 
totals and of regional VKMT. This restraining function did produce 
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significantly more accurate estimates of simulated highway speeds, 
however (about 3.3 percent overestimated). 

The postprocessor curves produced about the same error statis
tics, whether the simulation was iterated from speed limits or 
congested speeds. The highway link volumes produced by these 
alternative starting points had about a 13.5 percent RMS difference 
after five iterations. This version of the Evans algorithm seemed to 
produce relatively unique results at both the regional and link level, 
regardless of the initial speeds, although as one might expect, 
convergence was significantly faster when the algorithm was started 
from congested speeds. 

CONCLUSIONS 

It is clear from the results presented in this paper that converting the 
DVRPC travel simulation model to an iterative formulation on the 
basis of initial free-flow speeds is not a trivial undertaking. Simple 
iteration of the modeling chain requires days of computation to 
complete the simulation for a single alternative. The draft federal 
guidance also requires disaggregating the simulation process into 
separate peak and off-peak models. Implementing this requirement 
would effectively double all computing times reported in this paper. 
Furthermore, the off-peak time period is far from homogeneous in 
terms of congestion. Midday congestion resembles the peak period 
in many suburban areas, whereas evening travel in these areas in 
virtually free flow. Three or four time periods may be required. For 
this reason the computational efficiencies resulting from the MSA 
and Evans algorithms are essential to the continued computational 
practicality of the travel simulation process. 

The Evans algorithm required the least amount of computer time 
to achieve convergence in terms of systemwide total impedance, 
reducing the time required by 80 percent versus simple iteration. 
This time savings is dependent on the number of iterations of 
restraint that are required for the highway assignment in the simple 
method. DVRPC's network requires 15 iterations in a normal 
assignment. Other regions whose network converges faster may 
receive a smaller time savings from the Evans algorithm. 

The MSA procedure allows the number of iterations (and associ
ated computation) required to achieve link-level convergence to be 

TABLE 4 Highway Screenline Error Statistics for Alternative Restraining Functions 

OVERALL #OF SCREEN AVG. ABS. 
ITERATIVE METHOD ERROR LINES > 10% SCREEN LINE R2 ALL 

ERROR (WORST) ERROR LINKS 

BPR EXP. 4.0 -3.4% 3 (21 %) 8.16% 0.70 
FROM SPEED LIMITS 

BPR EXP. 7.0 -6.6% 4 (19%) 7.20% 0.74 
FROM SPEED LIMITS 

POST-PROCESSOR -7.1 % 4 (26%) 10.53% 0.74 
CURVES 
FROM SPEED LIMITS 

POST-PROCESSOR -7.3% 4 (21 %) 10.89% 0.73 
CURVES FROM 
CONGESTED SPEEDS 
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TABLE 5 Selected Regional Travel Statistics for Alternative Restraining Functions 

HIGHWAY AVG. TRANSIT 
ITERATIVE METHOD HWY. VKMT ax 106 SPEED KM/H BOARDING x 106 

(% DIFF. FROM HPMS) (%ERROR) (%ERROR) 

BPR EXP. 4.0 FROM 141.4 (-3.7%) 47.1 (9.7%) 1.25 (6.8%) 
SPEED LIMITS 

BPR EXP. 7.0 FROM 140.8 (-4.2%) 42.6 (-0.7%) 1.24 (6.0%) 
SPEED LIMITS 

POST-PROCESSOR 134.4 (-8.5%) 44.4 (3.3%) 1.34 (14.5%) 
CURVES FROM SPEED 
LIMITS 

POST-PROCESSOR 134.2 (-8.7%) 44.4 (3.3%) 1.34 (14.5%) 
CURVES FROM 
CONGESTED SPEEDS 

a VKMT =VEHICLE KILOMETERS OF TRAVEL; VEHICLE MILES OF TRAVEL= VKMT-:- 1.6093 

reduced by one-half. Although converging very rapidly, the Evans 
algorithm did not achieve the degree of link-level convergence of 
the simple iteration or MSA approach in the test applications. 
Running Evans for two additional iterations improved the link and 
system level convergence (and accuracy) but reduced the computer 
time savings versus MSA somewhat. However, the Evans algorithm 
has considerable theoretical appeal, in that the weights on succes
sive simulation model iterations are based on a Frank-Wolf decom
position rather than the arbitrary sequence used by MSA. 

All three iterative approaches significantly degraded the accuracy 
of the travel simulation model, making validation of screen line vol
umes and congested speed much more difficult to achieve. The use 
of speed limits rather than congested speeds as a starting point for 
the iterative process was a major factor in this accuracy loss. The 
Evans approach was somewhat less accurate in part because of the 
drastic reduction in the number of iterations of the highway assign
ment required for five iterations. However, the rapid convergence 
between trip table and congested link volumes in this approach may 
also magnify the effect of certain deficiencies in the travel simula
t.ion model. Simulation model enhancement or recalibration may be 
necessary to optimize the accuracy of the results from any of the 
three iterative approaches. 

Almost all iterative formulations tested tended to significantly 
overestimate congested highway link speeds and will require post
processor-based reestimation of speeds before mobile source emis
sions calculation. Only the Evans algorithm with a BPR restraint 
curve exponent of 7 .0 seems to produce estimates of both highway 
VKMT and congested operating speed when starting the iterative 
process from highway speed limits. 

The motivation for implementing an iterative simulation is to be 
able to accurately assess the impact of future land use patterns and 
proposed transportation facilities. It is interesting to note that the 
highway travel speed lookup table and other model parameters in 
the existing DVRPC model have remained almost unchanged for 
the last 30 years, despite repeated intervening forecasts of increased 
highway congestion. Furthermore, budget constraints and intense 
citizen opposition have limited the region's ability to build new 
freeways and improve existing roadways. Potential excessive con
gestion resulting from population and employment growth and 
increasing dependance on automobiles has been controlled by high-

way peak spreading and decentralization of urban activity into sub
urban and rural areas of the region. From this perspective, it would 
seem more likely that a significant projected imbalance between 
input and output speeds in the simulation model would be caused 
by an underestimate of decentralization and peak spreading than a 
failure to iterate. Iterative travel simulation models should include 
a feedback loop that incorporates the impact of localized projected 
congestion levels on the underlying land use and socioeconomic 
forecast. This feedback could utilize formal land use models, if 
sufficiently sensitive to localized congestion conditions, or might 
be accomplished through ad hoc adjustments. 
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Nationwide Recreation Travel Survey in 
Japan: Outline and Modeling Applicability 

TETSUO YAI, HARUTOSHI YAMADA, AND NAOHISA OKAMOTO 

The Nationwide Recreation Travel Survey (NRTS) was conducted by 
the Ministry of Construction in Japan in 1992. It covered the nine regions 
of Japan and collected more than 30,000 samples through home-based 
surveys and nearly 13,000 samples from recreation site surveys. Before 
the survey, recreational activities had been investigated by smaller-scale 
surveys (one-tenth the size of NRTS) every 2 years. The survey is 
expected to provide fundamental and useful information for suburban 
highway planning. Whereas road investment plans conventionally have 
been based on future weekday traffic volumes, several roads in suburban 
areas have become heavily congested on weekends. The prediction of 
weekend travel will have a more important role in road planning. The 
characteristics of recreational travel by car should be examined to gain 
valuable insight into highway planning in recreational areas. After 
survey profiles were summarized recreational travel demand models for 
trip generation and trip distribution were developed using an aggregated 
regression model and a disaggregate model. Finally, fruitful data sources 
and sufficient modeling applicabilities are provided. 

The first large-scale survey for recreational travel in Japan is intro
duced in this paper. The Nationwide Recreation Travel Survey 
(NRTS) was conducted by the Ministry of Construction (MOC) in 
1992 to understand the characteristics of recreation travel and the 
applicability of the survey data to demand modeling. 

Every 5 years, MOC collects weekday vehicle trip data by road
side and car owner surveys entitled Road Traffic Census (RTC). 
Nearly 3 percent of car owners in Japan have been sampled in the 
RTC, and all vehicles that pass through interregional arterial roads 
have been intercepted by roadside surveyors. The RTC in 1990 also 
included a survey for weekend car trips using the same question
naire sheet with the weekday survey. In both surveys, the trips that 
respondents were required to fill out were restricted to those within 
a specific 24-hr period. 

Most weekday activities in a city, such as commuting or shop
ping, are completed within a day. However, recreational travel often 
exceeds 24 hr and characteristics of recreation travel, such as desti
nations, activities, and durations change by season. Additionally, a 
route choice behavior between two recreational facilities, which is 
not included in RTC questionnaires, is determined probably not 
only by minimum travel time but also by attraction of the route itself 
(e.g., road quality or scenic beauty) (J). 

Although road investment plans in Japan have been based con
ventionally on future weekday traffic volumes, several roads in sub
urban areas are more heavily congested on weekends than on week
days. This is because the low density of road networks radiating to 
recreational areas outside of cities provides fewer alternative routes 

T. Yai, Tokyo Institute of Technology, 2-12-1, 0-okayama, Meguro-ku, 
Tokyo #152, Japan. H. Yamada, Public Works Research Institute, I Banchi, 
Asahi, Tsukuba #305, Japan. N. Okamoto, Department of Civil Engineering, 
Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama 
#226, Japan. 

for travelers. Additionally, substantial volumes of traffic by pas
senger vehicles often are higher than road capacities on weekends. 
The potential demand of recreational car travel is expected to be 
high in metropolitan regions because residents evidently have expe
riences of giving up a weekend drive because of heavily congested 
roads to or in suburban recreation areas. 

Actually, the volumes of passenger vehicles for recreation traffic 
on weekends· are equivalent to those of weekday commuter traffic. 
For example, according to RTC data, car trip generations in Kanta 
region amount to 3.1 million commuter vehicles on a weekday and 
2.6 million recreational trip vehicles on a weekend. However, the 
average distance of recreational trips is twice as long as that of com
muter trips, and total vehicle kilometers traveled per day of week
end recreational trips is much higher than that of commuter trips. 

Consequently, after one understands recreational travel behavior, 
the prediction of weekend traffic, which is principally composed of 
recreational trips, and revision of highway planning in suburban 
areas are expected to resolve the traffic and environmental problems 
in those areas. A new survey was designed to collect individual his
tories of recreational activities during a year because characteristics 
of recreational trips change seasonally, and recreational trips often 
are not completed within a day. After several properties of recre
ational travel from home-based surveys are briefly summarized, trip 
generation models and destination choice models also are examined 
in this paper (2). 

SURVEY SYSTEM AND QUESTIONNAIRES 

Survey Method for Recreational Travel 

Fundamental characteristics of recreational travel, which are con
cerned with survey system selections, are explained as follows: (a) 
recreation travel, in particular overnight travel, is generated infre
quently for each household; (b) individual recreational activities dif
fer with the seasons; and (c) a trip route depends on the attractiveness 
of the route, such as the landscaping as seen from the road. These 
cause the inefficiency of origin-destination trip surveys conducted on 
a specified day of a specific season. Considering these properties, 
home-based and choice-based surveys were conducted. To examine 
characteristics of recreation travel and to demonstrate the modeling 
applicability of trip generation and trip distribution, data of personal 
records of travel, which depend on memory, were collected using 
home-based surveys. Telephone surveys such as the National Per
sonal Transportation Survey in the United States provided I-year 
period data from 24-hr individual samples; however, the applicabil
ity of large-scale telephone surveys is still uncertain in Japan. 

Choice-based sampling in the specific recreation sites can target 
a specified group in the whole population but cannot collect random 
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samples from the population. Choice-based surveys were utilized; 
these were conducted in recreational sites to estimate trip chaining 
behaviors in recreational areas and combine the data with personal 
experience data of home-based surveys. Additionally, to estimate 
trip attraction volumes in the recreational areas, number plate sur
veys were conducted at several sites and access roads to the areas. 

These surveys were conducted in nine regions by eight regional 
construction bureaus of MOC and the Hokkaido Development 
Agency in 1992 or 1993. Home-based surveys were conducted 
between July and October 1992 by random sampling of households 
in the selected areas. The areas cover 22 cities in 19 prefectures that 
belong to nine regions in Japan, as indicated in Figure 1. The sur
veyed areas are concentrated in large cities, including cities in every 
metropolitan region and several central cities in local areas such as 
Sapporo in the Hokkaido region, Sendai in the Tohoku region, 
Hiroshima in the Chugoku region, and Fukuoka in the Kyushu 
region. These indicate that home-based surveys in NRTS evidently 
represent characteristics of recreation activities of urban residents. 
The respondent of a survey is required to be more than 18 years old. 
Total individual samples exceed 30,000, encompassing 13,600 
households. All except for three cities have more than 1,000 samples. 

Choice-based surveys were conducted in nine specific popular 
sites corresponding to the nine regions in Japan. Most of the surveys 
were conducted on weekends in August during summer vacation, 
with the exception of Bandai in Tohoku region in October and 

9 Regions 

I§ 1. Hokkaido 

~ 2.Tohoku 

~ 3.Kanto 

m 4. Hokuriku 

• 5.Chubu 

Q 6.Kinki 

~ 7.Chugoku 

~ 8.Shikoku 

~ 9.Kyushu 
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Yuzawa in Hokuriku region in February 1993. These schedules 
were determined by the top reasons for and seasons of recreation: 
sightseeing of autumn foliage in Tohoku and skiing in Hokuriku. 
The sample size for all sites is nearly 13,000, and the response ratio 
is about 10 percent. The survey was distributed by hand and 
returned by mail. 

Structure of Questionnaires in Both Surveys 

The personal questionnaire for home-based surveys inquires of the 
respondents their annual travel records by mode, overseas travel 
experiences, and travel activities that correspond to the specific date 
of the choice-based survey in the region. 

Because respondents for choice-based surveys are persons who 
drove by private car to a recreational region, most questionnaires 
are concerned with car travel. The major difference between the 
home-based and choice-based surveys is that in the choice-based 
survey questionnaire respondents are requested to explain their 
route patterns on the map of the recreational area. As mentioned ear
lier, this is distinctly a different questionnaire from that for urban 
transportation surveys, and such information should be collected for 
road planning in recreational areas. 

Figure 2 presents a brief structure of surveyed items and primary 
goals in both surveys. The primary objective of home-based surveys 

Aso 955 9Location of City for Home-Based Survey 
(Name of prefecture; sample size) 

A Location of.Recreation Site for Choice 
Based Survey (sample size) 

FIGURE 1 Locations of home-based and recreational site surveys. 
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Home Based Survey (HBS) 

Annual Overnight Travel History~-----------w~ 
Generation Model 

Annual Car Day Trip History 

Annual Car Travel History 

including Overnight and Day Trips 

Car Travel Activity On Recreational 
Site Survey Day 

Survey Question Items 

Regional Destination 

Choice Models For 

Overnight Trips 

Regional Destination Choice 

Models For Day Trips 

Estimation Of Nationwide 
OD Matrix 

Estimation Of Total Trip 

Volume In Surveyed Cities 

nalysis Of Correlation With 

Domestic Travel 

Car Trip Chain And Activity 
Modeling Within Recreational 

Regions 

Primary Survey Goals 

FIGURE 2 Surveyed items and primary goals in home-based and recreational site surveys. 

is to collect data for the development of a nationwide trip genera
tion model and regional destination choice models. On the other 
hand, the main purpose of choice-based recreation site surveys is to 
collect data for modeling of trip and activity chain behaviors within 
a recreational region. However, the questionnaires for both surveys 
supplement each other. Travel activity on the designated day of the 
recreational site survey was obtained from the home-based survey 
to examine the total travel volume from the city and portion of the 
total volume headed into the recreational region on that day. The 
annual car travel record was surveyed for recreational site survey 
respondents to combine them with home-based survey data to 
develop car travel destination choice models. 

PROFILES OF RECREATIONAL TRAVEL 
IN JAPAN 

Usi°ng survey results, various profiles ofrecreational travel have been 
examined. Particularly overnight travel, day trips, route choice, and 
trip chaining behaviors in recreation areas, and the correlation 
between domestic and overseas travel, are briefly investigated. 

Because of lack of space, only the profile of overnight travel from 
home-based surveys is introduced in this paper. Although the recre
ational day trips exceed the overnight trips in volume in metropol
itan suburban areas (the percentage of persons on day trips in the 
recreation site survey is 67 percent in Miura, Kanto region, and 
74 percent in Rokko, Kinki region), principal recreational areas and 
most spa resorts in Japan often attract a larger percentage of 
overnight trips. (The percentage of overnight travelers in the recre-

ation site survey is approximately 65 percent in Yuzawa in the 
Hokuriku region, Ise in the Chubu region, Okayama in the Chugoku 
region, and Aso in the Kyushu region.) An increase in overnight 
travel is expected in the future because of a long series of holidays 
and the growing need for recreational activities. As a result, an 
understanding of the mechanisms of overnight recreation travel and 
a comparison of them with day trips are required before examining 
the total weekend traffic and the system planning of suburban road 
networks (3). 

PROFILES OF OVERNIGHT TRAVEL IN JAPAN 

Average frequencies of overnight travel by age categories are shown 
in Figure 3. The frequency of those aged 70 or older is no more than 
half that of those aged 30 or older. Because this includes business 
travel, the categories for the 30 and 40 year olds have a somewhat 
larger frequency in total. Although recreation travel is the lowest in 
the 40s category among the working ages between 20 and 60, their 
business travel is possibly combined with recreation activities. 

Average trip frequencies for individual income levels are shown 
in Figure 4. The total frequency increases in accordance with an 
increase in income level. The increasing trend is moderate for recre
ation travel. This is because business travel is highly generated in 
higher-income categories. 

The modal choices for recreational trips are summarized in Fig
ure 5. Car usage occupies the largest share in most of the categories 
of vacation period, and this share depends on the departure date and 
season. The reason why the share is largest during the summer vaca-
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tion in August or during the New Year holidays in late December 
and early January is that travelers prefer to drive cars with their 
families during those periods. 

the objective variable is the individual travel frequency and the 
explanatory variables are personal demographic data, such as age 
and gender. Samples to estimate the linear function came from the 
former survey data by the Japan Tourist Association (JT A). Aggre
gate models using zonal average data could not be calibrated from 
JTA data because of the restriction in sample size. However, the 
coefficients of determination in the disaggregated linear functions 
were insufficient for the prediction of future trip generation (2). 

TRIP GENERATION MODELS 

Regional Characteristics of Trip Generation 

Modeling of trip frequency of recreational activities in Japan has 
been achieved by a disaggregated linear regression method, in which 

Figure 6 shows regional differences in the recreation trip fre
quencies by prefecture. Japan is composed of 4 7 prefectures, in 
which the largest prefecture, Tokyo Metropolis, has a population of 
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FIGURE 6 Correlation between overnight recreation trip frequency and domestic 
pref ectural income for surveyed cities. 
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nearly 12 million and the smallest prefecture has a population of 
only 0.6 million population. Every surveyed city indicated in the 
figure corresponds to a prefecture described in Figure 1. Prefectural 
average frequencies from samples and income levels measured by 
domestic prefectural income statistics (thousand yen per capita) 
have a fairly strong correlation. This causes one to consider not only 
individual factors but also regional effects in trip frequency, such as 
regional income levels. 

Regional differences in trip generation may depend on the differ
ence of transportation facility conditions, such as the accessibility to 
expressways. Figure 7 shows the relationship between trip frequencies 
and general road densities (kilometers per square kilometers) in pre
fectures. A positive relation between these quantities is observable for 
prefectures whose trip frequencies exceed 1.0. However, the prefec
tures with a trip frequency lower than 1.0 are concentrated at the posi
tion of relatively higher road densities. Accordingly, the prefectures 
with lower frequency should be explained by factors other than road 
density. Because local prefectures in Hokkaido, Shikoku, and Kyushu 
have some attractive recreation sites in day trip areas, residents may 
have little motivation to take overnight trips to other regions. 

These results imply that trip generation models should include 
regional factors in addition to individual characteristics. Although 
disaggregate models estimated by samples from several regions 
could contain regional variables, calibrating aggregate models to 
include regional factors and improve models' predictability is now 
possible with NRTS data. 

Cross-Categorical Aggregated Model 

To introduce both personal characteristics and regional factors into 
the model, a cross-categorical aggregated (CCA) model formulation 
was developed. Aggregate generation model is usually described by 
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where 

131 = coefficient, 
xi = explanatory variable aggregated by zone (here by prefecture), 
J = number of variables, and 

Y, = average trip frequency for every prefecture: r. 

On the other hand, for categorical data classified according to 
demographic attributes, the volume in a cell of a multiple cross table 
is regarded as a sample in the estimation of models. The volume in a 
cell corresponds to the average trip frequency of multiple categories, 
such as the combination of age and income. Using such samples, 

M K 

yg =I I a"'k 8~'k (2) 
m=I k=I 

will be a model formulation of trip generation yg of multiple 
categories, g. In Equation 2, g is identical to a cell; Mis number of 
factors; K is the number of categories in each factor; 8~1k is 1 if k of 
factor m corresponds to the category of a cell g, and otherwise it is 
O; a"'k is the parameter of a category in a factor. 

Therefore, integration of regional and aggregated demographic 
data is performed by the following joint equation: 

J M K 

Yrg = L 131 xf + L L a"'k 8~'k (3) 
j=I m=I k=I 

where y,8 is an average trip frequency in a cell g of prefecture r. As 
categorical demographic data and regional factors are combined in 
the estimation of an aggregate model, the model is the CCA model. 
The parameters 13 and a in CCA models are estimated by the 
weighted least-squares method. Sample sizes in cells are used as 
weights in the estimation. 

For example, if two categories are considered by gender and five 
categories are considered by age for 20 regions, 10 (2 X 5) cells are 
produced and samples in the estimation will be 200 (10 X 20). 
Therefore, the sample size in the estimation depends on the size of 
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FIGURE 7 Correlation between overnight recreation trip frequency and general 
road density in prefecture for surveyed cities. 
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cells. The parameters that represent the correlation among factors, 
such as age and income, are also available in the models. 

Estimation Results of CCA Models 

The estimation results of CCA models are presented in Table 1. 
Three kinds of regional variables-the prefectural income per 
capita, the car ownership ratio, and the general road density-were 
introduced in every model to explain regional differences of trip 
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generation. Regional variables differ by prefecture, not by city or 
household. The individual income level was incorporated in every 
model because of its evident importance to the models. One addi

. tional factor was selected to increase the explanatory power because 
introducing three or more personal factors increases the cell size and 
decreases the model's reliability. The adjusted correlation coeffi-

. cients are fairly high compared with those of ordinary models for 
recreational trip generation (2). The model using gender or car own
ership as a personal variable has a higher correlation coefficient. 
The parameters of the individual income variable increase in accor-

TABLE 1 Estimation Results of CCA Models for Overnight Recreational Trip Frequency 

variables model 1 model 2 model 3 model 4 model 5 

Regional characteristics 
regional income per person 0.3913 0.3348 0.3352 0.3288 0.2713 
[million yen] (5.63) (5.13) (6.52) (3.44) (4.21) 
share of car-ownership 0.02267 0.02590 0.02686 0.02706 0.02588 
[%=vehicle/ lOOperson] (2.55) (3.07) (4.05) (2.16) (3.12) 
index of road development 4.995 5.090 5.304 4.818 4.501 

(2.87) (3.07) ( 4.08) (2.00) (2.76) 

Demographic characteristics 
car-ownership no 

yes 0.3571 
(4.56) 

sex male 
female 0.29921 

(4.03) 

age $ 29 

30-49 -0.22073 
(3.26) 

50-64 -0.068590 
(0.94) 

~65 -0.25887 
(3.30) 

frequency of holiday 
$6days 
per month 
~7days 0.2806 
per month (2.39) 
housewife & 0.5695 
student (2.02) 

passport possession 
no 
yes 0.5686 

(9.38) 
personal income <100 
[million yen] <700 0.2935 0.4670 0.3008 0.6354 0.2393 

(4.55) (6.37) (6.26) (2.28) (3.95) 

<1000 0.5303 0.8492 0.5910 0.9036 0.44607 
(3.94) (5.89) (5.68) (2.78) (3.55) 

~1000 1.042 1.358 1.018 1.476 0.7766 
(5.55) (7.43) (6.24) (3.70) (3.93) 

con st -1.3097 -1.2552 -0.88534 -1.4481 -0.95945 
(3.42) (3.43) (3.07) (2.46) (2.71) 

sample size 117 112 202 118 123 
multiple correlation coefficient 

adjusted for the degrees 0.8004 0.8098 0.7474 0.6286 0.7934 
of freedom 
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dance with the increase in income level. Three regional variables 
also are adequately significant, and increases in these variables 
enlarge the trip frequency. Most of these results correspond with 
aggregation results of survey data and experimental facts. The esti
mation of these models was successful because of NRTS, the first 
large-scale survey. 

DESTINATION CHOICE MODELS 

Destination choice depends on activity, season, travel time, travel 
cost, attractiveness of destination, and so forth. Modeling trip dis
tribution was traditionally conducted by aggregate models such as 
the gravity model or the present pattern method used in the planning 
of metropolitan regions. Selection of model forms sometimes 
depends on the sample size for the estimation. 

NRTS has a large sample size in total. If total samples are pooled, 
as in trip generation modeling, an aggregated distribution model of 
the whole country is applicable. However, before pooling total sam
ples, comparing regional differences in destination choice behavior 
and examining the applicability of the distribution model to recre
ational travel are required. Th1s is because alternative destinations 
in a region differ from those in other regions and the parameters of 
the models may be different among regions. 

In this section, the applicability of destination choice models was 
examined using a disaggregate approach after some previous stud
ies (4,5). The approach has the advantage of modeling individual 
behaviors with relatively small samples and also has a form similar 
to that of the aggregated distribution model. 

Destination Choice Behaviors of Recreational Travel 

Figure 8 indicates an example of the distribution of travel destina
tions for overnight and day trips from Tokyo and Yokohama home
based surveys. The circle indicates the sample size for destination. 
Overnight and day trip percentages are indicated within the circle. 
Trip destinations beyond the described area are not illustrated here, 
in spite of the existence of a few long-distance trips. Distributions 
of day trips are in accordance with distance from the origin, whereas 
distributions of overnight trips for nearby destinations represent a 
small portion of the total. 

Data for Destination Choice Models 

Car travel data from a personal record of home-based and recre
ational site surveys were pooled for each origin region to estimate 
destination choice models for overnight and day trips. A multinom
inal logit (MNL) model was employed, and travel record data from 
July through December were selected. The sample size for each 
model is presented in Table 2 and is discussed later. Not including 
the trips on the surveyed day, travel record data from recreational 
site surveys are assumed to be data from exogenous sampling for 
the corresponding destination choice model. Estimation of MNL 
model parameters with such samples is possible because of the 
former works on the estimation theory of discrete choice models. 

With chosen destinations arranged in order of decreasing per
centage of samples for each region, those within the top 90 percent 
(cumulative) were selected for the choice set. This 90 percent 
threshold provides a maximum choice set size for each region. The 
largest regional choice set size is 30 in Chubu and Kinki for 
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FIGURE 8 Sample size for recreational destinations from Tokyo 
and Yokohama home-based survey. 

overnight travel destinations, and the smallest size is 11 in Shikoku 
for day trips. These data are also given in Table 2. 

Because a destination choice set depends on personal activity 
interests, the destination alternatives that have no recreational 
resources corresponding to an individual's activity were excluded. 
(It is obvious that no one goes to the seaside to climb a mountain.) 

Regional utility functions are· composed of six variables: travel 
time, travel cost, and four attraction variables. Travel time between 
origin and destination was calculated using road network data and 
shortest-path algorithm. The travel cost variable was transformed by 
dividing out-of-pocket costs by the logarithm of personal income. 
Attraction variables are combined with attractiveness of destination 
and a personal activity dummy. The attraction variable is expressed as 

Activity attraction of k = (k activity dummy) 
* [In (k attraction resources)] (4) 

k activity dummy= {~ if traveler's activity is k 
if traveler's activity is not k 

where k attraction resources is the number of attraction resources 
corresponding to activity kin a destination. For example, only trav
elers who participate in seaside or marine activity have an attraction 
variable of "seaside and marine activities." The attraction resources 

· of each destination were obtained by summing up the number of 
recreational spots recognized by the Japan Travel Bureau. 

Estimation Results of Destination Choice Models 

Comparisons of model parameters among regions are discussed 
here, with consideration given to future integration to a nationwide 
common model. Previous survey samples never enable the. re-
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TABLE 2 Estimation Results of Destination Choice Models for Overnight and Day Recreational Trips 

(a) O\·cmight Trie Destination Choice Models 

Variables Hokkaido Tohoku Kan to 

TraYel time -0.00178 -0.00454 -0.003 
t-stati sties -8.58 -8.0 -.5.8 

Trn,·cl cost I ln(Pcrsonal Income) -0.000287 -0.000455 -0.000246 
t-statistics -2.12 -4.11 -2.48 

Seaside.&. Marine Acti\'ity Attraction 0.326 -0.107 0.319 
t-stat1st1cs 6.04 -1.8 4.78 

Field Activity Attraction 0.0682 0.552 0.596 
t-statistics 0.73 5.75 8.39 

Spa Visit Attraction 0.392 0.545 0.435 
t-stati sties 5.99 4.48 4.48 

Sightseeing Attraction 0.706 0.303 0.923 
t-stati sties 11.5 3.26 14.7 

Log-Likelihood at zero -2594.7 -2271.9 -3071.8 
Log-Likelihood at convergence -2400. l -2040.5 -2786.0 
Sample Size 1000 802 1000 
Choice Set Size 15 21 27 

{b} Da~1 Tri)2 Destination Choice Models 

Variables Hokkaido Tohoku Kan to 

Travel time -0.00815 -0.0156 -0.0164 
\-statistics -22.9 -11.1 -17.7 

Travel cost I ln(Personal Income) -0.000237 -0.00143 0.000276 
\-statistics -1.57 -6.04 1.48 

Seaside & Marine Activit\' Attraction 0.134 0.494 0.543 
\-statistics · 2.6 8.14 8.54-

Field Activity Attraction 0.196 0.898 1.01 
\-statistics l.83 7.1 12.5 

Spa Visit Attraction 0.815 0.83 0.617 
t-stati sties 4.47 5.52 6.84 

Sightseeing Attraction 0.674 0.0918 0.788 
\-statistics 5.68 0.38 6.4 

Log-Likelihood at zero -2558.8 -2624.5 -2598.1 
Log Likelihood at convergence -1988.2 -1629.8 -2252.9 
Sample Size 1000 1000 922 
Choice Set Size 15 16 23 

searchers to examine such a comparison for recreational trip 
distributions, in spite of unique recreation sites in each region. 

Using samples from home-based and recreation site surveys, 
regional destination choice models were estimated for overnight 
and day trips (Table 2). 

Estimation results indicate that most regions have reasonable and 
expected signs of parameters. Parameters of travel time in Chubu 
and travel cost in Shikoku are insignificant for overnight trips. The 
attraction variable for sightseeing in Tohoku, Hokuriku, and Kinki 
has an unexpected sign for overnight trip models. For day trip mod
els, the travel cost variable in Kanto and an attraction variable for a 
spa visit in Kinki had unacceptable parameters. However, most 
parameters had reasonable results, which is useful for the future 
integration of models. 

The sample size and log likelihoods are given in Table 2. Sample 
sizes in most regions exceeded 1,000 and log likelihood ratios stand 
between nearly 0.1 and 0.4, permitting a comparison of the models. 

Figure 9 shows regional differences of two important parameters 
of overnight trips. The intersection of two lines in the figure indi
cates expected values of parameters, and the line length indicates 
the standard deviation of the parameter. It seems that there are two 
significantly different groups of parameters, except for the parame
ters for the Shikoku and Chubu region. One is formed by the param
eters for East Japan: Hokkaido, Tohoku, Kanto, and Hokuriku 
regions. The other is formed by the parameters for West Japan: 
Kinki, Chugoku, and Kyushu regions. West Japan has larger cost 

SurYeyed Area 
Hokuriku Chubu Kink.i Chugoku Shikoku Kyushu 

-0.0038 -0.000024 -0.00203 -0.00108 -0.00458 -0.00266 
-8.46 -0.05 -4.6 ·l.87 -8.48 -2.8 

-0.000406 -0.00105 -0.000689 -0.00106 -0.000055 -0.00086 
-4.21 -11.5 -7.25 -9A -0.28 -4.37 

-0.123 0.144 -0.235 0.736 0.0336 0.123 
-1.96 2.75 -3.54 8.1-t. 0.31 0.8 

0.682 0.828 1.12 0.595 0.305 0.762 
3.65 10.0 12.23 4.32 2.83 3.61 

0.73 1.3 0.0303 0.0611 0.612 l.32 
5.11 12.6 0.26 0.35 3.24 5.78 

0.510 0.722 0.422 1.35 1.45 1.39 
4.46 11.6 4.84 10.1 8.60 13.9 

-1898.9 -3192.1 -2471.8 -1372.0 -1025.5 -1303.2 
-1737.0 -2897.1 -2277.6 -1183.6 -906.5 -1051.2 

614 1000 765 442 353 469 
27 30 30 26 21 19 

Surveyed Area 
Hokuriku Chubu Kink.i Chugoku Shikoku Kyushu 

-0.0125 -0.00602 -0.00464 -0.00876 -0.00899 -0.00971 
-23.7 -7.64 -5.26 -13.4 -16.2 -11.9 

-0.00128 -0.00275 -0.00148 -0.000856 -0.00215 -0.00273 
-9.07 -15.4 -6.78 -4.65 -4.92 -11.3 

0.128 0.316 0.0936 0.296 0.434 0.494 
1.36 5.81 l.63 2.79 4.67 4.1 

0.572 0.485 0.779 1.62 0.495 1.12 
4.49 5.36 6.48 6.05 5.19 .5.39 

0.517 0.844 0.917 0.276 1.27 2.67 
3.55 6.52 3.-18 1.4 4.81 8.57 

0.28 l.06 -0.585 0.845 1.63 1.23 
1.64 5.1 -1.05 3.77 7.21 6.98 

-2445.0 -2598.7 -1553.3 -1494.5 -1667.8 -1754.0 
-1451.9 -2163.8 -1387.4 -1129.4 -1225.5 -1154.1 

939 933 577 626 744 660 
17 18 18 13 11 17 

and smaller time parameters than East Japan. Relatively speaking, 
this implies that the West is cost conscious and the East is time 
conscious. Results of day trip models were similar, although the 
positions of Chugoku and Shikoku changed. As a result, different 
regions may have different parameters of time and cost, and the 
regional combination to make a few model segmentations, such as 
east and west Japan, is possible to represent trip distributions in 
Japan. Furthermore, the fact that parameter trade-off ratios between 
time and cost variables, in regions in which the t-statistics of both 
parameters exceed 2.0 (Tohoku, Hokuriku, Kinki, and Kyusyu), 
were nearly identical among overnight and day trip models suggests 
the possibility of integrating overnight and day trip models. 

CONCLUSIONS 

The outline of the first large-scale survey of recreation travel in 
Japan is summarized and the applicability of survey data to trip 
generation and distribution models is briefly examined. Recre
ational travel volume is definitely increasing in Japan, and the 
improvement of transportation facilities is expected in several recre
ational areas. Understanding recreational trip behavior is essential 
to revising the road planning in suburban areas. 

The results of NRTS provided fundamental characteristics of 
recreational travel, which differ by demographic attributes and 
regional factors. The modeling abilities from NRTS were also 
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FIGURE 9 Regional difference of time and cost parameters of destination choice 
models for overnight recreational trips. 

conformed by successful results of trip generation and destination 
choice models. The trip generation models had much higher corre
lation coefficients than other models from previous studies in Japan. 
Destination choice models in most regions provided significant and 
reasonable parameters and the possibility of regional data pooling. 

However, several fruitful researches using NRTS data are still 
unexplored. Ongoing and additional research on the following 
aspects will activate NRTS potentials for planning fields: (a) estab
lishment of a survey method using home-based and choice-based 
recreation site samples to estimate a nationwide origin destination 
matrix; (b) integration of destination choice models to improve their 
statistical accuracy and stability; (c) consideration of travel duration 
and interval in the trip generation process to improve the model's 
predictability; (d) modeling of intraregional travel behaviors in 
several regions to establish the prediction methods of recreational 
traffic volume in recreational areas. 
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Investigating Effect of Travel Time 
Variability on Route Choice Using Repeated
Measurement Stated Preference Data 

MOHAMED A. ABDEL-ATY, RYUICHI KITAMURA, AND PAUL P. JOVANIS 

A study was conducted to determine ways in which travel time varia
tion affects route choice behavior and the potential interplay among 
travel time variation, traffic information acquisition, and route choice. 
In a computer-aided telephone interview, a stated preference section 
was included to investigate this issue, and 564 respondents in the 
Los Angeles area gave their choices to five hypothetical binary choice 
sets. The repeated measurement issue is addressed with individual
specific random error components in a binary logit model with normal 
mixing distribution. The results indicate the significance of both the 
degree of travel time variation and traffic information on route choice 
and illustrate the viability of the survey methodology used. The study 
also underscores the need for a statistical correction to account for the 
correlation among error components in repeated-measurement data. 

In recent years, with an increased desire for better urban trans
portation systems arising from environmental and increased levels 
of traffic congestion concerns, there has been an increased need for 
better modeling in the transportation planning process. Much of the 
emphasis has been on gaining a better understanding of an individ
ual's route choice behavior. It is in the area of traffic assignment 
that a better understanding of that behavior would be beneficial. 

TRAVEL TIME UNCERTAINTY AS 
CONTRIBUTING FACTOR TO ROUTE CHOICE 

Several empirical studies have examined the factors affecting 
drivers' route choice. In the urban context the governing relation
ship is not clear; some researchers have concluded that time mini
mization is the dominantcriterion, whereas others have noted the 
importance of other factors, such as road type (1,2); avoidance of 
congestion (J); and avoidance of stops and traffic signals (3). 

The reliability of a particular route can be expected to play an 
important role in the traveler's route choice behavior. In several atti
tudinal studies, reliability-related attributes have been found among 
the most important service attributes in a variety of situations (4). 

Black and Towriss (5) indicated that travelers are likely to suffer 
disutility because of the uncertainty or unreliability in travel times. 
However, the effect of travel time variation has been rarely investi
gated in route choice studies. In an empirical study by the authors 
(6), travel time reliability was found as one of the most important 
factors for route choice, with about 54 percent of respondents in a 
route choice survey indicating that travel time reliability is either the 

M.A. Abdel-Aty, Department of Civil and Environmental Engineering, 
University of Central Florida, P.0 Box 162450, Orlando, Fla. 32816. 
R. Kitamura and P. P. Jovanis, Institute of Transportation Studies, 2028 
Academic Surge, University of California at Davis, Davis, Calif. 95616. 

most important or second most important reason for choosing their 
primary commute routes. 

The Wardrop user equilibrium model states that travelers choose 
the fastest available route; it implies that they always choose the 
same route on repeated trips (7). However, travelers are not always 
capable of identifying the fastest route, and if travel time is uncer
tain, they may wish to acquire additional information that helps to 
select a better route. Therefore, investigating the effect of travel 
time reliability is significant in understanding the impact of traffic 
information on route choice. 

Several studies by the authors have investigated the effect of 
numerous criteria on route choice behavior (8-10). The main objec
tive of this study is to explore one measure ofreliability-travel time 
variability-and assess its importance on route choice. The possible 
interplay between traffic information, travel time variability, and 
route choice will also be addressed. Five stated preference choice 
sets were included in a route choice survey to investigate the effect 
of travel time variation on route choice. This repeated measurement 
data set is used in the modeling effort presented in this paper. 

REVIEW OF DISCRETE CHOICE MODELS WITH 
REPEATED-MEASUREMENT DATA 

Discrete choice models typically are estimated on the basis of 
revealed preferences, with a single choice made by each respondent 
in the sample. Under these conditions, the disturbance term (e) 
accounts for the taste variation from one decision maker to another. 
In contrast to the revealed preference approach, repeated hypothet
ical choice sets are often presented to the decision makers in the 
stated preference approach. 

The estimation of a discrete choice model with repeated observa
tions for each respondent gives rise to an obvious correlation of dis
turbances, or heterogeneity, which refers to variations in unobserved 
contributing factors across behavioral units. If behavioral differences 
are largely caused by unobserved factors, and if unobserved factors 
are correlated with the measured explanatory variables, then esti
mates of model coefficients will be biased if this heterogeneity is not 
taken into account. The problem may be more pronounced in 
repeated measurement data because such unobserved factors may be 
invariant across the repeated measurements. In this paper, an error 
component method is used to account for unobserved heterogeneity 
and correct for potential bias that would otherwise arise. 

Many studies, for example, Bunch et al. (J J), ignored the effect 
of heterogeneity by indicating that in a small number of repeated 
observations by each individual the properties of parameter esti
mates themselves do not rely on the strict independence assump-
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tion, and the benefits of using a much larger pooled data set more 
than outweigh this concern. 

Mannering and Winston (12) presented a dynamic model com
posed of nested-logit models of car ownership level and vehicle 
type choice, combined with linear utilization models. The paper 
emphasizes dynamic aspects of car ownership and utilization 
behavior, for example, stationarity and state dependence. However, 
it neglects completely the possible intertemporal correlation in the 
error terms. Mannering (13) discusses the same model system but 
assumes that disturbances are serially independent because of the 
difficulty in accounting for serial correlation in the presence of 
lagged endogenous variables in discrete choice models. Hocherman 
et al. (14) estimated a nested logit dynamic household vehicle trans
action model assuming that serial correlation is not present. 

Louviere and Woodworth (15) corrected the standard errors pro
duced by a repeated responses regression model by multiplying the 
standard errors by the square root of the number of repeated obser
vations. Mannering (J 6) estimated a vehicle choice logit model with 
repeated observations and also used the same correction procedure. 
However, this method is said to be a conservative approach and tends 
to overcorrect the value of the standard errors (15) (or t-statistics 
when divided by the square root of the number of observations for 
each respondent). 

A number of other discrete choice panel data models have been 
discussed in the literature, usually limited to the dichotomous case. 
One of the oldest models is the beta-logistic model proposed by 
Heckman and Willis (17). In this model heterogeneity is introduced 
by specifying the beta distribution as a mixing distribution on the 
outcomes. The exogenous variables are assumed to be time invari
ant. The presence of heterogeneity in mode choice models is shown 
in Uncles (18) also using a beta-logistic model. 

Kitamura and Bunch (19) used a dynamic ordered-response pro
bit model with error components of car ownership. This approach 
allows more flexible formulation of the error terms and thus offers a 
better accounting of heterogeneity than do the beta-logistic models 
suggested by Heckman and Willis (17) and Uncles (18). Morikawa 
(20) also used logit models with error components to treat serial 
correlation (heterogeneity) between the error terms of revealed and 
stated preference models. · 

Incori)orating the effect of the correlation of disturbances into 
repeated observations, discrete choice models must be addressed 
explicitly if unbiased estimates of the structural parameters are to 
be obtained. This paper is concerned primarily with the empirical 
results investigating the effect of travel time variation on route 
choice. However, heterogeneity will be accounted for by using a 
parametric functional form (normal mixing distribution and Gauss
ian quadratures estimation). Comparative analysis will be per
formed using the pooled data and applying the heuristic correction 
procedure suggested in other studies (15, 16) and using one obser
vation randomly drawn from each respondent. A subsequent paper 
will concentrate on different specifications of the error components, 
that is, parametric estimation with different distributions and 
nonparametric estimation. 

ROUTE CHOICE SURVEY 

An ongoing effort for the Partners for Advanced Transit and High
ways at University of California, Davis, is to investigate the actual 
route choices of drivers, with the objective of developing refined route 
choice models that can include the effect of traveler information. 
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To probe into drivers' route choice behavior, a computer-aided 
telephone interview (CA Tl) of Los Angeles-area morning com
muters was conducted. The survey, undertaken in May and June 
1992, was designed to investigate how much information drivers 
have about their routes; their awareness of alternate routes; their 
awareness of traffic conditions, which could affect their route 
choices; and their use of available traffic information either en route 
or pretrip, or both. A detailed description of the survey design and 
descriptive statistics are included in a research report by the authors 
(8), and models of .information use and route choice and of 
commuters' frequency in changing routes are reported in Abdel-Aty 
et al. (9). 

A second CA TI survey was designed and conducted in May 1993. 
Its objectives were to probe further into drivers' route choice behav
ior, to measure any changes within the last year, to investigate com
muters' attitudes and perceptions about several commute character
istics, and to understand the effect of travel time variation on route 
choice. The survey targeted the same sample interviewed in May and 
June 1992. A maximum of 10 callbacks were attempted before aban
doning a respondent's number, which yielded 564 (about a 60 per
cent response rate) completed interviews ( 1 year after the first survey 
of May and early June 1992). Abdel-Aty et al. (21) describe the 
survey design, and introduce general descriptive statistics that show 
commuters' perceptions, preferences, and decisions in route choice. 
Factor analysis was performed to investigate the commuters' 
perceptions of several commute route characteristics. 

This paper is concerned with the last objective of the survey, 
which is to measure and investigate whether commuters choose a 
route that is longer but more reliable or a route that is shorter but 
has uncertain travel times and to what extent uncertainty affects 
route choice. The paper presents models of the effect of travel time 
variation on route choice and the possible interplay between travel 
time variation, traffic information, and route choice. 

DESCRIPTION OF HYPOTHETICAL 
CHOICE SETS 

The advantage of using revealed preference (RP) data is that result
ing models are based on the observation of actual behavior, not on 
respondents' responses to questions about their intentions. How
ever, the family of market research survey techniques, termed stated 
preference (SP) methods, has been used often in transportation 
planning over the past decade [e.g., Morikawa (20) and Khattak 
et al. (22)]. Such methods are now becoming seen as a complement 
to the more traditional RP survey methods in cases where the latter 
cannot provide the full information needed for analysis. Investigat
ing the effect of travel time variation on commuters' route choice 
would be difficult largely because it is time consuming to collect 
data that support the analysis. Therefore, in the context of this study 
there is no alternative but to solicit preferences in hypothetical 
settings, as is often done in many marketing research contexts. 

It was therefore decided to include repeated hypothetical choice 
sets in the CA TI survey. A major concern was that the design of SP 
choices could be complicated because the intention was to quantify 
the tradeoffs between a reliable but slow route versus an unreliable 
but fast route. It was intended also to make the design of the choice 
sets as easy as possible to be understood on the telephone, which 
was the medium chosen for the survey (in mail questionnaires more 
complete and complicated SP choice scenarios can be formulated, 
whereas in telephone interviews there is a limitation to what a 
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respondent can comprehend and visualize). Another concern was 
that the degree of travel time variation needed to be as realistic as 
possible. The SP choices were thus designed to be as simple as 
possible so that respondents can comprehend and present their 
choices on the telephone. 

Five SP choices are included in the survey. In each choice the 
respondent is asked to choose between two hypothetical routes. The 
first route has a fixed travel time every day (5 days a week), whereas 
the second route has the possibility that the travel time increases on 
some day (s). For example, Route l has a travel time of 30 min 
every day, whereas Route 2 takes 20 min 4 days per week and 
40 min l day per week. In this case respondents are informed that 
if they choose Route 1, they are certain that travel time will be 
30 min every day, but if they choose Route 2 they must expect that 
it is possible that on any one day of the week travel time could be 
40 min and on the other 4 days it could be 20 min. 

The choices are designed such that the travel time on the first 
route is always longer and certain, whereas that of the second route 
is shorter but uncertain. The mean travel time on the second route 
changes and reaches in some choices the mean of Route 1. The 
sequence of the choices is randomized across respondents to avoid 
any ordering biases. 

Table 1 presents the five stated preference questions, and the 
mean and standard deviation of travel times and observed frequency 
of choices for each case (only Columns 2 and 3 were presented to 
the respondent in the interview). The average travel time on Route 
2 ranged between 24 and 30 min, whereas the mean travel time on 
Route 1 was 30 min. The standard deviation ranged between about 
5 min (Case 3) and about 33 min (Case 5). 

Turning to the frequency of choices for each case, it is clear that 
(a) in Cases 2, 4, and 5 the majority of the respondents had chosen 
Route l; (b) these cases have the largest standard deviations on 
Route 2 (> 10 min); and (c) the mean travel time on Route 2 is 

TABLE 1 Stated Preference Choices 

Travel Time 

Route Mean Standard 
Case Route Description (min/day) (min) 

30 min every day 30 0 

2 20 min 4 days/week 
40 min 1 day/week 24 8.94 
30 min every day 30 0 

2 
2 20 min 4 days/week 

60 min 1 day/week 28 17.89 
30 min every day 30 0 

3 
2 20 min 3 days/week 

30 min 2 days/week 24 5.48 
30 min every day 30 0 

4 
2 20 min 3 days/week 

45 min 2 days/week 30 13.69 
30 min every day 30 0 

5 
2 20 min every day 

120 min 1 day/2 week 30 33.54 
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either 28 or 30 min. In Case 1 both routes were almost equally 
chosen, the mean and standard deviation on Route 2 are 24 and 
about 9 min, respectively. In Case 3, where the standard deviation 
is the least and the mean is 24 min, Route 2 was chosen by the 
majority of the respondents. 

Figure 1 depicts the relationship between the standard deviation of 
travel times on Route 2 and the frequency of each alternative being 
chosen. Figure l and Table 1 illustrate that the respondents correctly 
recognize the time savings and degree of variation and are willing to 
tolerate travel time variation to a certain limit, after which they are 
more likely to use the certain (although slightly longer) route. 

ROUTE CHOICE MODELING 

In this section, two sets of models are estimated. The first uses the 
pooled data set that contains all repeated choices, and the second is 
based on a randomly drawn observation for each respondent. 

Route Choice Models Using Repeated Observations 

In developing statistical models of repeated discrete choice, a cen
tral concern is the identification of the structural parameters of 
exogenous determinants of choice behavior, while controlling for 
other influences on behavior. These other influences include such 
effects as state dependence, initial conditions, nonstationarity, and 
omitted variables and unobservable variables such as taste and 
motivation. In the context of the data from the short-term repeated
choice sets analyzed in this paper, it is possible to argue that the 
values of most exogenous determinants of choice behavior remain 
constant over time and that the assumptions of stationarity and the 
lack of state dependence are reasonable. The lack of state depen-

Expected Travel 
Deviation Delay per Day Time Saving of 

(min) Route 2 per week (min) Stated Choices 

0 310 

4 30 254 
0 476 

8 10 88 
0 159 

4 30 405 
0 454 

10 0 110 
0 496 

10 0 68 

NoTE: delay/day = mean - usual travel time (most frequent) expected saving in travel time of Route 2 = travel time on Route I/week-travel time on Route 2/week 
= difference in expected travel time between Routes I and 2/week 
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Frequency of Choices 
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FIGURE 1 Relationship between frequency of observed choices 
and standard deviation. 

dence in its tum implies exclusion of initial conditions (23). Empir
ical evidence for the assumption of a lack of state dependence in this 
context is available in the work of Uncles (24). 

Given the simplifying assumptions of stationarity and lack of 
state dependence, one is left with the problem of controlling for 
omitted and unobserved variables whose influences are defined 
collectively as unobserved heterogeneity. If the possible existence 
of unobserved heterogeneity is not r.ecognized and accounted for in 
the model's econometric structure, the model will have biased 
coefficients. Also, because the pooled data set includes repeated 
observations from each individual, the strict independence among 
choices and the asymptotic standard errors would be understated. 

Methodological Approach 

The approach taken in this paper to account for unobserved hetero
geneity is to assume a parametric functional form for the pattern of 
the heterogeneity. The vector of observed choices or responses for 
individual i is defined as y;. Each element of y; is written as y;1:t = 
1, ... , T;, each of which is a repeated binary choice, expressed as 
the integers 0 and 1. The length of y; is T;, which may vary between 
individuals. The sample size is written as /, so i = 1, ... , I. 

The assumptions of lack of state dependence, stationarity, con
stant exogenous variables, and constant probabilities over the 
repeated choices facilitate the writing of the probabilities that indi
vidual i chooses alternatives 0 or 1, Po;1 and Pi;1, respectively, in the 
standard logistic regression form 

Po;1 = P(y;1 =Ola,~, X;1) = 1 I [1 +exp (x;;~ +a)] 

P1;r = P ()1;1 = 1 I a,~, X;1) =exp (x;;~ + a)/[1 +exp (x;;~ +a)] (1) 

where 

a = constant; 
~ = vector of parameters, and 

X;1 = vector of exogenous variables. 

The influence of the unobserved variables in Equation 1 is repre
sented by the constant term a; that is, the influence is assumed 
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constant across individuals. The probability of observing)'; given T; 
in this specification is 

T; [ exp (x!r~ + a) ] Dii 

P ()';1 I O'., ~' T;, X;1) = IT l + ( 1 ~ + ) 
t=I exp Xu a 

(2) 

D· = {1 
ti 0 

if Y; 1 = 1 
otherwise 

Heterogeneity is introduced into the model by assuming that the 
probabilities Po;1 and p 1il are conditional on both X; 1 and an individ
ual specific error term, s;, which represents all the other influences. 
Equation 1 becomes 

Po;1 = P(y;1 = 0 I ~' X;,, S;) = 11[1 +exp (x/,~ + a + S;)] 

Pli1 = P(y;1 = I I~' X;1, S;) 
= exp (x/1~ + a + S;)/[l + exp (x;;~ + a + S;)] (3) 

The s;: i = 1, ... , I are assumed to be identically distributed with 
density function f(s) independent of the X;, so that Equation 2 
becomes 

P [Y;1 I ~, T;, x;1,J(s;)] 

= rx n [ exp (x!r~ + O'. + S;) ]D;1f(s-) d (S) (4) 
-oo r= 1 1 + exp (x/1 ~ + a + s;) ' ' 

This yields a marginal likelihood function. The unknown variables 
s are integrated out. Equation 4 is based on the assumption that s 
has a continuous distribution function. The distribution of S; is 
called a mixing distribution. The log likelihood function is 

1 + 00 

T; [ exp (x/1 ~ + a + s;) ]oil 
L =~In J Di 1 +exp (x/1~ +a+ s;) f(s;)d(s;) (5) 

A parametric form and S; ~ N (0, u 2
) are assumed. The integral is 

evaluated using Gaussian quadratures. General MLE packages, 
such as the one provided with GAUSS statistical software (25) can 
be used for this problem. The Broyden, Fletcher, Goldfarb, and 
Shanno (BFGS) optimization method is used (26). The BFGS 
method is similar to the Newton method in that it uses both first and 
second derivative information . However, in BFGS the Hessian is 
approximated, reducing considerably the computational require
ments, and although it takes more iterations than Newton it con
verges in less overall time. 

Estimation Results 

A binary logit model is developed using the methodology presented 
above. The model is developed to estimate the commuters' choice 
between Route 1 (longer with reliable travel time) and Route 2 
(shorter with uncertain travel time). The overall observations are 
used to estimate the models, which give a total of 2,820 observa
tions (i.e., 564 respondents, each making five choices). The data 
used for estimating the model came from the two CA TI surveys 
(e.g., perception of shorter distance) and Table 1 (e.g., standard 
deviation of the travel time). 
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The model is presented in the first part of Table 2 and shows that 
commuters' perceptions and attitudes have important effects on 
their choice; that is, if respondents perceive shorter travel distances 
as being extremely or very important, then they are likely to choose 
Route 2 in trying to minimize their travel time. 

The standard deviation of the travel time on Route 2 has a nega
tive coefficient, indicating that the more the variation in travel time 
on Route 2, the less likely this route is to be chosen. This result 
shows that commuters realize travel time and its variability on alter
native routes and try to minimize them. Also, the larger the differ
ence in the expected travel time between Routes 1 and 2, the more 
likely the respondent chooses Route 2, indicating that commuters 
realize the savings in travel time and choose the route that achieves 
a minimum travel time. These two variables show clearly that 
commuters try to minimize their travel time but only if travel time 
variation is acceptable. If travel time varies significantly on a par
ticular route then commuters will choose the longer certain route. 

Receiving traffic information is a very significant variable in this 
model. Information is more likely to affect the degree of uncertainty 
and hence influences the commuter's route choice. Acquiring traf
fic information could be treated as either an endogenous or an 
exogenous variable. Commuters receive information because of 
personal reasons (e.g., to reduce their degree of uncertainty) or 
because of their commute characteristics (e.g., long commute trip). 
Therefore receiving pretrip traffic information is most likely to be 
an endogenous variable; thus the variable was instrumented using a 
binary logit model estimated in Abdel-Aty et al. (8)-the data used 
in the instrument come from the first CATI survey, i.e., commute 
distance, gender, traffic conditions on the regular commute route, 
and perception of the uncertainty of travel time. The variable has a 
significant positive coefficient that indicates that commuters who 
listen to pretrip information are more likely to choose the uncertain 
route, possibly because they are confident that they can know if 
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there is a delay on a particular day and avoid this route. The signif
icance of the information variable validates the SP choice sets used 
in this study because people do acquire information in the real world 
to reduce their uncertainty. 

Gender also had a significant effect on route choice. Males are 
found to be more likely to choose Route 2. This indicates that males 
are more risk prone and are ready to choose uncertain routes in 
trying to minimize their travel time. 

Finally, the significance of er illustrates that the unobserved influ
ences affecting a specific individual's choice are correlated from 
one of his or her selections to the next. 

A second model that describes the route choice with normal mix
ing distribution was estimated. This model is similar to the model 
presented in Table 2, but receiving pretrip traffic information is sub
stituted by receiving en route information. This model is similar to 
a large extent to that shown in Table 2. However the overall fit of 
the first model (including the effect of pretrip information) is 
slightly better (log likelihood of= -1133.804 versus -1135.078). 
Also the t-statistics of receiving pretrip information are significant 
at the 95 percent level of significance, whereas receiving en route 
information was significant only at the 90 percent confidence level. 
As found in a previous study (10), commuters might value and use 
pretrip information more than en route information because it noti
fies them of the status of their routes in advance, which enables 
them to change route or departure time, or both. In the context of 
this study, traffic information, particularly pretrip, will help reduce 
the degree of uncertainty when commuters encounter a variation in 
travel time on their routes. 

The inclusion of both types of information in a model was 
attempted, but this caused problems in the model estimation 
because of multicollinearity. A possible extension of this work is to 
estimate a similar model that considers whether the respondent 
receives pretrip or en route traffic information. 

TABLE 2 Estimates Describing Route Choice with Normal Mixing Distribution and Gaussian Quadrature Estimation Using Pooled Data and 
Randomly Drawn Observation, Including Effect of Pretrip Traffic Information 

Normal mixing Pooled repeated Randomly drawn 

distribution measurement observation 

Coef. t-stat. Coef. t-stat. correc. t-stat. Coef. t-stat. 

Constant -2.394 -5.89 -1.655 -6.45 -2.88 -1.199 -2.08 

X1 Attitude toward shorter distance dummy 0.550 3.26 0.391 4.22 1.89 0.212 1.06 

(1 ifextremely or very important, 0 otherwise) 

X2 Standard deviation of travel time on Route 2 (min.) -0.067 -6.32 -0.052 -5.67 -2.54 -0.065 -2.99 

X3 Difference in expected travel time between Route 1 & 2 /week 0.067 10.31 0.048 8.99 4.02 0.031 2.61 

x. Receive pre-trip information - instrumented 0.416 2.54 0.294 3.84 1.72 0.276 1.71 

x, Male dummy variable 0.548 3.25 0.372 4.08 1.82 0.432 2.18 

'1 Standard Deviation of~' 1.462 13.51 

Summary Statistics 

Log Likelihood at z.ero -1954.675 -1954.65 -390.93 

Log Likelihood at market share -1784.392 -1784.39 -351.66 

Log Likelihood at convergence -1133.804 -1477.12 -307.86 

Likelihood ratio index 0.419 0.244 0.213 

Number of observations = 2820 (S64 respondents) 2820 2820 564 
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Models Using Pooled and Randomly Drawn Data 

The same model presented earlier is estimated using the same 
model specifications such as (a) pooled repeated measurement data 
and correcting the t-statistic by dividing it by the square root of the 
number of observations for each respondent [this heuristic method 
was used in Louviere and Woodworth (15) and Mannering (16)] 
and (b) one observation randomly drawn from each respondent. The 
models are also presented in Table 2 to facilitate comparisons 
among the three models. 

A comparison of the three models presented in Table 2 indicates 
that the results of the pooled data model, after correcting the 
t-statistics value, and the randomly drawn observation model are to 
a great extent close. The t-statistics of the model estimated using the 
mixing distribution and that of the uncorrected pooled data model 
are comparable to a large extent (mixing distribution produced the 
largest t-statistics for route-specific attributes, whereas pooled data 
tended to give the highest t-statistics for individual attributes). It is 
apparent that the corrected pooled data model produces a conserva
tive estimate of the t-statistic values, which might have over
corrected these values. On the other hand, the model with the 
randomly drawn observation lacks the benefits of using additional 
information in the much larger pooled data set. Figure 2 compares 
the coefficient estimates of the three models and shows that the coef
ficients are similar for some of the variables, that is, standard devia
tion and difference in expected travel time (route-specific attributes). 
On the other hand, the coefficients are different for other variables. 

These comparisons illustrate the need for a method to account 
for heterogeneity. The use of normal mixing distribution is used in 
this paper. However, extending this effort to include different 
mixing distributions and nonparametric distributions remains as a 
future task. 

CONCLUSIONS 

The primary conclusion of this research is that a specific measure 
of travel time reliability, variability of travel time, has an important 

Coefficients 
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impact on the route choice behavior. It is clear that the choice sets 
could not be posed to the respondents in formal statistical terms, 
such as mean and standard deviation. However, the results showed 
that using repeated hypothetical choice sets while varying travel 
time on one of the routes is a viable method. This method achieved 
travel time dimensions that are easily convertible to the more formal 
statistical measures, which are desirable from the modeler's stand
point. More impressively, the respondents understood the degree of 
variation and responded rationally. 

The results of the models estimated using the stated preference 
route choices yielded important insights into the commuters' route 
choice in general and the tradeoffs involved in the choice between 
a route that is longer but has reliable travel time versus another route 
that is shorter but has an uncertain travel time. The models that are 
estimated either by using single or repeated observations for each 
respondent show that both expected travel time and variation in 
travel time influence route choice; commuters' attitudes toward 
several commute characteristics (e.g., distance and traffic safety) 
influence route choice; and, among the socioeconomic factors, 
gender has a significant effect on route choice. 

Receiving traffic information is found to have a significant effect 
in the models. Information might be used by the commuters to 
reduce the degree of travel time uncertainty and enables them to 
choose routes adaptively. 

The data also suggest that the impact of travel time variability 
varies substantially across individuals, ranging from those who will 
choose routes that are significantly longer to avoid the possibility of 
delay to those who are essentially expected value decision makers 
with respect to commute alternatives. A possible extension to this 
work is to introduce the idea of risk aversion and being risk prone 
in the route choice models and measure the bound of risk aversion. 

The error components account for unobserved heterogeneity and 
correct for potential bias that would otherwise arise from the use of 
repeated measurement data. The repeated measurement issue is 
addressed in this study with individual-specific random error 
components in a series of binary logit models with normal mixing 
distribution. The significance of the standard deviation of the error 
components shows clearly the need for some formal statistical 
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correction to account for heterogeneity. A methodological future 
direction is to attempt models with the same specifications using the 
nonparametric approach and compare them with the models 
presented in this paper to reach conclusions about the best way to 
account for heterogeneity in route choice models. 
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Evolution of Network Flows Under Real
Time Information: Day-to-Day Dynamic 
Simulation Assignment Framework 

TA-YIN Hu AND HANIS. MAHMASSANI 

A day-to-day dynamic framework, in which the DYNASMART simu
lation assignment model was applied to evaluate the performance of 
traffic networks, was developed to study network dynamics under dif
ferent information systems. Two levels of tripmaker decision-making 
processes are identified: (a) day-to-day dynamics and (b) real-time 
dynamics. Day-to-day dynamics consider the choices of departure time 
and route according to indifference bands of tolerable "schedule delay" 
defined as the difference between the user's actual and preferred arrival 
times~ Real-time dynamics consider en route switching decisions. 
Numerical experiments were conducted to investigate the day-to-day 
evolution of network flows under real-time information and assess the 
effectiveness of such information in a proper dynamic perspective. 

Advanced traveler information systems (A TIS) and advanced 
traffic management systems provide a variety of capabilities to 
alleviate traffic congestion in urban networks by strengthening the 
connection between traffic control and available information (/). 
The evaluation of such information-based systems has been con
cerned primarily with the potential of this information to redistrib
ute flows spatially over the network during the peak period on a 
given day (2-4). However, real-time information can also induce 
changes in time of departure, leading to temporal redistribution of 
the flows. Such effects tend to take place over several days. In other 
words, although the ability of real-time information to affect 
en route switching is well recognized, its potential effect on the 
day-to-day decisions of departure time and route remains to be 
investigated systematically. A key question is how tripmakers make 
decisions on the basis of experienced or received information, or 
both. Although the importance of learning processes in such sys
tems has been recognized (5-8), consideration of such processes 
needs to be incorporated into the effectiveness of analysis and eval
uation of information systems. 

This paper describes a day-to-day dynamic simulation assignment 
framework to study the interaction among individual decisions, traf
fic control strategies, and network flow patterns under real-time 
information systems. The framework integrates two previous lines 
of investigation, namely (a) day-to-day forecasting methods for 
commuter systems, previously considered only in a corridor context 
and without en route real-time information (9), and (b) time
dependent assignment-simulation modeling for networks with gen
eral topology under real-time ATIS in the form of DYNASMART 
(10). The resulting methodology is applicable to general networks 
with detailed representation of traffic processes, including traffic 
control actions, and provides a tool for forecasting the day-to-day 
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evolution of the system under various information policies, network 
supply actions or control strategies. System users are represented 
individually in the model, and their daily decisions of route and 
departure time (and possibly mode) provide the principal mechanism 
governing day-to-day evolution. Similarly, user decisions in 
response to information, both en route and pretrip, are also repre
sented individually. As such, this framework provides an illustration 
of an operational dynamic demand_ forecasting tool on the basis of 
microsimulation of individual tripmaking decisions (although traffic 
interactions are modeled using macroscopic relations). 

The next section presents the day-to-day dynamic simulation 
assignment model framework and DYNASMART. The algorithmic 
procedure and experimental design and numerical results are 
discussed, and concluding comments follow. 

DAY-TO-DAY DYNAMIC SIMULATION 
ASSIGNMENT FRAMEWORK 

Given the focus on peak-period network flows, the framework 
considers primarily the variation in route and departure time in the 
context of commuting trips to work, for which tripmaker behavior 
rules for day-to-day decisions have been calibrated in previous 
work. Extensions to consider noncommuters and nonwork trips are 
conceptually straightforward in terms of overall framework, 
although appropriate individual decision rules for these situations 
remain to be developed. 

Consider a network G(N,A) consisting of a set of nodes N con
nected by the set of directed arcs A. Suppose user i intends to go from 
origin r to destinations and arrives at his or her preferred arrival time 
(PAT;), 'Vi ED, the set of all drivers. PAT; reflects inherent prefer
ences and risk attitudes of commuter i, as well as the characteristics 
of the work place. In this paper, PAT; is assumed fixed for a given 
tripmaker; however, it could be generalized and varied through 
appropriate behavior models to reflect flexible work schedules. The 
selected departure time j;_1+ 1 and route k;,1+1 for driver i on Day 
t + 1 are the outcomes of its decision-making process, described as 

where 

k; 1+1 = selected route for driver ion day t + 1 
i 1+ 1 = selected departure time for driver ion day t + 1, 
f,.(.) = route choice decision-making process function, 

(1) 

(2) 
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fd1(.) = decision-making process function for departure time, 
X; = vector of driver characteristics, 

Zi.t = vector of endogenous information characteristics for 
driver i up to day t, 

Y;, 1 = vector of exogenous information characteristics for 
driver i up to day t, and 

e,., edt = parameter vectors to be calibrated. 

The choices of departure time and route of tripmaker i on day t + 1 
depend on individual tripmaker characteristics, endogenous infor-. 
mation from personal experience, and exogenous information from 
traffic control centers. 

The aggregated departure time decisions of all users determine a 
three-dimensional time-dependent origin-destination (OD) matrix; 
the route choices determine the spatial distribution of flows over the 
peak period. The time-dependent OD matrix and the initial route. 
assignment form the major input for DYNASMART, in which indi
vidual en route decisions are represented. Within the simulation 
period, tripmaker i equipped to receive in-vehicle information makes 
en route decisions according to his or her own behavioral character
istics and information received about prevailing traffic conditions in 
the network. Let 0;, 11. 1 denote a binary indicator that is 1 when driver 
i switches to a new path 1 at node n from the current path and 0 oth
erwise; 0;, 11, 1 can be determined by the user's characteristics, knowl
edge of the paths at node n, Zu(n) and new information about path 
from node n to his or her destination and is expressed as 

0;,11,1 = f,[ X;, Zi.t(n), Yi.t(n)l0s] (3) 

where 

Zi.t(n) = endogenous knowledge of driver i at node non day t, 
Yu(n) = exogenous information for driver i at node n on day t, 
f. (.) = en route path-switching function, and 

es = parameter vector, to be calibrated. 

As a consequence, the flow pattern in the network on day t, F1, 

resulting from a time-dependent OD, initial path selections for day 
t, and en route path-switching decisions can be expressed as 

F1 = flow1 (ki.t, j;_1, O;,,,,i. 'V; E D and n E N) (4) 

Endogenous and exogenous information Z;,1 and Yu can be written as 

where 

(5) 

(6) 

J,, (.) = endogenous information acquisition function, 
fr (.) = exogenous information provision function, 

and 
Cr.1+ 1 and Cs.1+ 1 = route control and signal control on day t + 1. 

Z;. 1 and Yi.t are then used in Equations 1 and 2 to determine the depar
ture time and initial route on day t + 1. Note that the control actions 
C.1+1 and C.1+1 on day (t + 1) are generated with knowledge by the 
controller on traffic conditions associated with flow pattern F1 on 
day t. The whole process takes place in a recursive form. Naturally, 
the complexity of the interactions depicted earlier precludes ana
lytic solution of system performance descriptors. 
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Information Systems 

Information types and flow for different types of user classes within 
this framework are defined to illustrate the possible interaction 
between them. Vehicles (i.e., users) are differentiated into equipped 
and nonequipped classes on the basis of their ability to communi
cate in real time with a central controller. Nonequipped vehicles do 
not receive real-time information and are assumed to follow the ini
tial path selected before their departure. Although users in this class 
do not make decisions on the basis of in-vehicle real-time informa
tion, they can still respond to exogenous information supplied 
through variable message signs. Equipped vehicles communicate 
with the controller, and their drivers can therefore make decisions 
on path selection en route. 

Information strategies can be categorized into two general types: 
descriptive and normative. Descriptive information, currently the 
most common type used or proposed, provides tripmakers with cur
rent traffic conditions through different communication channels. 
Tripmakers can use this information to make their own travel deci
sions, independently of other users' decisions. On the other hand, 
normative information delivers instructions aimed at achieving 
some systemwide objectives. Information can be experienced by 
travelers or collected by control centers by probes, detectors, or 
equipped vehicles, or all of these. 

A fundamental problem is what actions drivers might make on 
the basis of different information types. In the day-to-day dynamics 
context, studies that have explicitly dealt with this aspect have 
relied on a convenient Markovian assumption, whereby the antici
pated travel time on a given day is assumed to be equal to its actual 
value on the preceding day only (11-13.) Horowitz (14) proposed 
to model the predicted trip time on day t as a weighted sum of all 
previous days' trip times. Empirical investigation of this issue is 
limited. Mahmassani and Chang (15) and Tong et al. (16) have cal
ibrated departure time adjustment rules in which the predicted travel 
time is based on the driver's own previous experience as well as 
exogenous information. The calibrated models show that the influ
ence of travel time on the immediately preceding day, TR;,i-i. is 
much greater than that of TR;, 1- 2 (experienced 2 days previously). 
Functional forms of how information is processed can thus be gen
eralized as the weighted sum of all previous days' information and 
different assumptions on tripmaker behavior can be reflected by 
varying the relative weights. 

Day-to-Day Dynamic Choice Behavior 

The behavior component within the day-to-day framework 
addresses the selection of route and departure time in accordance 
with individual attributes and received information. The theoretical 
underpinnings of the model are grounded in Simon's well-known 
notion of bounded rationality, applied to commuter day-to-day deci
sions of departure time and route in work by Mahmassani and 
Chang (J 7, 18). Essentially, the model is founded on the simple 
notion that if tripmakers are not satisfied with their previous selec
tions, they will seek to select a new route or adjust their departure 
time, or both. Satisfaction is implemented on the basis of "indiffer
ence bands" of tolerable schedule delay (relative to one's preferred 
arrival time). 

This decision process consists of two levels, as indicated in Fig
ure l. The first level is concerned with acceptability of the conse-
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FIGURE 1 Day-to-day dynamic analysis procedure. 

quences of the latest choices, vis-a-vis the indifference bands; the 
second level is used to select an alternative conditional on the deci
sion to switch taken at the first level. Previous studies have shown 
that arrival time is of major concern to commuters and have sug
gested that an indifference band of tolerable "schedule delay," 
defined as the difference between the actual arrival time (AT) and 
the preferred arrival time (PAT) for a given tripmaker, is the pri
mary mechanism governing the day-to-day responses of commuters 
to congestion. In their daily commute, tripmakers are assumed to 
maintain the choice as long as they can tolerate the associated 
earliness or lateness relative to PAT. 

if 0 ::::; ESD;, ::::; EBDi1 or - LBD;, ::::; LSD;, ::::; 0 
otherwise 

if 0 ::::; ESD;, ::::; EBR;, or - LBR;, ::::; LSD;, ::::; 0 
otherwise 

(7) 

(8) 

where 

'Yu = departure-time switching binary indicator, equal to 1 if 
switch, 0 otherwise; 

A.;.1 = route choice indicator, equal to I if switch, 0 otherwise; 
ESD;.1 =early schedule delay, equal to Max(PAT;,1-1 - ATi.1-1' 

0); and 
LSD;,,= late schedule delay, equal to Max(ATi.t-I - PATi.t-1' 0). 

There are four possible combinations of departure time and route
choice switching decisions, corresponding to the combinations of 
values for the pair ('Y;.1, A.u). Note that EBO. and LBD are the respec
tive departure time indifference bands of tolerable schedule delay 
corresponding to early and late arrivals for day t, and EBR and LBR 
denote the early and late indifference bands governing route switch
ing. Because the indifference bands are latent terms, internal to each 
individual, and therefore can be neither observed nor measured 
directly, the indifference bands are treated as random variables, 
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distributed over days and across commuters with systematically 
varying mean values (9). 

The second level in Figure 2 is the selection of an alternative, 
which could be a new departure time, a new route, or both, condi
tional on the decision to switch. Several rules, based on different 
behavioral assumptions, can be applied in the individual selection 
process. In this study, alternative selection is based on a simple util
ity maximization process. Two particular models, proposed by 
Small (19) and Hendrickson and Plank (20), respectively, are used 
in the numerical experiments. 

DYNASMART Simulation Assignment Model 

DYNASMART is a descriptive analysis tool for the evaluation of 
information supply strategies, traffic control measures, and route 
assignment rules at the network level (2,4,21,22) The model is 
designed around a flexible structure that provides sensitivity to a 
wide range of traffic control measures for both intersections and 
freeways, capability to model traffic disruptions as a result of inci
dents and other occurrences, and representation of several user 
classes corresponding to different vehicle performance characteris
tics (e.g., cars verses trucks), access to physical facilities (e.g., high 
occupancy vehicle lanes), different information availability status, 
and different behavioral rules. 

The framework of DYNASMART is shown in Figure 2. The 
approach integrates traffic flow models, path processing method
ologies, behavioral rules, and information supply strategies into a 
single simulation assignment framework. The input data include a 
time-dependent OD matrix (or a schedule of individual departures) 
and network data. Given the network representation, the simulation 
component will take a time-dependent loading pattern and process 
the movement of vehicles on links and the transfers between links 
according to specified control parameters. These transfers, which 
are determined by path processing and path selection rules, require 
instructions that direct vehicles approaching the downstream node 
of a link to the desired outgoing link. The user behavior component 
is the source of these instructions. 

DYNASMART uses established macroscopic traffic flow 
models and relationships to model the flow of vehicles through a 
network. Whereas macroscopic simulation models do not keep 
track of individual vehicles, DYNASMART moves vehicles indi
vidually or in packets, thereby keeping a record of the locations and 
itineraries of the individual particles. This level of representation 
also has been referred to as "mesoscopic." Multiple user classes of 
different vehicle performance characteristics are modeled as pack
ets, consisting of one or more passenger car units; for instance, a 
bus is represented by a packet with two (or other user-specified val
ues) passenger car units. The traffic simulation consists of two 
principal modules: link movement and node transfer, as described 
previously (4,22). 

One of the principal features of DYNASMART that allows it to 
interface with activity-based behavioral models is its explicit repre
sentation of individual tripmaking decisions, particularly for path 
selection decisions, both at the trip origin and en route. Behavioral 
rules governing route choice decisions are incorporated, including 
the special case in which drivers are assumed (required) to follow 
specific route guidance instructions. Experimental evidence pre
sented by Mahmassani and Stephan (23) suggested that commuter 
route choice behavior exhibits a boundedly rational character. This 
means that drivers look for gains only outside a threshold, within 
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which the results are satisfying and sufficing for them. This can be 
translated to the following route switching model (2): 

{
I s. = 1,n.l 0 

where 

if TTC;(n) - TTB;(n) > max[11; · TTC; (n), T;] (9) 
otherwise 

8;.11, 1 = binary indicator variable of I when user i 
switches from current path to best alternate 
I and 0 if current path is maintained; 

TTC;(n), TTB;(n) = trip times along current path and along best 
path from node k to destination on current 
path, respectively; 

'l]; = relative indifference threshold; and 
'T; = absolute minimum travel time improvement 

needed for a switch. 

The threshold level may reflect perceptual factors, preferential 
indifference, or persistence and aversion to switching. The quantity 
11; governs users' responses to the supplied information and their 
propensity to switch. The minimum improvement 'T; is currently 
taken to be identical across users. Efforts are under way to calibrate 
these parameters from the results of laboratory experiments. 

ALGORITHMIC STEPS OF 
DAY-TO-DAY DYNAMIC MODEL 

Day-to-Day Dynamic Algorithm 

The conceptual framework of day-to-day dynamics was discussed 
in the previous section. The procedure, as shown in Figure 3, can be 
summarized as follows: 

• Step 0: Initialization. Generate vehicles' attributes and histor
ical paths. Obtain a set of paths from origin r to destination s for 
each discrete departure time interval, denoted as P~··"" Also, each 
driver i will be assigned a set of simulation attributes, S;, and a set 
of behavior attributes, B;. Set iteration counter I = 1. 

• Step l: Network loading. For each driver i, assign a pathp from 
r to s, p; E P~··" an initial departure time, and a loading location, i.e., 
a generation link. For each day, the number of vehicles for each time 
interval DT and for each path RK, denoted X(DT,RK), is generated 
to form a three-dimensional matrix over both space and time. 

• Step 2: Traffic simulation. Simulate network performance dur
ing peak period under given demand pattern using DYNASMART. 
Obtain an updated vehicle file, additional path files (if any diversion 
rule is applied), and time-dependent travel time information for 
links and movements. 

• Step 3: Information update. Update the historical path infor
mation in terms of travel time, add new paths, or delete obsolete 
paths from the historical path file. 

• Step 4: Day-to-day behavior: indifference bands. Calculate the 
departure time and route choice indifference bands for the driver i 
according to B;. Determine values of the switching indexes 'Yu and 
A;.1 'V; for all given t. 

• Step 5: Convergence test. If convergence criterion is satisfied 
(the current flow pattern is stable), stop. Otherwise, continue. 

• Step 6: Selection of departure time and route. If the outcomes 
of 'Yu and A;.1. are (1,0), (0, I), or (1, l ), update departure time and 
route choice according to B;. 
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• Step 7: Resequence and feedback. Resequence vehicles 
according to their departure time. Obtain a time-dependent OD 
matrix. Set I = I + 1 and go to Step 1. 

To overcome the problem of an arbitrary starting point, the ini
tial set of paths is system optimal in terms of minimizing total trip 
time and is obtained using an algorithm recently developed by 
Mahmassani and Peeta (24), for the given time-dependent demand 
pattern. The vehicle file and the historical path file are used and 
updated through the whole simulation period. Currently, for each 
discrete departure time for each OD pair, up to 10 paths are stored 
and dynamically updated in terms of travel time for each path. All 
the path travel times are updated by combining recent travel time 
information with "historical" information, as follows: 

T-1 

PT(T,r,s,j,k) = I w(t) · PT(t,r,s,j,k) (10) 
t=I 

where PT(t,r,s,j,k) is the path travel time for day t on route j at 
departure time k, and Lw(t) is 1 and can be used to express the rel
ative importance of historical travel time. Currently, the particular 
values used for w(T - 1) = 1, and w(T - 2) = 0. 

Convergence Concept: BRUE 

The boundedly rational user equilibrium (BRUE) concept proposed 
by Mahmassani and Chang (/ 5) was applied in this study as the 
convergence concept. A BRUE arises in a system when no user is 
compelled to change his or her current selection, which he or she 
considers satisfactory in a boundedly rational sense. In this context, 
this corresponde~ to all users' arrival times falling within their 
respective departure time and route indifference bands. The partic
ular operational definition adopted in the simulation experiments 
required at least a certain fraction, say 90 percent, of tripmakers to 
be satisfied with their current decisions. 

EXPERIMENTAL DESIGN 

Numerical experiments were performed to illustrate the day-to
day dynamic framework and to explore the evolution of a traffic sys
tem in response to different information supply strategies under dif
ferent assumptions. The primary concerns of these experiments were 
(a) the dynamic evolution of the system, (b) congestion formation 
and dissipation, and (c) effectiveness of real-time information. 

Traffic Characteristics 

The network structure indicated in Figure 4 was used in these exper
iments. It consists of 50 nodes and 168 links and includes 10 demand 
zones with 32 origins and 10 destinations. Each link is 0.25 mi (0.4 
km) long. The freeway links have a free-flow speed of 55 mph and 
all other links have a 30-mph ( 48-kph) mean free speed. The maxi
mum bumper-to-bumper and jam densities are assumed to be 260 
and 160 vehicles per mile (approximately 152 and 100 vehicles per 
kilometer), respectively, for all links of the network. With regard to 
intersection signal control, 26 nodes have pretimed signalization, 8 
have actuated signal control, and the rest have no signal control. The 
pretimed signals have a 60-sec cycle length with two phases, each 
with 26 sec of green time and 4 sec of amber time_. The actuated sig-
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nals have 10 sec of minimum green time and 26 sec of maximum 
green time for each phase. In these experiments, signal control 
parameters are assumed fixed. The OD matrix D has a total number 
of 9,634 vehicles for a period of 25 min (8:05 to 8:30 a.m.) in the 
first day from 32 origins to 10 destinations. Time of departure is dis
cretized into 40 intervals of 1 min between 8:00 and 8:40 a.m. 

Models of Departure Time and Route Switching 

The particular models applied in this dynamic analysis were cali
brated by Jou et al. (25) using survey data from the Dallas, Texas, 
area. Tripmakers in that survey had an average travel time of 23.5 
min. Because the average trip time in the simulation experiments is 
much smaller, the indifference bands given by the models are 
adjusted by the average travel time in the simulation experiments. 
The indifference band for departure time selection is as follows: 

IBDTit = ~ 1 [initial bands] 
[socioeconomic 
component] 

+ ~2AGE; + ~3GENDER; 

[dynamic component] 

[myopic component] 

[unobserved component] 

(11) 

where 

~" ... , ~6 = estimated parameters; 
AGE, GENDER = individual's characteristics; 

NF AIL;, = number of unacceptable early and late arrivals 
until day t; 

8 TR;, = difference between travel times of commuter 
i on day t and t - 1 ; 

8DT;1 = departure time that commuter i has adjusted 
between day t and t - 1; 

3;1 = binary indicator variable equal to 0 if DTit 
= DT;1- 1; otherwise 1 ; and 

Eit = error term for commuter i on day t. 

The values of the estimated parameters are indicated as follows: 

Early Late 

131 23.26 17.82 
132 7.61 4.51 
133 -5.59 -6.57 
134 5.49 4.36 
13s 1.16 0.78 
136 4.17 2.98 

The calibrated indifference band for route choice is as follows: 

IBRC;1 = ~1 

where 

+ ~2STDTR;1 
+ ~3NFAIL;1 
+ T;r 

[initial bands] 
[dynamic component] 
[myopic component] 
[unobserved component] 

~" ... , ~3 =estimated parameters, 

(12) 

STDTR;1 = standard deviation of travel time up to day t, and 
T;1 = error term for commuter i on day t. 
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FIGURE 4 Network structure. 

The values of the estimated parameters are indicated as follows: 

Early 

27.22 
8.87 
8.95 

Late 

18.76 
4.37 
9.13 

Models of Departure Time and Route Selection 

Two particular models, proposed by Small (19) and Hendrickson and 
Plank (20), are used. The specification of the functional form proposed 
by Small can be summarized in the following equation: 
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4 

6 

8 

Uu = -0.106TRu - 0.065SDEu - 0.254 SD Lu 
- 0.58D1Lu + Eu 

where 

(13) 

Uu = measure of utility or "attractiveness" of trip characteris
tics for individual i and altemativej; 

SDE = max { - SD,O}, early schedule delay for individual i 
under alternative j; 

SDL =max {SD,O}, late schedule delay, 
DlL = late dummy variable of 1 if SD 2::: 0, and 0 otherwise; 
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SD = schedule delay, arrival time minus official work start 
time (min); and 

TR = travel time (min). 

The originally calibrated utility function was based on 363 obser
vations from four suburban areas and included constant terms for 
mode, such as drive alone, shared ride, and transit automobile. Some 
terms in the function are not applicable in this study; therefore, a 
modified utility function without those terms is used, as follows: 

UiJ = -0.021TRiJ - 0.00042SDEiJ - 0.148 SDLiJ 
+ 0.0014 SDL2 +Eu (14) 

All the variables are the same as those listed earlier. In this 
particular expression, late arrival incurs a high penalty. 

NUMERICAL RESULTS 

The numerical results are discussed in three parts. The first part · 
describes the evolution of daily flows in the base case. The results 
of two random utility maximization models are discussed in the sec
ond part. The last part discusses the impact of real-time information 
in the day-to-day dynamic flow patterns, followed by a brief 
discussion of computational results. 

Base Case 

In the base case, all vehicles are assumed to be nonequipped (to 
receive real-time information), but to have access to path informa
tion from the preceding day's experience. Starting with a uniform 
loading pattern, the day-to-day dynamic flow patterns of Days 1,2, 
and 14 are indicated in Figure 5. The temporal loading pattern on 
the first day begins with a uniform profile, starting from 8:05 to 
8:30 a.m. (Note: time 0 in the figure corresponds to 8:00 a.m.; the 
work start time is 8:30 a.m. or Time 30). However, a peak devefops 

1200 

1000 

~ u BOO :a 
a.I 

> .... 
0 600 ... 
a.I 
~ e 
::I 400 :z 

200 

53 

·from day to day. On Day 14 (final state), fewer than 10 percent of 
vehicles are still not satisfied with their current selection; the asso
ciated pattern indicates that most drivers want to arrive at their 
preferred arrival time instead of being uniformly distributed along 
the whole time span. The fact that the dynamic flow pattern shifts 
dramatically from Day 1 to Day 2 indicates the unreasonableness of 
the initial uniform load spreading assumption. As expected, peak
period congestion forms because most tripmakers do not wish to 
arrive too early or too late in relation to their scheduled work time. 
Although the dynamic flow pattern tends to shift to a higher peak in 
this case from Day 2 to Day 14, this does not mean that all vehicles 
will select the same departure time in the final steady state. In the 
base case, the number of vehicles departing at the peak 5-min inter
val is about 700 vehicles for Day 2 and 1,010 vehicles for Day 14, 
an increase of about 50 percent. 

The peaks shift from Time 28 of Day 2 to Time 22 of Day 14. 
Experiencing congestion, most of the drivers choose to leave ear
lier, although a few of them choose to leave later to avoid the con
gestion. In the process of adjusting to satisfy the schedule delay con
straint, drivers collectively generate more serious congestion, as 
implied by the higher peak. Although demand managers and traffic 
control centers seek to spread the demand in a smoother pattern, 
drivers have a tendency to collectively create a peak-period flow 
pattern. If this is representative of what happens in actual systems, 
in-vehicle information systems probably can only shift or raise the 
peak instead of eliminating it altogether. 

Average travel time (A TT) and average stopped time (AST) from 
day to day are indicated in Figure 6. While starting from a system
optimal solution point, drivers experience longer travel time and 
greater stopped time from day to day to arrive at their preferred 
arrival time. The overall average travel time doubles, from about 
2.5 to 5.0 min. However, the travel time after Day 11 tends to reach 
a maximum limit. 

Variation of daily time-dependent concentration is indicated in 
Figure 7. The figure provides a clear picture of system convergence. 
Although about 10 percent of vehicles are still seeking better alter
natives, the system does not change because of those slight varia-
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~ 2 
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FIGURE 5 Variation of day-to-day dynamic flow patterns (Days 1, 2, and 14) for 
base case. 
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FIGURE 6 Comparison of A TT and AST of day-to-day dynamic 
flows for base case. 

tions. It is evident that a traffic system with a fixed traffic control 
strategy can always absorb slight variations of demand pattern with
out this causing additional congestion. 

Random Utility Maximization Models 

The previous results were based on experiments performed with 
Hendrickson and Plank's modified model described earlier. Similar 
experiments were conducted using Small's model. The results ·Indi
cated in Figure 8 depict similar patterns in terms of the evolution of 
dynamic flow, switching percentage, and system-wide average 
travel time. The results suggest that different random utility models 
might have a similar effect as long as they can capture the relative 

.§ -f -i::: 
~ 1 
= 0 
u 
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magnitudes of the travel time and schedule delay. In other words, 
the day-to-day evolution patterns appear robust vis a vis the under
lying choice models. 

Effectiveness of Real-Time Information 

The effectiveness of real-time information is evaluated from day 
to day for different market penetrations _of equipped vehicles 
(Table 1). Nonequipped vehicles must continue along their assigned 
initial path set. However, if equipped vehicles are satisfied with 
their new paths, they are assumed to use the paths as their initial 
paths. In this set of experiments, three levels of market penetrations, 
10, 25, and 50 percent, and two real-time behavior assumptions, 
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FIGURE 7 Variation of time-dependent network concentration from day to day for 
base case (1 km = 0.6 mi). 
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FIGURE 8 Comparison of day-to-day flow patterns with different utility models. 

namely, myopic and boundedly rational behavior with a threshold 
of 0.2 and a minimum bound of 0.5 min, are considered. These tests 
are termed info-10, info-25, info-50, info-10-b, info-25-b, and info-
50-b. Real-time information provides path information for equipped 
vehicles switching en route; in the meantime, the new experienced 
paths are collected and added into the path file for all vehicles to use 
for the next day. In brief, this case is termed "info-50-np," which 
means new path information is collected through equipped vehicles 
and distributed to all the tripmakers. 

General Flow Dynamics 

The evolution of day-to-day dynamic flow patterns is similar to that 
of the previous cases. Therefore, the results are summarized in 
Table 1 instead of in the figures. The results show that similar pat
terns are reached in the final steady state, although with different 
peak heights, in spite of different assumptions. The peak-period 
flow pattern indicates that most drivers wish to depart closer to their 
work schedule times in spite of the congestion. It is surprising to 
note that real-time information has an insignificant effect on 
improving the formation of the peak pattern; on the contrary, such 

information apparently can lead to raising the peak, reducing the 
travel time, and shifting the peak toward the work start time. 

With real-time information, the peaks of all the info cases shift 
toward the work schedule time. The gap between the base case and 
info- I 0 is about 3 min, more than 50 percent of the travel time in these 
experiments. The info-50 case not only shifts the peak by 3 min but 
also raises the peak to about 1, 100 vehicles. Although the increase of 
the peak is not quite significant, it offers insight int~ how drivers 
respond to real-time information through their day-to-day dynamic 
choices. These shifts imply that real-time information improves 
drivers' understanding of the traffic system, so trip makers select late 
departure times without delaying their arrival time. In other words, the 
information system may lead to a reduction in travel time, but the traf
fic system compensates by attracting more tripmakers to use the facil
ity and maintain the same level of service. Such phenomena are not 
quite clear in traffic systems and need some validation from field tests. 

Real-Time Information Paths 

The comparison is made for the info-50 case and the info-50-np case. 
The loading patterns of the final state (Day 12 for info-50 and Day 

TABLE 1 Summary Statistics of Effectiveness of Real-Time Information Experiments 

1 llcm = 0.6 mi. 
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19 for info-50-np) in both cases have a similar shape, but the peak in 
the info-50-np case is earlier than that of the info-50 case. This early 
peak implies that vehicles have an earlier departure time to satisfy 
their indifference bands in the evolution of the info-50-np case. To 
maintain the same level of convergence, more days are required for 
info-50-np, probably because of the higher level of congestion. 

The execution time of the model on a CRAY YMP for the test 
network (50 nodes and 168 links) takes about 110 sec/day, includ
ing the input/output time from module to module. 

CONCLUDING COMMENTS 

The analysis of information-based traffic systems needs to consider 
tripmaker behavior, flow patterns, and traffic control systems. In 
this paper, two levels of tripmaker decision-making processes are 
identified: (a) day-to-day and (b) real-time dynamics. Day-to-day 
dynamics considers drivers' choices of departure time and route 
according to indifference bands of tolerable "schedule delay." Real
time dynamics is incorporated within DYNASMART to simulate 
driver's real-time en-route switching behavior. Flow patterns are 
obtained by simulating vehicle movement in the network, whereas 
traffic control systems update flow information or control strategies. 

The day-to-day dynamic simulation-assignment framework 
presented in this paper provides a practical tool for the evalua
tion of network flows and associated performance measures in 
information-based traffic systems. The methodology allows inves
tigation of a wide variety of alternatives and provides fundamental 
insights into the performance of traffic networks under a variety of 
assumptions on information availability and user behavior. 

Naturally, the numerical results presented here should be inter
preted with caution, given the limited set of experiments and the 
nature of the test network and associated conditions. Nonetheless, 
the results provide useful insights into actual traffic systems. It is 
also notable that the impact of the real-time information is mani
fested in several ways: reduces travel time, raises the peak, and 
pushes the peak toward the work schedule time. 
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Implementing Combined Model of 
Origin-Destination and Route Choice in 
EMME/2 System 

PAUL METAXATOS, DAVID BOYCE, MICHAEL FLORIAN, AND ISABELLE CONSTANTIN 

The issue of "feedback" in the traditional four-step urban travel fore
casting procedure (UTFP) has reemerged recently under the pressure of 
the Clean Air Act Amendments of 1990 and the Intermodal Surface 
Transportation Efficiency Act of 1991. FHW A now requires that 
metropolitan planning organizations implement feedback in the UTFP. 
The combined origin-destination and route choic~ (OD-UE) model 
solves simultaneously the trip distribution and the user equilibrium traf
fic assignment models and hence provides for feedback. Computer 
codes for the computation and calibration of combined models are 
available from various researchers. However, they lack detailed docu
mentation and, moreover, require computer programming expertise to 
adapt to professional practice. In view of these drawbacks, this paper 
documents the coding of a macro that implements the OD-UE model in 
EMME/2. The scope of this effort was twofold: first, to respond to cer
tain modeling requirements arising from modern urban transportation 
planning practice; second, to motivate transportation professionals to 
use more sound planning mt{thods. The quality of the results obtained 
using data from the city of Winnipeg, Manitoba, Canada, supports the 
use of the macro in planning applications. 

The issue of "feedback" in the traditional four-step urban travel 
forecasting procedure (UTFP) has reemerged recently with the 
impetus of the Clean Air Act Amendments of 1990 and the Inter
modal Surface Transportation Efficiency Act of 1991. FHW A now 
requires that metropolitan planning organizations implement feed
back in the UTFP. A sound and mostly appealing alternative toward 
the solution to this problem is a model that combines the trip distri
bution, mode split, and assignment steps of the UTFP (/).This type 
of model is not new; its adoption, however, in transportation plan
ning practice is slow. Transportation professionals seem to experi
ence difficulty in understanding the solution procedure. In addition, 
research codes do not provide relief because they lack detailed doc
umentation and require computer programming expertise to be 
adapted to professional practice. Moreover, software developers 
have ignored the issue simply because there has not been sufficient 
demand, at least until recently. 

A number of algorithms that solve the combined origin-destination 
(0-D), mode choice, and user equilibrium traffic assignment model 
exist and their properties are well documented (2,3). Among those 
algorithms the Frank-Wolfe linear approximation algorithm and its 
variant Evans' partial linearization algorithm have been applied to 
large-scale urban networks. The algorithm implemented here is the 
one proposed by Evans (4); its advantages, compared with those of the 
Frank-Wolfe algorithm, especially for large-scale applications, have 

P. Metaxatos and D. Boyce, Urban Transportation Center, University of Illi
nois at Chicago, 1033 West Van Buren Street, Suite 700 South, Chicago, Ill. 
60607. M. Florian and I. Constantin, INRO Consultants, Inc., 5160 Decarie 
Boulevard, Suite 610, Montreal H3X 2H9, Canada. 

been reported elsewhere (J,2,5-8). In a recent study by Boyce et al. 
(/) the Evans algorithm for the combined distribution, mode split, and 
traffic assignment model was compared against various heuristics 
used in practice and found to provide superior results, as defined by 
its more rapid convergence to the true equilibrium solution. · 

Briefly speaking, four main reasons are presented as favoring the 
Evans algorithm. First, it is not heuristic; it is, however, a mathe
matical structure with well-understood properties. Second, the speed 
with which Evans fills the cells of an 0-D matrix (all destinations are 
loaded from every origin at each iteration) is much superior to Frank
Wolfe (only two destinations per origin per iteration). Third, Evans' 
partial linearization approximation (as in all approximations of that 
kind) provides superior feasible directions (subproblem solutions 
closer to the optimum) compared with Frank-Wolfe linear approxi
mation method. Fourth, the Evans algorithm provides an exact solu
tion of the trip distribution model at each iteration given the current 
0-D travel costs, whereas the Frank-Wolfe algorithm converges 
only to the solution of the trip distribution model with equilibrium 
travel costs. The last becomes an issue in large-scale applications 
where a solution algorithm never reaches exact convergence because 
of the high computational costs involved. 

In this paper the solution of a combined model of trip distribu
tion and user-equilibrium traffic assignment (OD-UE) is discussed. 
In a subsequent paper the inclusion of mode choice will be 
discussed. The implementation of the Evans algorithm is realized 
by making use of the EMME/2 macro language capability to use 
various modules for mathematical and network operations both 
sequentially and iteratively. 

The scope of this effort is twofold: first, to respond to the model
ing demand arising from the modern urban transportation planning 
practice; second, to motivate transportation professionals to use 
more sound planning methods. 

The paper is organized as follows. The implementation of the 
Evans algorithm for the OD-UE model in EMME/2 is documented 
in the next section. Immediately after, comparisons between the 
combined model and the sequential procedure are made. Finally, 
suggestions for future enhancements are made in the last section. 

EV ANS ALGORITHM FOR COMBINED OD-UE 
MODEL AND IMPLEMENTATION IN EMME/2 

The combined OD-UE model formulated as an equivalent opti
mization problem requires one to minimize functions of the link 
travel costs (network term) and the costs of the 0-D flows (demand 
term) subject to conservation of flow constraints, marginal con
straints, nonnegativity constraints and definitional constraints. The 
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(Evans) partial linear approximation method linearizes only the 
first term (network term) of the objective function. The method 
finds, given a current solution (v, g), a descent direction (z - v, 
w - g) by solving a doubly constrained trip distribution model 
(whereas the Frank-Wolfe algorithm solves a transportation prob
lem of linear programming). The algorithm involves two solutions 
at each iteration: the main problem solution, and the subproblem 
solution for determining the direction of descent for an improved 
main problem solution. The Evans algorithm is described by the 
following steps: 

• Step 0: Initialization. Choose an initial solution for link flows, 
v? = 0, and demand, g~ = l. Set the counter, k : = 0. 

• Step 1: Update link cost. sk: = s(vk- 1), k := k + I; and com
pute minimum cost routes ct, on the basis of updated link costs, for 
every 0-D pair (i,j). 

• Step 2: Find the descent direction. 
-For demand term: Solve a doubly constrained gravity model 

as a function of the shortest route costs, w;): w;) = A7 O; BJ D1 
exp( - J3ct), applying the two-dimensional balancing method; 

-For network term: zk: Perform an all-or-nothing assignment 
of demand w;) to the shortest routes computed with the updated 
link costs sk. 
• Step 3: Compute the optimal step size. Conduct a line search to 

find what linear combination of demand and link flows minimizes 
the objective function; that is, find A.\ 0 :5 A_k :5 1 that minimizes 
f(A.) = f[v/-1 + A.(zf- v/-1); gt-1 + A.(wJ1 - g;)-1)]. 

• Step 4: Update link.flows and demand. Update the link flows 
and the demand solution with the best linear combination of solu
tions from the current and previous iterations, that is, v7: = v /- 1 + 
A.(zf - v/- 1

) for every link, andgt := gt- 1 + A.(w71 - g;)- 1
) for each 

pair (i, j). 
• Step 5: Convergence check. If an appropriate convergence 

criterion is satisfied then stop; otherwise go to Step 1. 

Preliminary Considerations 

The first task is to build in the same directory as the EMME/2 
system a file of the link cost functions of the network where, instead 
of the usual link flows, the initial solution v? is read. To be more spe
cific, consider a typical link cost function used in EMME/2 auto
mobile assignment. It is the usual Bureau of Public Roads function 

(I) 

where 

O'.i. a 2 = parameters calibrated from a previous study (typically 
the values are 0.15 and 4, respectively); 

s0 = free-flow travel time stored in EMME/2 link attribute 
length; 

v1 = autoflow on link l stored in EMME/2 link attribute 
volau; 

si( v1) = travel time on link /, an increasing function of autoflow 
on same link v1; and 

k1 =capacity on link l determined by assumed level of 
service and stored in EMME/2 link attribute lanes. 

It is worth noting that the labels of the EMME/2 link attributes 
used to store the different arguments of the BPR function need not be 
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taken literally. For example, the label length does not mean the link 
length in this application. The same is true for the field labeled lanes. 

By default, when EMME/2 computes an automobile assignment 
it reads the link cost functions with flows different from 0 (from 
some previously performed assignment). To compute an initial 
solution for the link flows in the initialization step of the algorithm, 
however, these flows need to be replaced with zero link flows. This 
can be done by using a text editor to replace the attribute volau by 
ull (which has been previously initialized to 0 in the volume-delay 
functions stored in the function file. Then by saving the edited file 
as a separate function file (here saved as d41 l.ull), it can be read as 
needed. Thus, the link flows are first initialized to 0, whereas at 
subsequent iterations ull always stores the current flows. 

Step 0: Initialization 

The iteration number, controlled by register x, is set to 0. Then an 
initial solution for the demand matrix (g9j) and the link flow vector 
(v?) is computed. The production and attraction vectors (0;), (Dj), 
respectively, from an observed matrix are then computed (the 
observed automobile demand for Winnipeg in 1976 is used, in 
matrix mfl). A zero demand to be used later in the computation of 
the step size is also computed. Finally, the tolerance level of the 
secant root-finding method (explained later in Step 3) is saved in a 
scalar. These operations are summarized in Table 1. 

Although the order of the modules employed does not matter 
from a modeling perspective, it is more efficient to do as many com
putations as possible in one module before starting to employ the 
next one. Because there will be many matrixes and scalars involved 
in the computations, it is a good idea to plan in advance where to 
store different results. It has been convenient to use the ability of 
EMME/2 to store full matrixes, 0-D vectors, and scalars as 
mf"name," mo"name," md"name," ms"name," respectively, 
where name is the name of the operand. 

Step 1: Link Costs Update and Computation 
of Minimum Cost Routes 

The iteration number x is increased by 1, the link costs vector sk is 
updated as sk := s(vk- 1), and the matrix of minimum cost routes (4) 
is computed for every 0-D pair (i, j). To update the link costs the 
link flows are initialized v0 to those produced by assigning the 
demand (gg); otherwise, zero link flow~ would be used in the update 
of the link costs. The minimum cost routes (ct) result from an all
or-nothing assignment of the demand ms I= (gi) = I and are saved 
in matrix mf "cijk." These operations are summarized in Table 2. 

Step 2: Computation of Descent Direction 

The descent direction for the demand term (wu) is computed by bal
ancing the matrix {exp(- J3ct)} to the marginal constraints mo8, 

TABLE 1 Implementation of Step 0 

Module 
3.21 

Purpose 
initialize demand to one 
initialize link flows to zero 
compute productions from mfl 
compute attractions from mfl 
compute zero demand 

2.41 
3.21 
3.21 
3.21 
3.21 ' compute tolerance 10-3 

Saved in 
ms"gijO" 
ull 
mo"produc" 
md"attrac" 
ms"zero" 
ins"larnacc" 
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TABLE 2 Implementation of Step 1 

Module 
4.11 
5.11 
5.21 

2.41 

Purpose 
read link costs based on zero link flows 
all-or-nothing assignment of ms"gijO" 
perform the assignment 
save the shortest routes 
link flows from volau 

Saved in 
d411.ull 

mf"cijk" 
ull 

md8 computed in Step 0. This computation of the doubly con
strained gravity model is done by applying the two-dimensional bal
ancing method. To compute the direction of descent for the network 
term, an all-or-nothing assignment of the demand (w;) is performed. 

It is important to note that the dispersion parameter 13 is held con
stant during the solution of the model. To obtain a reasonable value 
for it, 13 was set equal to the inverse of the observed mean travel 
time in the network. For the Winnipeg network (in the demonstra
tion data bank), 13 was set equal to 0.06. 

Finally and only in the first iteration, the demand was initialized 
(gi) to cwi) (otherwise, in each macro iteration, msl = (g3) = 1 to 
compute the minimum cost routes) and the main problem link flows 
v1 to subproblem link flows z1 would be used. These operations are 
summarized in Table 3. 

Step 3: Computation of Optimal Step Size 

In each iteration of the algorithm the optimal step size A* is obtained 
by performing a one-dimensional search of the objective function 
along the feasible direction { (z1 - vf), ( wii - gt)}. This is done by 
solving the following problem: 

V/+A(Zf- Vf) 

min f(A) = fi(A) + fii(A) = Y J si(x)dx 
>.. /EL 

+ ; I~ [g;) + A(wii- gtJ] In[ gt+ A(wii - gt)] 
t-' i J 

(2) 

An efficient method of solving Equation 2 is to find the value of A, 
which equates the gradient.f'(A) to 0, where 

f'(A) = f;(A) + J:j(A) =I s1[v1 +A( Zt - v1)] (z1 - v1) 
/EL 

+ ~ LI ln[gt + A(wii - gt)] (wii -gt) (3) 
I } 

To find the 0 of the gradient function, a variation of the secant root
finding method is used. The secant method involves approximating 
the tangent by a secant through the two most recent iterates and 
using the 0 of this line as the next iterate. In this particular imple
mentation, one end of the current bracketing interval remains fixed. 

TABLE 3 Implementation of Step 2 

Module Purpose 
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An efficient way to compute the gradient of the network term 
suggested by Heinz Spiess is now presented. The idea consists of 
using the EMME/2 equilibrium algorithm to compute the new link 
costs instead of the network calculator. The implementation is 
described next. 

The two A-values that bracket the search interval are initialized 
between 0 and 1 and saved in scalars ms"laml," ms"lam2" (in this 
implementation, ms61, ms62, respectively). Note that ms"lam2" 
will also hold the current upper bound of the search interval. Using 
Module 2.41 the current main problem and subproblem link flows 
(saved in ull and volau, respectively) are copied to link attributes 
u/3, u/2, respectively, of a dummy scenario, say 3000 (created 
before the macro execution in this case). Their linear combination, 
u/3 + o/omsyo/o X (u/2 - ul3) for every A is computed using Mod
ule 2.41 and saved in ull in the dummy scenario. The need to save 
them in ull comes from the definition of the link cost functions in 
Module 4.11 where the link flows are saved in ull. 

To compute the costs of those combined flows, an all-or-nothing 
assignment is performed in the dummy scenario with zero demand. 
The link costs based on the link flows in ull are saved by default 
in the link attribute timau. When the line search begins (in each 
iteration of the macro) register y, which controls which of the two 
A-values is read, is set toy = 61, whereas register z, which keeps 
track of the respective gradient values for the network term, is set 
to z = 71. 

The gradient of the network term in the dummy scenario is finally 
computed after the evaluation (in Module 2.41) of the sum of the 
expression 0.06 * timau * (ul2 - u/3). The sum is saved in scalar 
mso/ozo/o. The multiplication by 13 = 0.06 is equivalent to multiply
ing the demand term of the gradient by 1/13. In this manner, scalar 
ms71 contains the sum of the gradient values for the network term 
with respect to the first A (in ms"laml"), and scalar ms72 contaim 
the sum of the gradient values for the network term with respect to 
the second A (in ms"Iam2"). 

Back in the working scenario, what remains to be computed is the 
gradient for the demand term. Remembering that the main problem 
demand is saved in mf "gijk" and the subproblem demand in 
mf"wij," the last task involves the computation of the expression 

LL ln(mf"gijk" + o/omsyo/o 
i j 

* put[mf"wij" - mf"gijk")] * get(I) (4) 

where the special functions get(.) and put(.) are used to save some 
computation time (9, pp. 3-67). The summation over all origins and 
destinations in the matrix calculations of Module 3.21 gives the gra
dient for the demand term that is saved in scalar ms"gradem." It is 
worth noting that care is taken to avoid evaluating the last expres
sion for zero values (because the logarithm of 0 is not defined). This 
can be accomplished in module 3.21 by providing a constrained 
matrix and a constrained interval. In this case using the default-

Saved in 
3.21 
3.22 
5.11 
5.21 
3.21 
2.41 

compute a function of shortest route costs as exponential 
balance mf"ecijk" to mo"produc" and md "attrac" 
all-or-nothing assignment of mf"wij" 

mf"ecijk" 
mf''wij" 

perform the assignment 
. . 1· k 1terat1on . g~ = Wii 

iteration 1: v1 = z1• 

mf"gijk" 
ull 
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constrained interval (0, 0, exclude), only nonzero values are 
retained. The same is done whenever the logarithm of the demand 
matrix is involved in the computations. 

So far, for each A. the gradients for both the network and 
the demand terms have been computed. The total gradient is then 
saved in scalar ms%z% as %msz% + ms"gradem." For example, 
for the first A. in ms"laml" the total gradient is saved in ms71 con
taining the sum of the contents of scalar ms71 (the gradient for the 
network term) and the contents of scalar ms"gradem" (the gradient 
of the demand term). This procedure is repeated once more for the 
second A.-value. Note that if the gradient is found to be positive the 
optimal step size is set to 0 and the Evans algorithm terminates 
because the current solution is optimal; however, in real problems 
such a result never occurs because the optimal solution is never 
reached. 

The next task is to compute the slope of the secant line. In partic
ular, using Module 3.21 the slope <t> of the line {[A.k-i. V'(A.k-1)), 
[A.b V'(A.k)]} is computed and saved in scalar ms"phil12" as 

ms"phil2" = (ms72 -ms71)/(ms62 - ms61) (5) 

The optimal A., saved in scalar ms"xlopt" (in ms70 here), is next 
computed from the formula 

ms"xlopt" = (0 - ms? I )/ms"phil2" (6) 

Finally, the convergence of the secant loop is monitored as follows. 
First, the following expression is evaluated: 

1 X "l " < 10-6 
{ 

abs(ms"xlopt" - ms"xlamn2") } 

b ( " 1 ") - ms amacc -a s ms x opt 
(7) 

Equation 7 is a boolean expression with values of 1 for true an,d 
0 for false. If the result of this evaluation is 1, then the secant loop 
has converged. A value of ms"lamacc" = 10-3 is used as a stop
ping criterion. The optimal step size taken from the last secant iter
ation is then used in Step 4 to update the current solution of the com
bined model. If the result of the above expression is not 1, the secant 
loop is repeated. Table 4 summarizes these operations. 

Step 4: Current Solution Update 

The main problem demand solution (from the previous iteration), 
currently in matrix mf"gijk," is saved in matrix mf"gijk - 1." The 
current solution for demand is then a weighted average (optimal 
weight) of the previous (main) problem solution and the current 
(subproblem) solution as follows: 

mj"gijk" = mj"gijk - l" + ms"xlopt" 
X (mj"wij" - nif"gijk - l ") (8) 

TABLE4 Implementation of Step 3 

Module. Purpose 
3.21 )q = 0 
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The same is done for the link flows. The main problem link flows 
solution (from the previous iteration), currently in link attribute ull, 
is saved in link attribute u/2. The current solution for the link flows 
is then a weighted average (optimal weight) of the previous (main) 
problem solution and the current (subproblem) solution, as follows: 

ull = ull +%ms"xlopt"% * (volau - ull) (9) 

Table 5 summarizes the above operations. Note that in Module 2.41 
the matrix operations cannot be performed. Therefore, the optimal 
A. has to be represented not as the scalar ms"xlopt" but rather as the 
contents of the scalar ms"xlopt." 

Step 5: Criteria for Convergence 

To monitor the convergence rate of the algorithm with respect to the 
solution for demand, the maximum over all terms (origins and des
tinations) of the absolute deviations between the current solution 
and the solution from the previous iteration is considered and saved 
in scalar ms"gdif'; that is, 

_max llgt- g~1-'ll =max llmf"gijk - mf"gijk- l"ll 
1E/.JEJ 1E/.;EJ 

(10) 

The convergence of the link flows is monitored, similarly, by com
puting the maximum over all links of the absolute deviations 
between the current solution and the solution from the previous iter
ation and saved in scalar ms"vdir'; that is, 

max llvf-vf-'11 = max llull - u/211 
/EL /EL 

(11) 

Another convergence criterion that is strongly recommended is the 
current value of the GAP function. At each iteration of the Evans 
algorithm, the subproblem solution provides a lower bound for the 
objective function value. That is, the current GAP is the distance 
from the current value of the objective function to the lower bound. 
The current value of the GAP function for the combined (OD-UE) 
model at iteration k, which is simply the value of 3 corresponding 
to A. = 0, is 

GAPk = LBk - Jk(v, g) = I s,(vf) (z1 - v7) 
/EL 

+ ; I ~ ln(gt)(wiJ - gt) 
I-' I j 

(12) 

where Jk(v, g) is the current value ·of the objective function. The 
GAP function converges to 0, although not monotonically. 

An alternative convergence criterion that may also serve as a con
dition for the termination of the algorithm is to test at each iteration a 
"modified" relative gap for the network flows and the demand because 

Saved in 
ms"laml" 

3.21 current upper bound of search interval: ,\2 1ns"lam2" 
2.41 gradient of network term for ,\1 , ,\ 2 ms71,ms72 
3.21 gradient of demand term (each ,\) ms"gradem" 
3.21 total grad~ent for each ,\ ms71,ms72 
3.21 the slope of the secant line ms"phi12" 
3.21 optimal,\ ms"xlopt" 
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TABLE S Implementation of Step 4 

Module 
3.21 
3.21 
2.41 
2.41 

Purpose 
save demand from previous iteration 
update demand solution 
save link flows from previous iteration 
update link flows solution 

Saved in 
mf"gijk-l" 
mf"gijk" 
ul2 
ull 

both of them converge to their equilibrium values. For the network 
flows the "modified" relative gap RGf at iteration k is defined as 

L si(vf) (z1 - vf) 
!EL 

RGf = -------
L s1(vf)vf 

(13) 

!EL 

while, for the demand terms, the "modified" relative gap RGt at 
iteration k is defined as 

L I1n(gt)Cwu - gt) 
i j 

RGt = -----------'-

LI ln(gt)gt 
(14) 

Eventually as LtEL s,(vf)z, 4 LtEL s1(vf)vf and wu -7 gt, and all 
the dema.nd is on shortest routes, both these measures go to 0. How
ever, they are not decreasing monotonically (which is also true for 
the relative gap in the fixed demand user equilibrium traffic assign
ment). Table 6 summarizes these operations. 

COMPARISON BETWEEN THE COMBINED 
MODEL AND THE SEQUENTIAL PROCEDURE 

The results presented below were obtained by solving the combined 
model for the city of Winnipeg, Manitoba, Canada. The network 
consists of 154-zone centroids, 903 regular nodes, and 2,535 auto
mobile links. The computations were performed in a SUN SP ARC-
2 workstation with 64MB of memory; the macro needs about 46 sec 
(real time) or almost 19 sec (central processing unit time) time 
per iteration. The observed (1976) automobile demand in mfl 
was increased by 50 percent because the network was not very 
congested. 

As presently implemented, the macro iterates until some 
prespecified convergence criterion for the link flows is satisfied. It is 
straightforward to apply any of the stopping criteria suggested ear
lier. The various performance measures from the application of the 
macro to the Winnipeg network are indicated in Figure l. The rates 
of convergence of the optimal step size, demand, "modified" relative 
GAP for demand RG ii' link flows, and the GAP function are satis
factory. Although it is not expected that more than l 0 or 20 iterations 
are required in practice, the results from additional iterations provide 
information about the convergence of the Evans algorithm. 

TABLE 6 Implementation of Step S 

Module Purpose 
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Further evidence of the quality of the results can be seen in a link 
scattergram in Figure 2. In the absence of observed link flow data 
the macro for I 0 iterations has been solved and the obtained link 
flows in u/3 (horizontal axis) have been saved. Then a trip distribu
tion model was estimated on the basis of free-flow travel times and 
balanced to the production and attraction totals of the observed 
automobile demand matrix in mfl increased by 50 percent. The 
estimated trips were then assigned to the network for I 0 iterations 
and the link flows obtained were saved in ull (vertical axis). The 
plot shows that the link flows from the combined model are lower 
(better converged) than from a trip table based on free-flow travel 
times. If the two methods were equivalent, the points would lie on 
the line shown in the figure. Because the points lie above the line, 
the link flows from the four-step procedure are higher, which results 
from the longer trips on the basis of free-flow travel times. 

In addition to the plot, a number of statistics for both variables in 
the combined model (automobile link flows and automobile 0-D 
flows) have been computed. The purpose here is to compare two pairs · 
of variables: first, the trip table estimated from free-flow travel times 
with the trip table from the combined model (after IO iterations); and 
second, the link flows after the assignment of the estimated trip table 
for I 0 iterations with those obtained from the solution of the com
bined model. The root mean square error (RMSE) and the x2 statis
tics reported in Table 7 are based on the following formulas: 

{ 

~ (M; - T;)2 }o.s 
RMSE= 

m 
(15) 

X2 = f {(M; -. T;)2 } 
i=I T, 

(16) 

where 

T = solution from combined model, 
M = solution from sequential procedure, and 
m = number of data elements with positive values. 

Zero values in the solutions were removed because these values are 
a property of the model formulation or the data, rather than the solu
tion method. 

FURTHER CONSIDERATIONS 

Finally, a number of possible improvements and extensions of the 
initial formulation and implementation of the OD-UE model are 
considered. In this implementation of the OD-UE model, car drivers 
seek to minimize their travel time. Obviously, travel time is just one 
component of the travel cost. Other components may include mon
etary costs incurred by owning (for example, depreciation costs) 
and operating a car (insurance costs, fuel costs, parking costs, tolls, 

Saved in 
3.21 
2.41 

. 3.21 

maximum absolute difference of mf"gijk" and mf"gijk-1" 
maximum absolute difference of ull and ul2 

ms"gdif" 
ms"vdif" 
ms"rgdem" 
ms"gap" 

"modified" relative GAP for demand 
3.21 current GAP 
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TABLE 7 Comparison Between Combined Model and Sequential Procedure 

Variable Positive Flows RMSE Desired x2 Desired 
Auto Link Flows 2,366 119.41 0 84054.31 0 
Auto 0-D Flows 18,630 2.35 0 4104.19 0 

etc.). Consideration of these additional costs requires changes in the 
model formulation and, of course, data availability. 

The model formulation considered here assumes one person per 
car. However, car occupancy data by origin zone are immediately 
available in the demonstration data bank of EMME/2 and could 
have been used in the macro. In addition, the model formulation can 
be modified to accommodate the occupancy factor endogenously. 
This idea may be applied when the model is used to assess air qual
ity impacts from relevant policy interventions. 
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The combined model can be enhanced to include other modes of 
travel. This involves reformulating the combined model to account 
for mode choice and is being pursued in the application of the macro 
in a sketch planning network for Chicago [Boyce et al. (JO)]. 
Finally, it is hoped that transit operations can be integrated into the 
macro and that the impacts of changing parameters such as waiting 
time, loading time, and headway can be studied. 

Although all the above extensions and improvements are possible 
arid interesting to study, it is not known how they will affect the per-
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FIGURE 1 Monitoring the convergence of the Evans algorithm: (a) GAP function (Iterations 2-10); 
(b) GAP function (Iterations 11-40); (c) optimal step size; (d) modified relative GAP for demand; 
(e) maximum absolute deviations for demand; and (j) maximum absolute deviations for link flows. 
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FIGURE 2 Link flows solution of sequential procedure versus link flows solution of combined model. 

formance of the macro with respect to the computer requirements. If 
they can add to the detail in representing travel behavior without 
overburdening the computational effort, then such a modified macro 
can be seen as a powerful planning tool. Meanwhile, the implemen
tation of a combined model in EMME/2 can meet some of the 
modeling requirements arising from modern urban transportation 
planning practice and motivate transportation professionals to use 
more sound planning methods. The quality of the results obtained to 
date seems to encourage the use of the macro in planning studies. 
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Evolutionary Transportation Planning 
Model: Structure and Application 

DAVID M. LEVINSON 

An evolutionary transportation planning model wherein the demand in 
a given year depends on the demand of the previous year is described. 
The model redistributes a fraction of the work trips each year associated 
with the relocation of a household or taking a new job, whereas changes 
in distribution associated with growth (or decline) are considered. This 
hybrid-evolutionary model is compared with an equilibrium model, 
wherein supply and demand are solved simultaneously. The reasons for 
preferring the evolutionary method to the equilibrium approach are sev
eral: (a) the ability to more easily use observed data and thereby limit 
modeling to changes in behavior, (b) additional realism in the concept 
of the model, (c) the provision of a framework for extension to integra
tion with land use models, and (d) the additional information available 
to policy makers. 

Traditionally, transportation planning models are used to forecast 
levels of traffic or transit ridership at a given point in time. Best 
practice in travel forecasting, the equilibrium approach, attempts to 
simultaneously (or iteratively) solve for travel demand given a con
gested network and to estimate network congestion given the travel 
demand. However, at no point in time is the demand/supply system 
actually in perfect equilibrium. Individuals and firms continuously 
enter and leave the system. Changes in system performance, such 
as the travel times between places, lead to further changes in user 
behavior, such as choice of route, mode, departure time, sequence 
of trips, or destination. Some of these behavioral changes are made 
readily with only a short lag. The disruptive nature and high trans
action costs of others, such as switching jobs or moving to a new 
residence, mean they are undertaken rarely. 

This paper presents and tests an alternative approach to travel 
demand modeling, which explicitly considers changes over time in 
work trip distribution as a result of household relocation and job 
switching. The behavioral theory underlying this model is not the 
perfect network equilibrium of Wardrop or the supply/demand 
equilibrium described by Boyce et al. (J). Rather, it is comparable 
to Simon's idea of bounded rationality, where the costs of changing 
behavior need to be considered as well as the possible suboptimal
ity of that behavior (2). Thus, supply and demand are not in perfect 
equilibrium because the costs of moving and switching jobs are 
high. Traffic assignment may not be in perfect equilibrium because 
individuals do not have perfect information about the dynamically 
changing travel times between places. 

The approach presented here is therefore more analogous to an 
evolutionary model than an equilibrium model. The dichotomy and 
connection between the two have long been recognized (3). In a 
strictly evolutionary model, decisions are updated continuously (or 
in more practical terms on some time slice such as a day-to-day 
basis), with some time lag between obtaining information and exe-

Department of Transportation Studies, Department of Civil Engineering, 
Room 108, McLaughlin Hall, University of California, Berkeley, Calif. 
94720. 

cuting a change in behavior. Moreover, the time lag for response may 
vary on the basis of the type of decision and the characteristics of the 
individual making the decision. In this paper's hybrid-evolutionary 
model, day-to-day decisions are still treated as though they are in 
equilibrium, but long-term decisions are lagged. In this case, only a 
fraction of work trips are redistributed every year, with congested 
travel times on the basis of the previous year's results serving as the 
source of impedance. In addition, trips from new homes and jobs are 
also distributed on the basis of those times. One key question is, To 
what extent do different travel patterns emerge from the evolution
ary modeling approach compared with an equilibrium approach? 

In addition to being more realistic, one advantage to the evolu
tionary approach is the ability to start with observed data such as the 
Journey to Work census data or a trip table synthesized from traffic 
counts and an old trip table. The evolutionary approach (in this 
paper, a synthesized trip table is used as a seed) can begin with all 
of the information inherent in these data rather than just the imped
ance curves derived from them and evolve incrementally from 
observed conditions rather than be modeled in totality. This 
approach is expected to be better than simply applying zone-to-zone 
adjustment factors at the end of the equilibrium modeling process 
to correct demand for under- or overestimation because it reduces · 
the amount of error introduced by modeling. 

The evolutionary approach should also have significant advan
tages for future application to land use forecasting and combined 
transportation-land use forecasts. Although the transportation 
model is a largely negative feedback loop-more demand creates 
more congestion, which leads to less demand-the land use model 
is in some respects a positive feedback loop: more development 
increases accessibility, which leads to more development. At the 
extremes, positive feedback leads to the densities found in Manhat
tan or Hong Kong. The integration of positive and negative feed
back results in a complex model that is more sensitive to historical 
patterns and initial conditions than a simpler equilibrium-seeking 
negative feedback loop. However, the model presented in this paper 
considers land use changes as exogenous for two reasons: (a) the 
lack of resources to calibrate a land use model to the necessary accu
racy, and (b) the lack of support for computer modeling of land use. 
Planners in the Washington, D.C., area prefer a hand-crafted 
approach using Delphi methods for forecasting land use. 

Further, many policy decisions, such as the programming of cap
ital facilities, are made by analysis of a single equilibrium point in 
time. An evolutionary model can measure the transportation system 
over multiple time slices and give a more accurate reflection of ben
efits and costs. 

The largest drawback to the evolutionary approach is the addi
tional computational time required to implement the system as 
opposed to a one-shot equilibrium solution. If the results are not suf
ficiently different, or the additional information is not useful, the 
benefit may not be worth the additional computer resources and 
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complexity. A second consideration is the requirement for addi
tional information. In an evolutionary model, the different time lags 
in decision making must be determined. In this case, how frequently 
do individuals relocate? Here, a fixed value of 22.5 percent of indi
viduals is taken to change jobs, houses, or both every year, a figure 
derived from the 1991 Montgomery County Travel Survey (4), but 
future research should model the value endogenously on the basis 
of socioeconomic, demographic, and transportation accessibility 
variables for a given area or trip interchange. 

Next in this paper is a discussion of model structure, which 
includes frameworks for modeling travel demand, a model of re
location behavior, and flowcharts of the hybrid-evolutionary and 
equilibrium models. This discussion is followed by a description of 
the model components used in this application. The model inputs of 
land use, demographics, and networks are presented. A comparison 
of the convergence properties of the two models is shown. A section 
comparing the results of the two models is provided. The conclusion 
discusses some of the questions raised by the evolutionary model. 

MODEL STRUCTURE 

The model structure is presented in this section. First is a look at 
modeling frameworks, considering equilibrium and evolution as 
two poles with two interim combinations of the methods, depend
ing on the decision time horizon evaluated. Next is a presentation 
of how relocation is incorporated into the model system mechani
cally. Finally a comparison of flowcharts of the two tested models
hybrid evolutionary and equilibrium-is presented. 

Travel Demand Modeling Frameworks 

Several approaches can be taken in testing the concept of a dynamic 
demand model. Each approach is a variation on the spectrum 
between a lagged model, in which decisions are not simultaneously 
made by all commuters, and an equilibrium model. In the aggregate 
models tested here, it is assumed that there are two time frames for 
travel decisions: day-to-day and year-to-year. Day-to-day decisions 
include route choice, mode choice, departure time choice,' and non
work trip destination choice. Year-to-year decisions include reloca
tion or work trip (re)distribution (for a fraction of commuters), auto
mobile ownership, and trip (re)generation. These decisions are not 
entirely separable, so endogenous year-to-year decisions (location/ 
work trip distribution) reflect changes in the day-to-day conditions. 
In addition, the following system variables vary annually; network, 
land use, demographics. Although there is a continuum of decision 
making in reality, this approach is taken for the sake of simplicity. 

Further it is assumed that year-to-year decisions are lagged and 
are based on information from the previous year but that day-to-day 
decisions are essentially in equilibrium between demand and supply. 

The models are as follows: 

• Model 1. Equilibrium: equilibrium for day-to-day and year-to
year decisions; 

• Model 2. Hybrid: equilibrium for day-tu-day, evolution for 
year-to-year decisions; 

• Model 3. Evolutionary: evolution for day-to-day and year-to
year decisions; and 

• Model 4. Alternative hybrid: evolution for day-to-day, 
equilibrium for year-to-year decisions. 
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Because of computational intensity (3,652 days for l 0 years, 
requiring a demand update on each day), Model 3 is not pursued 
here. In addition, Model 3 would need to account for variations in 
demand because of day- of the week and month of the year. Model 
4, an alternative hybrid model, would use dynamic assignment, 
scheduling, and departure time, perhaps with responsive intersec
tion control, to come up with information used in long-term deci
sions, which would be assumed to be in equilibrium, and is the 
opposite of Model 2. In all of the Model 2 runs here, the yearly deci
sions (trip generation, work trip distribution, and automobile own
ership) are computed as lagged decisions. 

Relocation 

For an evolutionary analysis, a new model component is required. 
This concerns the decision to relocate: both moving one's home or 
switching jobs is a relocation decision. Here, the terms relocate and 
redistribute are considered synonymous, the difference in terms 
resulting from alternative perspectives: individuals choose to re
locate while social planners redistribute individuals (match their 
home and workplace) in their demand models. The nature ofthis 
model is that the number of trips at time t depends on the trip pat
tern at time t - l plus any change forecast to happen. This is an iner
tial, state-dependent approach; a work trip does not change from 
year to year unless some outside force (a redistribution/relocation 
decision) causes it to change. On a much longer time scale, long
term location (and hence trip frequency/destination choice) deci
sions can be seen as analogous to trip chaining, where decisions are 
history dependent. Kitamura has shown for trip chaining that the use 
of lagged dependent variables is a plausible and statistically valid 
specification (5). Clearly, empirical and statistical issues will need 
to be further investigated for relocation choice to determine the best 
specification in terms of predictive value while avoiding serial 
correlation problems. 
. This model needs to rematch a fraction of all workers and jobs 

into work trips for each time slice (in this case, each year). Further 
study is necessary to understand whether these recently redistributed 
trips are of longer, shorter, or the same duration as average trips 
after controlling for the number of opportunities and competing 
job seekers. This question is analogous to the difference between 
marginal and average costs in economics. In this application, the 
work trip distribution impedance curves were estimated from a sur
vey sample of the entire population (not only those who recently 
moved). 

The following equations are used: 

T;j = (1 - Rij) X Ti'/ 1 + MN/j (l) 

where 

T;j = trips from i to j in year = y, 
MN;} = switched job/house and new trips (subject to redistribu-

tion), 
M/ = trips from i in year y which switched from year = y - 1, 
M/ = trips to j in year y which switched from year = y - 1, 
N/ = trips from i caused by growth (not present in year = y - 1 ), 
N/ = trips to j caused by growth (not present in year = y - 1 ), 

and 
Rij = relocation function for interchange i - j ( = 0.225 in this 

application) 
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subject to 

J 

T;"=_IT;j 
j=l 

I 

T/ =_IT;} 
i=l 

M)' = R;j T;j-' 

(2) 

(3) 

(4) 

(5) 

For work trip distribution, a two-dimensional balancing proce
dure is used. For this, the rows (origins) and columns (destinations) 
are balanced. The total of origins ( 0/) balanced here is 

0/ = N/' + M/ (6) 

and the destinations (D/) is 

D/ = N/ + M}' (7) 

which after balancing, produces the trip table MN;}, which is added 
to the fraction of trips unchanged from the previous year to obtain 
the final peak-period work trip table. 

The following table shows the logic of whether an individual 
would be redistributed: 

Change 
Home 

Flow Charts 

Yes 
No 

Change Work Location 

Yes 
Redistribute 
Redistribute 

No 
Redistribute 
Do not redistribute 

Figures 1 and 2 show the flow chart of the equilibrium and hybrid
evolutionary models, respectively. The endogenous components are 

Land Use 

Trip Generation 
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identified with rectangles; the exogenous updates to land use and 
networks are shown with curved corners. 

To summarize, exogenous changes over time in the model 
include updates to the transportation network through the addition 
of links, updates of the age distribution, and household size distrib
ution by geographical area developed from a separate demograph
ics model and updates of the land use activity (housing units and 
employment by type) from regional transportation forecasts. These 
are discussed in detail later. Collectively, these inputs are treated 
exogenously because, in the short term, there is little interaction 
between them and travel demand. The longer the timeframe, the 
more that can reasonably be internalized. 

Endogenous changes within this model include updates to travel 
times on the network, the number of work trips generated, and con
sequently the interchange of work trips between zones, and in a more 
complete extension of the proposed model, the relocation decision. 
Travel demand is not limited to just trips generated, but considers all 
of the choices in the travel demand process. Therefore, a shift in 
mode, route, or time-of-day is a change in demand for a facility or 
route just as an increase or decrease in the number of trips generated 
is a change in demand for the transportation system as a whole. 

MODEL COMPONENTS 

The model components (trip generation, trip distribution, mode 
choice, departure time choice, route choice, and intersection 
control) used here are the same as those estimated for the Travel/2 
model (6). Briefly, these are described as follows. 

Trip Generation 

The person-trip generation model is in two parts (7): for the home 
end of trips, a cross-classification model based on age, household 
size, and dwelling unit type; for the nonhome end, generation is 

Work & Non-Work Trip Distribution 
Worlc & Non-Worlc Deputure Time Choice 
Worlc & Non-Work Mooe Choice 

Trip Table 

Networlc ___ R_ou_te_A_ss_ignm __ e_n_t _____ ..... +I Intersection Control 

.----------'"----------.1\() 
Convergence Test 

End 

FIGURE 1 Flow chart equilibrium model. 



Levinson 

UJXlate LandUse 

Non-Work Trip Distribution 
Worlc & Non-Work Deµuture Time Choice 
Worlc & Non-Work Mooe Choice 

Trip Table 

67 

Update 
Network 

Route Assigrunent ... Intersection Control 
'-----:,....--~~-=-~~~~--

Convergence Test 

Increment Year (or End) 

FIGURE 2 Flow chart hybrid evolutionary model. 

based on the number of employees (office, retail, industrial, other). 
The purposes used in the model are work to home, work to other (to 
home), home to other, other to home, other to other (and home to 
work. Trip generation is computed for the afternoon peak period 
(3:30 to 6:30 p.m.). In the hybrid model discussed in this paper, both 
work to home and work to other (to home) purposes are considered 
"work trips"; the other purposes are considered "nonwork." Because 
this is a person-trip model, mode choice is estimated for both work 
and nonwork trips and all modes (including nonmotorized). Future 
research should derive trip generation from an activity approach 
considering activity frequency, duration, and scheduling. 

Destination Choice 

A multimodal trip distribution model is used in this model (8). A 
composite impedance calculated as the weighted average of the 
mode-specific impedances is computed, using mode shares as the 
weight. In the hybrid model, for nonwork trips, destination choice is 
computed in equilibrium with route assignment and intersection con
trol. For all relocated and new work trips, the final travel times from 
the previous year are used to compute the trip distribution in the sub
sequent year. Other trips are carried from the previous year. Detailed 
information on the estimation of the initial (seed) trip table is avail
able from the author and was not included for reasons of space. 

Departure Time Choice 

Departure time choice determines the proportion of peak-period 
vehicle trips that occur in the peak hour. It is a binomial Jogit model 
with two choices: peak hour and not peak hour. The factor that is 
used to determine probability of peak hour is the ratio of congested 
to free-flow time on a zone-interchange basis. This component is 

solved in equilibrium with route assignment and intersection 
control for both work and nonwork trips. 

Mode Choice 

In this application of the model, mode choice is held fixed at 1990 lev
els. Earlier tests of the model found little differentiation of mode 
choice because of the changes in network and land use between 1990 
and 2000 when policies are kept fixed. In theory, this component 
could be solved in equilibrium with route assignment and intersection 
control. However, to reduce computational time and possible sources 
of minor variation, the zone-to-zone mode shares were therefore kept 
constant. Future research should consider a simultaneous approach to 
mode and departure time choice, and possibly destination choice, at 
least for non work activities, although various questions about the rel
ative timing of these components would need to be resolved. 

Route Choice and Intersection Control 

A single-class user equilibrium assignment model provided by the 
EMME/2 software is used in this application (9). This model 
considers both link delay and turn delay. The inputs to turn delay 
(cycle length, green time per phase) are computed with an external 
program each iteration of the automobile assignment, and the 
results are fed back into the turn penalty function (6). 

EXOGENOUS MODEL INPUTS 

Two key sets of exogenous data are used in the model: land use and 
demographic changes by zone, and modifications in the highway 
and transit networks. These are described as follows. 
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Land Use and Demographics 

The land use assumptions in this application are derived from the 
Round IV forecasts of the Metropolitan Washington Council of 
Governments and the Round IV forecast of the Baltimore Regional 
Council of Governments (10, 11). In 1990, for Montgomery County, 
Maryland, the focus of this study, there were 280,000 housing units 
and 460,000 jobs, which is expected to increase by the year 2000 to 
320,000 housing units and 580,000 jobs (Figure 3). These forecasts 
are based in large part on approved but unbuilt development (typi
cally a 6- to 12-year inventory) and by the queue of developers who 
are applying for development approval. Future land use forecasts 
will incorporate estimates of transportation accessibility explicitly, 
and perhaps eventually the forecasting will be integrated. However, 
as· noted earlier, resistance to combined transportation/land use 
forecasting in the Washington area is at least as political as techni
cal. Demographic inputs (age distribution by area, average house
hold size) are updated each year on the basis of results from an 
exogenous demographic forecasting process independent of any 
transportation variables. 

Networks 

A dynamic model requires that changes to the transportation net
work be coded to the year of change. Here the model transportation 
networks come from the Montgomery County Planning Department 
(for Montgomery County), the Metropolitan Washington Council 
of Governments (for the rest of metropolitan Washington) and the 
Baltimore Regional Council of Governments (for metropolitan 
Baltimore). The future network within Montgomery County has 
coded changes in link capacities (number of lanes) as well as addi
tional links to the year of opening. Outside Montgomery County, 

600 

550 
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the change in networks occurs for the base year and 1995. Thus, the 
capacity outside Montgomery County from 1990 to 1995 and from 
1996 to 2000 is fixed. 

MODEL CONVERGENCE 

Figures 4 and 5 show convergence results for the two models, both 
in the year 2000 time horizon summarizing the entire model region. 
The results for the equilibrium model represents the value of the 
objective function on each iteration in the year 2000. The results for 
the hybrid-evolution model reflect the decisions decided in equilib
rium (nonwork trip distribution, time-of-day choice, and route 
choice) also in the year 2000 for each iteration. In the evolutionary 
model, there is no convergence from year to year (as discussed in 
the next section on results). Figure 4 shows the total vehicles on the 
network, which for both runs converges to about 1 million vehicles 
by the 30th iteration. The equilibrium model has somewhat more 
vehicles than the hybrid-evolution model, although more research 
will be necessary to say whether this is inherent in the model struc
ture or just an artifact of the particular data set. It should be noted 
that the hybrid-evolutionary model converges more quickly 
than the equilibrium model, probably because one major compo
nent, work trip distribution, is fixed before the model is run 
for a given year. By the 10th iteration the hybrid model has a 
demand that is substantially identical to the 30th iteration; however 
it takes 15 iterations for the same to be true of the equilibrium 
model. 

Figure 5 shows the convergence of the objective function 
(absolute gap) for the two models. The gap is an estimate provided 
by the EMME/2 software of the difference between the current 
assignment and a perfect equilibrium assignment in which all routes 
used for a given origin-destination (0-D) pair would have the same 
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FIGURE 3 Land use activity, Montgomery County, 1990-2000. 
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length (9). The value is tending to level out at about 1 million by the 
25th iteration. 

Thus, for any given time slice (I year), the hybrid-evolutionary 
model reaches an equilibrium, although over time the equilibrium 
point moves. This particular structure, which is largely composed 
of convergent negative feedback loops is unlikely to have the poten
tial for chaos, cascades, or catastrophes. However, depending on the 
rate of change of exogenous variables such as the network descrip
tion or amount of development, the equilibrium point should move 

more or less smoothly. 

RESULTS 

Some summary figures are provided for the various models to com
pare their results. Figure 6 shows the peak hour vehicle trips (the 
same result as in Figure 4) for each year, again for the entire model 
region. The number of trips increases in the hybrid model, but is less 
than that in the equilibrium model. The large uptick in 1995 is 
caused by the increased network capacity, which was coded to come 
on line during the year (recall that outside Montgomery County, 
capacity from 1990 to 1994 is the same as it is from 1995 to 2000.) 
This clearly emphasizes the need for time coding of networks if this 
approach is to be used. 

Figure 7 shows the vehicle miles traveled (VMT) within Mont
gomery County for the two models. Again the hybrid model is 
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somewhat less traveled than the equilibrium model. VMT shows a 
sharp increase from 1990 to 1991. In that year I-270 was widened 
from 6 to 12 lanes through much of the county, which resulted in 
increased demand. Otherwise the growth is fairly smooth. 

Figure 8 displays the average work trip time (in minutes), length 
(in kilometers), and speed (in kilometers per hour) for Montgomery 
County work trip origins (because this is the afternoon, origins are 
Montgomery County workers going home). All three values are 
stable across the decade, indicating that the feedback process is 
maintaining these attributes. In fact, speed improves over this 
period while travel time decreases slightly, indicating appropri
ate capacity increases and shifting travel patterns from suburb to 
suburb trips, which have higher average speeds. The difference 
of means tests performed over the I 0 years, comparing the mean 
traffic zone time and speed (comparing 1990 and 2000 results f 
or the model) shows that the results for the year 2000 are statisti
cally different from those in 1990 for the hybrid-evolutionary 
model for time and speed but the same for length. For the equilib
rium model, the time, speed, and length did not show a statistical 
difference. 

Figure 9 shows the proportion of Montgomery County links in 
each level of service category (LOS A through F). No trend is 
apparent. In fact, for the year 2000, the percentage of links better 
than LOS CID is identical in both the hybrid and equilibrium mod
els. Figure I 0 shows the intersection LOS (using the critical lane 
volume method) for intersections in the county. Again no trend is 
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FIGURE 6 Peak-hour vehicle trips by year, entire model region. 
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apparent, and the number of intersections above LOS CID in both 
models is the same in the year 2000. 

CONCLUSIONS 

This paper discusses some of the implications of introducing 
dynamic work trip demand into the transportation planning model. 
As a behavioral assumption for the forecasting of a specific year in 
the midterm, evolution is conceptually better than equilibrium. The 
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results were similar, but not identical between the two models. The 
length of the time period under study and the relative change in 
input data may influence model results. 

The question of equilibrium or evolution is important in the con
text of attempts to construct dynamic models of urban structure and 
growth or travel demand. Most such large-scale models are now sta
tic, or dynamic in only the crudest sense, using 5-year time slices 
(12). However, the structure and function of every city, and the 
behavior of individuals within that,?city, depend crucially on their 
mutual co-evolutionary history. Because cities and human activity 
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FIGURE 9 Link level of servtce, Montgomery County. 

patterns evolve through time in complex, dynamic "environments," 
the interactions of urban form and human behavior do not, and 
should not be expected to, conform to equilibrium conditions. 
According to Forrester (13, p. 121 ), "The urban system is a complex 
interlocking network of positive and negative feedback loops. Equi
librium is a condition wherein growth in the positive loops has been 
arrested." 

The reasons for preferring the evolutionary method to the equi
librium approach are several: (a) the ability to fully incorporate an 
observed data set such as a vehicle (or transit) trip table synthesized 
from traffic counts (14) (or transit ridership data) and the Journey 
to Work ~ensus data (unlike the use of equations and adjustment 
factors, all of the information inherent in the observed data can 
be used, ~nd only the change over time needs to be modeled); (b) 

additional realism in the concept of the model; (c) the provision 
of a framework for extension to integration with land use models; 
and (d) the additional information available to policy makers for 
decisions such as the sequence of programming and constructing 
capital facilities, where the benefit depends on the timing of the 
facility. 

This research points out the need to develop realistic behavioral 
models of switching in all model components. For instance, the 
Wardrop equilibrium principal states that no route is used between 

an 0-D pair if the travel time is greater than on another route. But 
this implies perfect information. Once individuals have selected 
routes, their travel times change from day to day for a variety of fac
tors. At what point does an individual decide to try another route? 
Under what conditions will this commuter stay with the second 
route or return to the first? How will advanced traveler information 
systems play into this? Switching is an issue in departure time 
choice, activity sequencing, mode choice, and nonwork trip desti
nation selection (e.g., the choice of a grocery store). These and other 
questions will need to be answered as dynamic evolutionary 
modeling is implemented. 

Some practical issues also emerge. There are not yet enough 
data to know the long-term temporal stability of this relocation 
value. What is it a function of? Are distribution curves (and other 
components) the same at the margins as they are on average? Fur
ther research can be aimed at implementing a full day-to-day 
evolutionary travel/activity demand simulation, with models of 
switching rather than attempting to predict the behavior of the 
entire population. 

However, in the near term, application of supply/demand equi
librium models of travel demand is still preferable to conventional 
application with fixed zone-to-zone travel times independent of 
changes in the transportation network. 
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Exploring Route Choice Behavior Using 
Geographic Information System-Based 
Alternative Routes and Hypothetical 
Travel Time Information Input 

MOHAMED A. ABDEL-ATY, RYUICHI KITAMURA, AND PAUL P. JOVANIS 

A statistical analysis of commuters' route choice is presented. A binary 
logit model with normal mixing distribution using stated preference 
repeated-measurement data is estimated. General descriptive statistics 
are initially introduced in the paper to explore various route choice cri
teria and provide the basis for model estimation. The analysis is based 
on mail-out/mail-back surveys that were customized using routes gen
erated by a geographic information system and information gathered 
from two previous route choice surveys. The results indicate the signif
icance of travel time, travel time reliability, traffic safety, and roadway 
characteristics on route choice. The estimation results also underscore 
the influence of traffic information on route choice. 

Fastest-path routing has been adopted over the years because of its 
simplicity and linkage with algorithms for generating equilibrium 
in static traffic assignment models. However, in real life, driver's 
routes are likely to deviate from the fastest path in significant ways. 
Empirical research on route choice behavior shows that drivers use 
numerous criteria in formulating a route: travel time, number of 
intersections, traffic safety, traffic lights, and other factors. Drivers' 
experiences, habits, cognitive limits, and other behavioral consid
erations may also produce variations in route selection. Viewed in 
this light, one can see that assuming travel time as the sole criterion 
of route choice is indeed an unrealistic abstraction of individual 
driver behavior and when aggregated at the network level may 
result in an inaccurate representation of traffic. 

A number of studies have been performed in the past on route 
choice. Minimizing travel time is considered the most important cri
terion affecting drivers' route choice (1-3). Also, directness (2) and 
less congestion (3) were among the important reasons. Wachs (3) 
concluded that socioeconomic and demographic characteristics do 
not clearly relate to attitudes toward route choice criteria, whereas 
Jou and Mahmassani ( 4) and Mannering et al. (5) found that socioe
conomic characteristics together with the traffic network were 
important determinants of route changing behavior. 

An important factor that has been introduced frequently in the past 
few years is traffic information and its effect on commuters' behav
ior in general and on route choice in particular. Insights into drivers' 
route choice will help us understand the effect of information, which 
might also be a factor in new network-level traffic models. 

This paper uses data collected from a route choice survey. The 
survey included two major components: a revealed preference 

M. A. Abdel-Aty, Department of Civil and Environmental Engineering, 
University of Central Florida, P.O. Box 162450, Orlando, Fla. 32816. 
R. Kitamura and P.P. Jovanis, Institute of Transportation Studies, 2028 Aca
demic Surge, University of California at Davis, Davis, Calif. 95616. 

(RP) section based on the attributes and perceptions of the respon
dents' primary (chosen) and geographic information system (GIS)
generated alternate routes and a stated preference (SP) section using 
repeated discrete choice scenarios. The main objective of the paper 
is to explore the criteria that influence commuters' route choice and 
to investigate the effect of advanced traveler information on route 
choice. The paper presents general descriptive statistics of com
muters' route choice. A binary logit route choice model using stated 
preference data is also presented. 

ROUTE CHOICE SURVEY 

An ongoing effort for Partners for Advanced Transit and Highways 
(PA TH) at the University of California, Davis, is to investigate the 
actual route choices of drivers, with the objective of developing 
refined route choice models that can include the effect of traveler 
information. 

Two computer-aided telephone interviews (CATis) were con
ducted in May 1992 and May 1993, respectively. These surveys 
investigated the actual routes used by commuters, their awareness 
of alternative routes, their attitudes and perceptions of several com
mute characteristics, and the traffic information they acquire and its 
effect on their route switching and choice. Several previous studies 
by the authors present the design of the CA TI surveys and the data 
analyses (6-8). 

A third route choice customized survey was developed targeting 
the respondents interviewed in the previous two CA TI surveys. This 
survey contains the GIS-based RP route choice questions and the 
repeated discrete choice SP questions that evaluate the potential 
effect of advanced traveler information systems (A TIS). The survey 
was designed to obtain the following information: 

• Route attributes considered important by the individual in the 
decision process that leads to the choice of a route; 

• Commuter familiarity with highway and street networks and 
its potential effect on route choice; 

• Commuter willingness to use A TIS; and 
• Effect of advanced traffic information on route choice. 

Response Rate 

The number of targeted respondents was restricted by the availabil
ity of their addresses and the success in· geocoding their home and 
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work locations using a GIS. Home and work locations were suc
cessfully geocoded, and addresses were available (agreed to provide 
the address during the second CATI survey) for 263 respondents. 
The 263 questionnaires were customized according to each respon
dent's home and work locations, primary route, and travel time. The 
questionnaire included each respondent's primary route (from the 
CATI surveys), a GIS-generated minimum path route between the 
commuter's origin and destination, and SP choice scenarios 
customized using the commuter's primary route and actual travel 
time. The questionnaires were sent to the respondents along with 
a postage-paid return envelope and an incentive of $2.00. A total 
of 143 respondents completed and returned the questionnaires 
(54.4 percent response rate). 

Survey Design 

The revealed preference section and the stated preference section, 
both heavily customized for the respective respondents, are 
described. 

Revealed Preference Section 

The main objective of the revealed preference section is to under
stand why commuters choose a particular route (in this case their 
primary-or most frequently used-route); why they do not neces
sarily use the GIS-generated "optimal" route; how they perceive the 
primary and optimal routes; how familiar they are with the street 
and highway network; and how willing they are to use and accept 
the advice of an A TIS. 

The primary commute route for each respondent is identified 
from the previous CA TI surveys. Each segment of the primary route 
is presented to the respondent in a table; then the respondent is 
asked to rate a series of subjectively measured route attributes 
related to the primary route. 

On the basis of each respondent's origin (home) and destination 
(work), and using GIS capabilities, the Navigation Technology's 
data bases are used to generate optimal routes. Navigation Tech
nology's data bases are detailed data bases that include all the high
ways and streets in the study area. The optimal route is presented to 
the respondent in the questionnaire, followed by several questions 
that measure the respondent's familiarity with this route, willing
ness to use an A TIS, and rating of a series of route attributes. The 
RP data provide significant insights into the factors that influence 
route choice. 

Stated Preference Section 

The main objective of the SP section is to investigate the effect of 
A TIS together with roadway type, travel time, and familiarity with a 
particular route, on the route choice. SP methods become an attrac
tive option in transportation research when revealed preference meth
ods cannot be used in a direct way to evaluate the effect or demand 
for nonexisting services (e.g., A TIS). SP methods are easier to con
trol, more flexible, and economical as each respondent may provide 
multiple observations for variations of the explanatory variables. 

In this survey, each respondent is provided with three scenarios; 
in each, the respondent has to choose between two routes (Figure 1 
shows an example of one of the scenarios). The choice is binary: 
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Route 1 is customized for each respondent so that the SP design 
would be as realistic as possible, whereas Route 2 is hypothetical. 
For Route 1 it is stated: "Your primary route using .... " and then a 
segment of the respondent's actual route is written. The travel time 
of Route l is the respondent's actual commute time as stated in the 
CA TI surveys, and the road type is the actual route type of the pri
mary route (mainly freeway, mainly surface streets, or freeway and 
surface streets). The objective is to use the route that the respondent 
is familiar with and make the SP design realistic. Road type of 
Route 2 is one of the following: mainly freeway, mainly surface 
streets, or a combination of freeways and surface streets. 

For the travel time on the alternative route to be as realistic as 
possible, and because both routes have the same origin and desti
nation, the travel time on both routes is likely to be close to a great 
extent. Therefore, normal travel time on Route 2 is as follows: 

0.9 * (normal travel time on Route 1) 

1.0 * (normal travel time on Route 1) 

1.1 * (normal travel time on Route 1) 

Traffic information is available on either Route I or Route 2, but not 
both. If traffic information is available an estimation of the travel 
time on that day is one of the following: 

0.9 *(normal travel time on the same route) 

1.0 *(normal travel time on the same route) 

l. l * (normal travel time on the same route) 

1.2 * (normal travel time on the same route) 

1.4 * (normal travel time on the same route) 

These values are chosen to be as realistic as possible to represent 
light and usual traffic conditions (factors of 0.9-1.1), mild traffic 
coriditions (factor of 1.2), and heavy traffic conditions that might be 
caused because of, for example, an accident (factor of 1.4). 

If the information system estimates an above-normal travel time, 
the cause of the delay is given to the respondent. The cause of the 
delay is either accident, maintenance, stalled vehicle, or regular con
gestion. A TIS were defined to the respondents as a system that can 
offer personalized information about a trip and give advice about 
other routes to take while considering current traffic conditions. 

All possible combinations of the previous cases are considered, 
after excluding the obvious choices (e.g., if Route 1 is faster and has 
information that predicts no delays). In all, 68 different combina
tions were used, three for each respondent randomly. 

FACTORS AFFECTING ROUTE CHOICE 

As mentioned earlier, one of the main objectives of this study is to 
determine which route attributes are considered important by the 
individual in the decision process that leads to the choice of a route. 

Respondents were asked to rank several factors that made them 
choose their primary route. The factors and the respondents' rank
ings are given in Table 1. Shorter travel time is the most important 
factor (first reason) for choosing the primary route (ranked as the 
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PART II 
On the following 2 pages, we are asking you to choose from among two routes, the first is similar to 

your primary route, while the second is a hypothetical route. 

Suppose one day you are choosing between 
the following two routes from your home to work 

Route 1 Route 2 
Your primary route using 

HARVARD AVE 

1. Road type Surface streets Mainly Freeway 

2. Normal Travel Time 15 minutes 13 minutes 

3. Traffic Information 

• Estimated travel time on this day Not available 18 minutes 

• Information on the cause of the delay - Accident 

24. Given these choices, which route would you choose on this particular day? 

0 1 Route 1 D2 Route 2 

25. When would you leave home on that day? ____ AM 

FIGURE 1 Example of route choice question. 

first reason by 40 percent of the respondents) followed by both 
travel time reliability (32 percent) and shorter distance (31 percent). 
About 62, 54, and 47 percent indicated that shorter travel time, 
travel time reliability, and shorter distance, respectively, as either 
the most or second important reason for choosing their primary 
route. Other reasons included fewer traffic signals, greater traffic 
safety, and lack of unsafe neighborhoods, which about 11, 6, and 
4 percent of the respondents, respectively, considered the most 
important reason for route choice. 

Table 2 indicates the factors that make respondents choose their 
primary route over the suggested optimal route (which was gener
ated using a GIS system). Again, the results support the previous 
result that travel time minimization is the most significant factor. 
About 62.9 percent of the respondents indicated that they do not use 
the suggested optimal route because their primary route is faster. 
However, there exist other factors that enter into the decision to 
choose a particular route. Shorter distance, travel time reliability, 
and traffic safety were among the factors indicated by 3 7. 8, 3 7 .1, 
and 28.7 percent, respectively. 

Other factors also enter into some individuals' decision to use a 
particular route. Number of roadway segments, freeway use, trip 
chaining, neighborhood security, and familiarity were among the 
factors less frequently stated. Overall, 10.5 percent of the respon
dents indicated that the suggested optimal route is the same as their 
primary route (they are already using the optimal route). 

This result clearly shows that minimizing travel time is the pri
mary reason for route choice, which conforms to many previous 
studies (1-3). This result also illustrates that minimizing travel time 
is not the only factor; there exist other important reasons, such as 

travel time reliability. Travel time reliability adds the measure of 
uncertainty to the route choice and introduces the significance of an 
information system that may help reduce travel time by selecting 
routes adaptively. In another paper by the authors in this Record, 
travel time variation was found to significantly affect route choice. 
Also, this result indicates that shortest-path criteria (either time or 
distance) solely are an unrealistic abstraction of individual driver 
behavior. It might be more realistic to include all the previous fac
tors in determining drivers' route choice behavior and giving each 
factor a weight that represents its significance in the route choice. 

Figure 2 indicates respondents' perception of their familiarity 
with the GIS-generated route (this measure might indicate the 
respondents' overall familiarity with their streets/highways net
work). The figure shows that a large majority of the respondents 
(73 percent) consider themselves "extremely familiar" with the 
suggested route, and 21.6 percent considered themselves "very 
familiar" with this route. The rest, about 5 percent, considered 
themselves "somewhat familiar" with the route. Only one respon
dent considered himself "not at all familiar." Also, about 54.3 per
cent of the respondents indicated that they had used the GIS-gener
ated route before and 28.6 percent had used part of the route, 
whereas only 17 percent had not used this route. 

The previous results indicate that the majority of the respondents 
are familiar to a large extent with their networks, which suggests 
that the commuters' unfamiliarity with alternative routes is not one 
of the main reasons that they choose a particular route; it is their per
ceptions of the attributes of a particular route, as discussed earlier 
(travel time, travel time reliability, distance, safety, etc.) that lead to 
a certain choice. 



TABLE 1 Reasons for Choosing Primary Route 

Reason for route choice 1st reason 2nd reason 3rd reason 4th reason 5th reason 

Shorter travel time 58 (40.6%) 31 (21.7%) 11 (7.7%) 8 (5.6%) 4 (2.8%) 

Travel time is reliable 46 (32.2%) 31 (21.7%) 21 (14.7%) 14 (9.8%) 8 (5.6%) 

Shorter distance 45 (31.5%) 23 (16. l %) 17 (11.9%) 11 (7.7%) 4 (2.8%) 

Fewer traffic signals 15 (10.5%) 15 (10.5%) 24 (16.8%) 24 (16.8%) 11 (7.7%) 

Greater traffic safety 8 (5.6%) 15 (10.5%) 14 (9.8%) 17 (11.9%) 31 (21.7%) 

No unsafe neighborhoods 5 (3.5%) 7 (4.9%) 9 (6.3%) 11 (7.7%) 19 (13.3%) 

Drive more on carpool lanes 1 (0.7%) 3 (2.1 %) 0 0 0 

Note· Summing each column might exceed 100%, that is because some people chose two factors as 1st or 2nd reason, e.g., they 
consider shorter travel time and travel time reliability as the most important reason for route choice. 

TABLE 2 Reasons for Not Using GIS-Generated Optimal Route 

Primary route is faster 

Primary route is shorter 

Travel time is unpredictable 

Primary route is safer 

Many short roadway segments 

Primary route involves more freeway 

segments 

Have to make stop on the way along the 
primary route 

Primary route does not include insecure 
neighborhoods 

Not completely familiar with this route 

Had a bad experience in the past with the 
suggested route 

No. of respondents (percent) 

54 (37.8%) 

53(37.1%) 

41 (28.7%) 

16 (11.2%) 

14 (9.8%) 

11 (7.7%) 

9 (6.3%) 

5 (3.5%) 

5 (3.5%) 

~ Multiple answers are allowed (respondents can choose more than one factor) 
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Percent 

FIGURE 2 Respondents' familiarity with GIS-generated route. 

ROUTE CHOICE MODEL USING 
STATED PREFERENCE DATA 

Route choice models usually are estimated with observations of 
actual behavior, or RP data using discrete choice models (as presented 
in the previous section). However, hypothetical choice scenarios may 
be needed if the RP data do not provide information on preferences 
for nonexisting services (e.g., ATIS). In this study the SP scenarios 
are customized according to each respondent's route, roadway type, 
and travel time. This approach made the hypothetical choices realis
tic to a great extent, which is believed to be useful because a respon
dent's choices are more likely to represent the actual behavior. 

As mentioned earlier, respondents were presented with three 
hypothetical scenarios. These scenarios are designed to investigate 
the respondents' route choice in the existence of A TIS. 

The estimation of a logit model with repeated observations for 
each respondent gives rise to an obvious serial correlation of distur
bances. This may be caused by heterogeneity, which refers to varia
tions in unobserved contributing factors across behavioral units. If 
behavioral differences are largely caused by unobserved factors, and 
if unobserved factors are invariant over time but correlated with the 
measured explanatory variables, then estimates of model coeffi
cients will be biased if this heterogeneity is not considered. Even 
without the correlation between the explanatory variables and un
observed factors, estimates of standard errors will be biased when 
the disturbances of a series of choices are serially correlated. 

Methodological Approach 

The approach taken in this paper to account for unobserved hetero
geneity is to assume a parametric functional form for the pattern of 
the heterogeneity. The vector of observed choices or responses for 
individual i is defined as Yi· Each element of Yi is written as yil:t = 

1, ... , Ti each of which is a repeated binary choice, expressed as 
the integers 0 and 1. The length of Yi is Ti, which may vary between 
individuals. The sample size is written as/, soi = 1, ... , I. 

In the context of the short-term repeated choice sets data analyzed 
in this paper, it is possible to argue the existence of no state depen-

dence (the utility of one period does not depend on choices of the 
previous periods) and stationarity (neither the variance of the error 
term nor the serial correlation between the error terms depend on 
time) (9, I 0). The probabilities that individual i chooses altemati ves 
0 and 1, Poir and Ptir• respectively, are given as 

Poi1 = P(yi1 = OI ex, 13, xii) = 11[ 1 + exp(x/113 + ex)] 
P1i1 = P(yi1 = 1 I ex, 13, Xii) = exp(x!1 l3 + ex)./[ 1 + exp(xi; 13 + ex)] (l) 

where 

ex = constant, 
13 = vector of parameters, and 
xii = vector of exogenous variables. 

The influence of the unobserved variables in Equation 1 is represented 
by the constant term ex; that is, the influence is assumed constant across 
individuals. The probability of observing Yi= (yi1> ... , YiT) given Ti 

in this specification is 

Ti [ exp (x/113 + ex) ] 0
1i 

P (Yi I ex, 13, Ti, Xii) = IJ 1 + ( , l3 + ) 
1-1 exp Xu ex 

D· = {1 
ti 0 

if Yi 1 = 1 
otherwise 

(2) 

Heterogeneity is introduced into the model by assuming that the 
probabilities Poii and Pi ii are conditional on both xii and an individ
ual specific error term, Si• which represents all the other influences. 
Equation 1 becomes 

Poi1 = P(Yi1 = 0113. Xii• S;) = 11[1 + exp (x/113 +ex + S;)] 
P1i1 = P(Yi1 = 1 I 13, X;1, S;) 

= exp(x/113 + ex + s;)/[ 1 + exp (x/113 + ex + S;)] (3) 

The i;;: i = 1, ... , I are assumed to be identically distributed with 
density function f(si) independent of the x;, so that Equation 2 
becomes 
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p [y; I [3, T;, X;,,f(£;)] 

- J+"" T; [ exp(x/, f3 + O'. + £;) JD;, . . 
- -x J] 1 + exp(x/, f3 + O'. + £;) f (£,) d (£,) (4) 

This yields a marginal likelihood function. The unknown variables 
£; are integrated out. Equation 4 is based on the assumption that £; 
has a continuous distribution function. The distribution of £; is 
called a mixing distribution. The log likelihood function is 

I J + 00 T; [ exp(x/1 f3 + O'. + £;) JD; 1 

L =;?; ln J] l + exp(x/, f3 + O'. + £;) !(£;) d (£;) (5) 

A parametric form and £; - N(O, rr2
) are assumed. The integral is 

evaluated using Gaussian quadratures. General MLE packages such 
as the one provided with GAUSS statistical software (11) can be used 
to obtain maximum-likelihood estimates. The Broyden, Fletcher, 
Goldfarb, and Shanno (BFGS) optimization method is used in this 
study (12). The BFGS method is like the quasi-Newton method in 
that it uses both first and second derivative information. However, in 
BFGS the Hessian is approximated, reducing considerably the com
putational requirements, and although it takes more iterations than 
the quasi-Newton method it converges in less overall time. 

Estimation Results 

A binary logit model is developed using the methodology presented 
earlier. The model is developed to estimate the commuters' choice 
between Route 1 (customized according to the respondent's actual 
primary route and travel time) and Route 2 (a hypothetical alterna
tive route). The overall observations are used to estimate the model, 
which gives a total of 417 observations (i.e., I 39 respondents each 
making 3 choices). 

The model is presented in Table 3. The insignificance of the con
stant term is a result ofrespondents' lack of knowledge of the attrib
utes of Route 2 (respondents do not have complete information 
about Route I because it is customized according to their usual 
route). The model shows that as the percentage of "normal travel 
time on Route 2 to the normal travel time on Route 1" increases, the 
less likely the respondents are to choose Route 2. This variable 
shows that the respondents compare the travel time on both routes 
to make a route choice decision that minimizes their travel time. 

The roadway type is also significant on route choice. If Route 2 
involves freeway use then this route is more likely to be chosen, 
indicating the existence of freeway bias. The result also supports the 
results of the RP data, that is, commuters' preference for fewer 
different roadway segments on their route, which is probably the 
case with the use of freeways. 

If the information system predicts a travel time on Route 2 that is 
less than the travel time on Route 1, then this increases the likeli
hood of Route 2 being chosen. This variable shows the importance 
of a travel information that provides travel time estimates. 

Age was the only socioeconomic variable to enter into the model. 
Older respondents were found to be less likely to use Route 2, prob
ably because this was considered an unfamiliar route. They appar
ently preferred to use their primary route and did not risk using an 
alternative. 

Commuters' perception of the reliability of their actual commute 
route affects their choice. Respondents who perceive their actual 
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commute route (Route 1) to have good or excellent travel time 
reliability were less likely to choose Route 2. This indicates their 
confidence in their route and consolidates the results from the 
descriptive statistics section. 

The model shows that commute distance has a significant effect 
on route choice. The positive coefficient of the log of commute dis
tance on the actual primary route (Route 1) indicates that respon
dents with longer distances tend to choose the· alternative route 
(Route 2). This indicates that people with long commutes are more 
disposed to trying out an alternative route in an attempt to minimize 
their trip. The use of the log transformation indicates that this effect 
is nonlinear, with marginal increases in distance playing a stronger 
role in shorter commutes. 

Finally, the significance of rr illustrates that the unobserved influ
ences affecting a specific individual's choice are correlated from 
one of his selections to the next. This demonstrates the need to use 
a methodology, for example the normal mixing distribution in this 
study, to account for unobserved heterogeneity. 

CONCLUSIONS 

This paper is based on data collected from a route choice survey. 
The survey utilized innovative methods in studying route choice 
behavior by customizing mail-out/mail-back questionnaires. A GIS 
was used to generate optimal routes to understand drivers' famil
iarity with the highways/streets network and to study commuters' 
perceptions of this route in a way that helps identify the factors that 
influence route choice behavior. The survey included also a 
customized stated preference section that enables the investigation 
of the possible impact of A TIS on route choice. 

The analysis showed clearly that minimizing travel time is the 
most important reason for choosing a commute route. About 40 per
cent of the respondents indicated that shorter travel time is their 
principal reason for choosing their primary route, and 63 percent 
indicated that they choose their primary route over the suggested 
optimal route because their primary route is faster. 

However, minimizing travel time is not the sole reason for route 
choice. A large number of the respondents indicated the signifi
cance of other factors, such as travel time reliability, which illus
trates the significance of the uncertainty measure in route choice and 
introduces the significance of an information system that reduces 
the level of uncertainty and helps commuters select routes adap
tively. Other important factors that influence route choice are travel 
distance and the traffic safety on the chosen route. 

Other factors appeared to enter into the route choice process, such 
as the number of traffic signals and stop signs and neighborhood 
security. These results suggest that route choice selection is a func
tion of several factors, in which travel time would be assigned a 
heavy weight, and the other factors would contribute to the function 
according to the degree in which they influence the route choice. 
The survey results indicated that most respondents were familiar 
with the GIS-based alternative routes. Commute route choice 
appears to be a well-informed choice. 

Modeling route choice asserted the significance of travel time on 
route choice, and showed clearly that A TIS has a great potential in 
influencing commuters' route choice even when advising a route dif
ferent from the usual one. Several other commute factors were found 
to affect route choice, for example number of different roadway seg
ments, freeway use, commute distance, and travel time reliability. 

This paper illustrates clearly that several significant factors influence 
route choice, including advanced traffic information that provides 
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TABLE 3 Estimates of Stated Preference Route Choice Model with Normal Mixing Distribution and 
Gaussian Quadratures Estimation 

Coef. t-stat. 

Constant 0.103 0.10 

X1 Normal travel time on route 2 I normal travel time on route 1 -1.S8S -1.SS 

X2 Freeway use dummy variable 0.412 3.18 

( 1 if route 2 is mainly freeway or includes freeway, 0 otherwise) 

X3 ATIS dummy variable 1.204 3.37 

(1 if predicted travel time on route 2 < normal travel time on route 1, 

0 otherwise) 

x4 Old age dummy variable --O.S4S -1.46 

(1 if > SS years, 0 otherwise) 

Xs Travel time reliability on route 1 dummy variable --0.552 -2.18 

(1 if travel time reliability on actual primary route is perceived to be 

good or excellent, 0 otherwise) 

~ Log of commute distance in miles 

<1 Standard Deviation of ~. 

Summary Statistics 

Log Likelihood at zero = -289.042 

Log Likelihood at market share = -270.978 

Log Likelihood at convergence = -192.961 

Likelihood ratio index = 0.332 

Number of observations = 417 

Note: model coefficients are defined for route 2 

travel time estimates for commuters. However, more work should be 
done to study the effect of factors that were not included in this study, 
along with drivers' experiences, habits, cognitive limits, and other 
behavioral considerations. An important factor that was raised in this 
paper that needs m9re investigation is the effect of travel time varia
tion and uncertainty on route choice. Developing route choice models 
using the RP and SP data jointly also remains as a future task. 
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Introduction of Information Feedback 
Loop To Enhance Urban Transportation 
Modeling System 

KYLE B. WINSLOW, ATHANASSIOS K. BLADIKAS, KENNETH J. HAUSMAN, AND 

LAZAR N. SPASOVIC 

The Urban Transportation Modeling System (UTMS) is a methodology 
used to estimate travel demand in response to changes in land use pat
terns, roadway characteristics, and socioeconomic factors. This demand 
is measured by the volume of traffic that flows through a system of 
streets and highways. Through the use of traffic assignment software, 
parts of UTMS have become automated. One of the newest automated 
processes is the extraction of a subarea from a larger regional model. 
This extraction process is important to the local planner because it main
tains a link from the regional model to the local model and allows the 
planner to extract an already distributed trip table rather than build one 
from scratch. This subarea extraction process, as practiced, is a one-way 
information flow. The regional model is calibrated and its information 
is passed down to the subarea model. It is suggested that an "informa
tion feedback loop" should be inserted into the process. The subarea 
model information is looped back to the regional model and used in the 
regional calibration. The enhanced procedure is applied to a northern 
New Jersey network. The results show that the new methodology 
improved the calibration of the regional model, particularly in the vicin
ity of the subarea focus model. This new methodology is the key to 
developing subarea focus models with properly distributed trip tables. 
In addition, the results are used to develop general conclusions about 
the applicability of the feedback process. 

The Urban Transportation Modeling System (UTMS) is a set of 
procedures used by transportation planners to estimate travel 
demand in response to changes in land use, roadway characteristics, 
and socioeconomic factors. UTMS is commonly referred to as the 
"four-step modeling process": trip generation, trip distribution, 
modal split, and route assignment (J). The UTMS process histori
cally has focused on the regional impact of major transportation 
improvements and significant changes in land use. The regional 
models that have been developed to address these issues generally 
include only freeways, expressways, and major arterials. Roads that 
primarily serve local traffic are not included. Because of the desired 
accuracy levels, as well as technological limitations, detailed net
work coding for traffic signals, traffic control devices, and inter
change configurations are not considered. Individual zones may be 
neighborhoods or even as large as municipalities. 

More recently, environmental concerns as well as changes in the 
legislative and policy areas have resulted in closer scrutiny and 
analysis of smaller areas within the regional models. The need to 
respond to these issues, coupled with the availability of micro-

K. B. Winslow, Parsons Brinckerhoff-PG, Inc., 506 Carnegie Center Drive, 
Princeton, N.J. 08540. A. K. Bladikas and L.N. Spasovic, National Center 
for Transportation and Industrial Productivity, New Jersey Institute of Tech
nology, Newark, NJ. 07102. K. J. Hausman, URS Consultants, Inc., One 
Penn Plaza, Suite 610, New York, N.Y. 10119. 

computer transportation planning software packages such as QRS
II (J), MINUTP (2), and TRANPLAN (3), has led to the develop
ment of local area models. Compared with the regional model, the 
focus of the local area model is on the roadways that serve local traf
fic. Detailed network coding, including interchanges and traffic 
control devices is generally included. Individual zones may repre
sent a residential subdivision, or a major employment center in a 
suburban area, or even a single block in an urban area. The ques
tions to be answered by the local model concern the impacts of local 
zoning changes, major and minor residential or commercial devel
opment, and transportation system improvements such as improved 
traffic signal coordination and local roadway widenings. 

Regional and local area models are developed to respond to dif
ferent questions and to address different issues. However, they do 
share a large common pool of information regarding the physical 
characteristics of the network, as well as the demand for travel. The 
ability to "share" information between regional and local models 
has traditionally been a one-way flow. Network and travel demand 
information from the regional model is extracted and used as part 
of the development of the local area model. This paper outlines an 
improved flow of information that enhances the extraction process 
and uses the information from the local area model to create an 
"information feedback loop" to improve the regional model. This 
improvement results in a benefit at both the regional and local 
levels. The enhanced process is applied to a case study in northern 
New Jersey. The results of the case study are used to develop gen
eral conclusions about the applicability of the feedback process. 

BACKGROUND 

At one time the development of local area models simply did not 
consider the impacts of any changes that occur outside the local area 
boundaries. It has now become evident that transportation planning 
on all levels is interconnected and that the "planning-in-a-box" 
method of local area model development is no longer acceptable. 
One way in which transportation planners have attempted to 
respond to this need is by expanding the capabilities of its computer 
models to include a new analysis tool called the "subarea focus 
model" or "subarea windowing." The subarea focus model is a tech
nique of extracting a subset of a larger area for use in developing a 
local area model. 

The subarea extraction process is straightforward. Given the 
graphic representation of a regional transportation network, defined 
as a set of links (highway, roads, etc.) and nodes (origins, destina
tion, intersections, etc.), the user first defines the limits of the study 
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area, or subarea, by drawing a cordon line around it. Then, each link 
that crosses the cordon line is specified. These cordon links become 
the external stations for the subarea region; the traffic volm:nes of 
these links will represent all travel demand originating from or 
destined to the world external to the subarea. Travel demand within 
the subarea is unaffected by the extraction process. The result of the 
extraction process is a highway network containing all of the infor
mation from the regional network (number of lanes, capacities, free
flow speeds, etc.) and a travel demand matrix, or trip table, for trips 
with origin or destination, or both within the subarea. The extracted 
highway network and travel demand matrix form the basis for the 
local area analysis. Local streets not included in the regional model 
may be added as well as more detailed link coding for interchanges 
and divided highways. Additional information for individual links 
with respect to traffic control devices, local speeds, and capacities 
may be added as well. The travel demand matrix may be subdivided 
to a finer zone structure to represent specific subdivisions or 
employment sites. 

The benefits of the subarea extraction process are threefold. First, 
the local area model reflects changes external to the local area. 
These changes include land use patterns and traffic conditions on 
the regional level. Second, the local area model is developed in less 
time. The local planner can start with the extracted network and 
travel demand information rather than create these components 
from scratch. In addition, because of the utilization of the trip 
generation, trip distribution, and mode choice steps from the 
regional model, the need to conduct traffic counts and collect 
origin-destination data for through traffic (i.e., traffic that has 
neither origin nor destination within the local area) is minimized. 
Third and final, the local area model should have greater accuracy, 
because it reflects the calibration of the regional model. 

EXISTING METHODOLOGY 

The subarea extraction, or subarea windowing, process is a signifi
cant step in transportation planning applications because it provides 
a connection between regional and local area models. In the process 
however, the connection is in one direction only: information from 
the regional model is used to develop and improve the calibration 
of local area models. No information from the local area models is 
used to improve the regional model calibration. Furthermore, the 
calibration of the regional model may be significantly worse for an 
individual area than for the region as a whole. As a result, although 
the local area model may benefit from the calibration of the regional 
model, it may also contain any biases or errors inherent in the 
regional model. 

The traditional subarea extraction methodology, within the 
UTMS context, is illustrated in Figure l. As indicated in the figure, 
the calibration of the regional and local area models are discrete 
steps within the process and the flow of information is from the 
regional model to the local area model only. The process starts with 
the calibration of the regional model, typically through iterative 
application of regional area trip generation, trip distribution, and 
route assignment steps. Once the calibration of the regional model 
is complete, the local planner extracts the local highway network 
and travel demand volumes. Other information that may be 
extracted include population and employment estimates, trip gener
ation equations, and existing traffic count data. This extracted infor
mation forms the basis of the local area model. The local area 
network is then adjusted to better reflect local conditions. The travel 
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demand matrix is adjusted to match existing traffic counts. The cal
ibration of the local area model is performed, again typically 
through iterative application of local area trip generation, trip 
distribution, and route assignment steps. 

PROPOSED METHODOLOGY 

The proposed enhancement to the subarea extraction process adds 
an information feedback loop. As mentioned earlier, the calibration 
of the regional model may be significantly worse or biased for an 
individual area than for the region as a whole. As a result, it may be 
problematic to calibrate an extracted local area model. The pro
posed enhancement alleviates this problem by incorporating 
improvements to the regional model as part of the local area cali
bration process. Information from the local area model is used, or 
looped, to improve the regional model calibration. 

The proposed methodology is shown in Figure 2. In contrast to 
the existing methodology, the calibration of the two models is 
merged into a single step. In addition, information now flows from 
the local area model to improve the regional calibration. The pro
posed methodology also begins with the calibration of the regional 
model, typically through iterative application of regional area trip 
generation, trip distribution, and route assignment steps. However, 
in contrast to the traditional methodology, the calibration of the 
regional model is not considered complete before the subarea 
extraction. The calibration of the local area model is performed, and 
the results are used to improve the regional model calibration as 
well. This process, or loop, is repeated until the regional model is 
sufficiently calibrated in the vicinity of the subarea, as well as 
regionally. The remainder of this paper concentrates on the appli
cation of this enhanced process to a case study in Bergen County in 
northern New Jersey. 

CASE STUDY 

The New Jersey Department of Transportation (NJDOT) currently 
possesses two regional highway transportation models: the North 
Jersey model, which includes the northern 13 counties of the state 
and adjacent areas in New York and Pennsylvania and the South 
Jersey model, which includes the southern 6 counties of the state 
and adjacent areas in Pennsylvania and Delaware. The development 
and calibration of these models is an ongoing process. Changes in 
technology as well as improved information sources including the 
U.S. Bureau of the Census and the New Jersey Department of Labor 
and new telephone, mail, and interview origin-destination surveys 
have all contributed to improve accuracy and sophistication. 

The North Jersey model covers an area of 13 counties and over 
200 municipalities. The network includes most of the freeways, 
expressways, and major arterials in the northern portion of the state: 
it consists of 1,377 internal traffic analysis zones and 9,970 network 
links, representing more than 17, 773 lane-km (11,055 lane-mi) of 
roads. The case study uses a previously extracted portion of the 
North Jersey model, the Northwest Bergen County model, or North
west model, which is shown in Figure 3. This model covers an area 
of one-quarter of one county and 16 municipalities. The network 
consists of 210 internal traffic analysis zones and 1,629 network 
links, representing 730 lane-km ( 454 lane-mi) of roads. The North
west model includes population and employment matrixes, trip pro
duction and attraction formulas, trip distribution methodology, 
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FIGURE 1 Traditional subarea extraction process. 

existing travel demand matrix, roadway inventory by facility type 
and area type, free-flow speed and capacity information by facility 
type and area type, existing traffic counts, and a calibrated network. 

For the case study, the northwest model had been calibrated pre
viously as part of ongoing work being done by Bergen County. 
First, information is extracted from the northwest model to create 
the subarea model. This is accomplished through application of a 

route assignment with a defined subarea cordon. The output is a 
subarea highway network focused on the Route 4-Route 17 inter
change, shown in Figure 4, and travel demand matrix. 

Second, existing traffic counts to be used in the subarea model 
calibration are identified. To achieve good calibration of the subarea 
network, adequate local traffic count information must be available. 
As part of the subarea extraction process described above, traffic 
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FIGURE 2 New subarea extraction process. 

counts are extracted as part of the highway network. The locations 
of these extracted counts are noted in Figure 4. These counts alone 
are not sufficient to ensure good calibration because they do not 
include all cordon points, specifically the local road system. The 
subarea focus region must model the behavior of the outside world 
through the cordon points. Consequently, accurate traffic counts are 
required on all cordon points, especially in this case study because 
of its large "through-traffic" component, that is, traffic that neither 

END 

begins nor ends within the subarea. The extracted traffic count data 
base is enhanced through conducting additional counts and by col
lecting information from local sources such as the municipal police 
departments and local traffic impact studies. The locations of these 
additional counts are also noted in Figure 4. 

The traffic counts at each of the cordon points are then used as 
"target values" to adjust the extracted travel demand matrix. This 
adjustment process is typically done using the FRAT AR process 
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FIGURE 3 Northwest Bergen County model network (5). 

.(2). FRAT AR is a method used to adjust the trip distribution by iter
atively applying factors to adjust origin and destination totals. Its 
shortcoming is that it is purely mathematical in nature and thus does 
not have a mechanism that allows it to account for network topol
ogy and performance. Hence, errors or bias in the regional trip dis
tribution in the vicinity of the subarea would then be exacerbated. 
Herein lies one of the problems of the traditional methodology: it 
provides no ability to check the impact of the FRAT AR method on 
trip generation or distribution. This problem is alleviated by pro
viding a feedback loop to improve the regional calibration in the 
vicinity of the subarea before performing the FRA TAR process. 

Once the subarea travel demand matrix has been adjusted, free
ftow speed and capacity adjustments are made to the extracted sub
area highway network. Link speeds and capacities in the regional 
model are typically based on facility type (freeway, expressway, 

major arterial, minor arterial, etc.) and area type (central business 
district, urban, suburban, rural, etc.) only. This method of estimat
ing speed and capacity is generally accurate for most links in a 
regional model. Consequently, it is not warranted to determine the 
impacts of geometric or physical attributes on each link in a regional 
model. However, attributes other than facility and area types do 
have a significant impact on both speed and capacity for individual 
links. For a local area model therefore, it may be warranted to iden
tify individual links with extraordinary attributes. Consider two 
links representing an Interstate freeway in a suburban area. The first 
link is located several miles from adjacent interchanges; the second 
link is located in a weaving section between adjacent ramps of a 
major interchange. The base free-flow speed and capacity of both 
links would be similar; however, the effective speed and capacity 
of the second link is clearly significantly less. The attributes of links 
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FIGURE 4 Subarea traffic count locations (5). 

with the poorest calibration, generally the links with the lowest vol
umes, are adjusted first, whereas the best calibration, or highest vol
ume links, is done last. 

The subarea link attribute changes are used in the local area 
model calibration. Once the local area model calibration has been 
completed, these link changes are applied to the regional model. 
Also, the travel demand extraction and adjustment process may 
have uncovered errors-that is, too many, too few, or poorly dis
tributed trips-in the subarea focus region. If these errors exist, they 
may be corrected by adjusting the trip generation or trip distribution 
in the regional model. The regional calibration process is then 
repeated using the improved information from the subarea model 
that is fed back to the regional model. 

Once the revised regional calibration assignment has been done, 
statistics on two levels are checked. If the calibration is improved 
in the subarea focus region as well as for the regional model as a 
whole, the process continues with the subarea extraction and local 
area calibration. If the calibration improvement in the suba.rea focus 
region is at the expense of the regional model as a whole, the mag
nitude of the changes to the highway network or travel demand, or 
both, will need to be reduced. The process is an iterative one as the 
local planner seeks to improve the calibration at both the regional 
and local levels. 

Finally, the subarea network and travel demand matrix are again 
extracted from the regional model. At this point, the revised travel 
demand distribution is compared with the initial extraction from the 
northwest model. Again, the FRATAR method is used to adjust the 
extracted trip table to match the traffic counts. However, the 
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improvements to the regional model calibration in the vicinity of the 
subarea will result in an improved extracted trip table distribution. 
Consequently, the FRATAR process will have less impact on the 
subarea trip distribution. Enhancements to the local area network 
have already been incorporated in the regional model. Hence, no 
changes are required to the local area network. The local area 
assignment is then performed and the process is complete. 

CASE STUDY RESULTS 

To assess the success of the new methodology, calibration results 
of the case study are compared with the traditional method of sub
area extraction. This is done for the whole Northwest model, and for 
the region of subarea focus-the Route 4-Route 17 subarea. The 
calibration is evaluated on both levels to check that better calibra
tion in the subarea is not gained at the expense of calibration accu
racy at the regional network level. The following are five ways in 
which the U.S. Department of Transportation (DOT) compares 
traffic assignment accuracy (i.e., model calibration) (4). 

1. A comparison of total counted volume versus assigned volume 
across some aggregation, such as total study area or screenlines. 

2. A comparison of total vehicle kilometers of travel from 
ground counts to vehicle kilometers of travel from the assignment 
results. 

3. Developing a total weighted error between ground counts and 
assigned volumes. 
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TABLE I Performance Measures for Subarea Using Traditional Methodology 

Volume Range Nwnberof Total Volume 

Lower Upper Records Counted Assigned 

0 5,000 9 27,864 41,075 

5,001 10,000 32 238,105 263,352 

10,001 30,000 15 188,026 201,260 

30,001 50,000 9 417,948 409,157 

50,001 60,000 8 478,220 513,846 

60,001 70,000 15 1,003,512 1,011,102 

All Links 88 2,353,675 2,439,792 

4. The calculation of the root-mean-square (RMS) errors com
paring ground counts to assigned volumes by link within volume 
range stratification, such as 

RMS= 

where 

L (Xgc - Xra)2 

N-1 

Xgc = ground count on link L;, 
Xra = volume assigned on link L;, 
N = total number of links in observations group, and 
i = index 1 through N. 

The RMS error measures the deviation between two distributions
in this case counted and assigned link volumes. The percentage 
RMS error is derived by dividing the RMS error by the average 
group count for a particular group. 

5. A graphic comparison of ground counts versus assigned 
volumes For this discussion, the Methods 1 and 4 are used as assign
ment calibration measures. 

Using the new methodology at the Northwest model level, the 
planner realizes an improvement of 0.05 percent, or 3,321 vehicles 
(224,555 versus 221,234) in total counted versus total assigned vol
ume. The RMS error improves by 13 vehicles (from 4,124 to 4,111), 
whereas the RMS percentage improves by .08 percent (28.28 per
cent versus 28.19 percent. Because of the minor nature of the net
work edits (20 out of 1,629 links) in the subarea region, one would 
not expect the calibration results to improve by much. But the fact 
that they do improve is enough to proceed with the comparison of 
the local area calibration results. 

Table 1 presents the calibration statistics for the Northwest model 
in the region of the subarea focus as received from NJDOT. The 

Difference Square Error 

Assigned- Percent Root-Mean Percent 
Counted (%) ~%} 

13,211 47.41 2,421 78.19 

25,247 10.60 3,644 48.98 

13,234 7.04 4,755 37.93 

-8,791 -2.10 3,790 8.16 

35,626 7.45 6,672 11.16 

7,590 0.76 5,200 7.77 

86,117 3.66 4,262 15.93 

absolute difference of total counted volume to total assigned vol
ume is 86, 117 vehicles, or 3.66 percent. The RMS error for the sub
area focus region is 4,262 vehicles, whereas the RMS percentage is 
15.93 percent. Table 2 indicates calibration statistics of the same 
network using the new methodology. The absolute difference of 
total counted volume to total assigned volume is 73, 185 vehicles or 
3.11 percent. The RMS error for the entire network is 4,144 vehi
cles, whereas the RMS percentage is 15.49 percent. Using the new 
methodology, the user has realized an improvement of 0.34 percent, 
or 12,932 vehicles in total counted versus total assigned volume. 
The RMS error has improved by 118 vehicles (from 4,262 to 4, 144 ), 
whereas the RMS percentage has improved by 0.44 percent (from 
15.93 to 15.49 percent). The improvements are relatively small, but 
by an order of magnitude greater than they were at the Northwest 
model level. 

The third and most conclusive measure of validation of the new 
methodology is a comparison of the extracted subarea trip tables. 
Table 3 is a compressed district trip table for the traditional method
ology. The 11 districts are represented in Figure 5. For this discus
sion, all internal zones are compressed into the first district because 
the subarea process does not affect them. This fact will be borne out 
in a comparison of the extracted trip tables. 

Table 3 indicates that the total trips extracted for the subarea are 
473,133. Table 4 is a compressed district trip table from the new 
methodology. It indicates that the total trips extracted for the sub
area are 482,437, which is only 2 percent greater than the figure gen
erated by the traditional methodology. However, the importance of 
the new methodology is seen in Table 5, which contains the differ
ences between the two extracted trip tables and indicates that the 
distributions of each table are vastly different. As an example, the 
total number of trips destined to District 6 in Tables 3 and 4 is iden
tical and equal to 9,316. However, an examination of Table 5 indi
cates that the origins of these trips are quite different.Using the new 

TABLE2 Performance Measures for Subarea Using New Methodology 

Volume Range Number of Total Volume Difference Square Error 

Lower Upper Records Counted Assigned Assigned- Percent Root-Mean Percent 
Counted {%~ {%) 

0 5,000 9 27,864 25,824 -2,040 -7.32 1,447 46.75 

5,001 10,000 32 238,105 231,941 -6,164 -2.59 3,092 41.56 

10,001 30,000 15 188,026 206,182 18,156 9.66 4,897 39.06 

30,001 50,000 9 417,948 411,087 -6,861 -1.64 2,843 6.12 

50,001 60,000 8 478,220 536,782 58,562 12.25 7,574 12.67 

60,001 70,000 15 1,003,512 1,015,044 11,532 1.15 5,201 7.77 

All Links 88 2,353,675 2,426,860 73,185 3.11 4,144 15.49 



TABLE3 Extracted Subarea Trip Table Using Traditional Methodology 

Destination District 
2 3 4 5 6 7 8 9 10 11 I Total 

---------------+-----------------------------------------------------------------------------------------+------------
0 1 Internal 10950 1818 442 10777 4204 2890 8540 7.178 5729 7285 14371 74184 
r 2 Century 1074 0 0 3134 575 299 319 483 956 833 0 7673 
i 3 GSPNorth 15n 0 0 0 0 0 0 0 0 42592 863 45032 
g 4 Rt17Nrth 7421 2827 0 209 1647 473 17521 5245 26848 72 5116 67379 

5 ParanlJsW 4607 604 0 1750 172 156 1970 1378 1179 2196 1826 15838 
n 6 ParanlJsE 3365 37 0 296 398 0 1494 2292 626 1007 1517 11032 

7 Rt4East+ 7975 327 0 18320 1007 1172 2594 8703 807 3513 10873 55291 
D 8 SthEast 6623 480 0 5300 863 1875 9147 1553 2368 3267 5150 36626 

9 Rt17Sth 5975 1545 0 24520 1097 526 891 2467 0 638 7810 45469 
s 10 GSPSth 7638 0 40050 0 1520 941 4112 3626 676 0 7255 65818 
t 11 Rt4West+ 11004 0 9816 0 2343 987 9762 4524 6282 4073 0 48791 
---------------+-----------------------------------------------------------------------------------------+------------

Total 68209 7638 50308 

3 = Garden State Pukway 
at Northern End 

64306 13826 9319 56350 37449 45471 65476 

4- Route 17 at Nmthem End 

S = Sprq Valley Road 

11 =Route4 
at Wesimt End 

2 = Century Road 

9=Route17 at 
Southern End 

FIGURE 5 Subarea trip table reporting districts (5). 

TABLE 4 Extracted Subarea Trip Table Using New Methodology 

8 = Southeast 

Destination District 

S = Forest Ave 

54781 

7= Route4 at 
Eastern End 

473133 

I 2 3 4 5 6 7 8 9 10 11 I Total 
---------------+-----------------------------------------------------------------------------------------+------------
0 1 Internal 9895 1707 442 10740 4473 2521 8242 6928 5529 7285 16422 74184 
r 2 Century 1012 0 0 3134 572 21 319 483 956 · 833 0 7330 
i 3 GSPNorth 1483 0 0 0 0 0 0 0 0 43242 844 45569 
g 4 Rt17Nrth 7556 2827 0 209 1626 2 18206 5455 27070 72 5106 68129 

5 ParanlJsW 5622 579 0 1568 202 896 2103 1535 1179 1546 1879 17109 
n 6 ParanlJsE 1565 26 0 0 1549 0 1494 2292 626 1007 2473 11032 

7 Rt4East+ 4451 327 0 18012 1128 1172 2594 8703 807 3513 14584 55291 
D 8 SthEast 4679 480 0 5168 958 1875 9147 1553 2368 3267 7131 36626 

9 Rt17Sth 5975 1545 0 24595 1097 526 891 2467 0 638 7735 45469 
s 10 GSPSth 7638 0 40050 0 1520 941 4112 3626 676 0 7255 65818 
t 11 Rt4West+ 18333 0 9796 0 2404 1365 9242 4407 6260 4073 0 55880 
---------------+-----------------------------------------------------------------------------------------+------------

Total 68209 7491 50288 63426 15529 9319 56350 37449 45471 65476 63429 482437 
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TABLES Trip Differences Between Extracted Subarea Trip Tables 

Destination District 
2 3 4 5 6 7 8 9 10 11 I Total 

---------------+-----------------------------------------------------------------------------------------+------------
0 1 Internal -1055 -111 0 -37 269 -369 -298 -250 -200 0 2051 0 
r 2 Century -62 0 0 0 -3 -278 0 0 0 0 0 -343 
i 3 GSPNorth -94 0 0 0 0 0 0 0 0 650 -19 537 
g 4 Rt17Nrth 135 0 0 0 -21 -471 685 210 222 0 -10 750 
i 5 Par811UsW 1015 -25 0 -182 30 740 133 157 0 -650 53 1271 
n 6 ParanusE -1800 -11 0 -296 1151 0 0 0 0 0 956 0 

7 Rt4East+ -3524 0 0 -308 121 0 0 0 0 0 3711 0 
D 8 SthEast -1944 0 0 -132 95 0 0 0 0 0 1981 0 

9 Rt17Sth 0 0 0 75 0 0 0 0 0 0 -75 0 
s 10 GSPSth 0 0 0 0 0 0 0 0 0 0 0 0 
t 11 Rt4West+ 7329 0 -20 0 61 378 -520 -117 -22 0 0 7089 
---------------+-----------------------------------------------------------------------------------------+------------

Total I 0 -147 -20 -880 1703 

methodology, 740 vehicles have shifted from highways to local 
roads. A large number of these trips (471) shifted from Route 17. 

If it is assumed that the regional trip table has a good trip distri
bution, and the calibration statistics indicate that the calibration in 
this area is improved, then it is safe to conclude that the distribution 
of the new methodology is superior. These comparisons support the 
claims that the new methodology is more sound. 

CONCLUSIONS 

The case study used to demonstrate the new methodology involves 
a regional model and a subarea of the regional model. It has been 
shown that by using the new methodology, improvement was real
ized in the calibration of the regional model, and trip distribution 
was improved in the vicinity of the subarea. This improved calibra
tion process is the key to developing subarea focus models with 
properly distributed trip tables. 

The authors believe that the new methodology with an informa
tion loop will work at all levels of the modeling process. The state 
DOTs in general, and NJDOT, in particular, could require that any 
transportation model that is funded or reviewed by the state DOT 
must have its basis on the DOT' s statewide model. Planners would 
set up and collect data specific to their area and replace these new 
attributes back into the regional model, attempting to gain a better 
calibration for their specific area. Once this information has been 
processed by the local planner, the data can be channeled back to 
the state DOT. Modifications can then be made to the statewide 
modeling chain which would translate into new link attributes or 
new coefficients for production and attraction equations. 

This new set of data, which is now tailored to the subarea region, 
would be incorporated into the modeling process. As the process 
continues, some of the realized benefits would be 

• An enhanced statewide traffic count data base, 
• Updates for the trip generation equation coefficients, 

0 0 0 0 0 8648 9304 

• Standardized data collection techniques, 
• Incrementally better trip distributions, 
• Standard statewide screenlines, 
• Reduction in duplication of data collection, 
• Improvements of calibration results at all levels, 
• More efficient use of planning budgets, and 
• Better dialogue between federal, state, and local officials. 

Consistency and greater frequency between calibration updates 
would draw the modeling community closer to responding to 
changing issues in a reasonable length of time. This would elimi
nate the excuse of the model being "out of date." Better calibration 
logically yields better forecasts, and better forecasts provide plan
ners with the needed insights to perform the land use and infra
structure planning process. 
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Comparison of Alternative Methods for 
Updating Disaggregate Logit Mode 
Choice Models 

DANIEL A. BADOE AND ERIC J. MILLER 

An empirical assessment of alternative methods of updating disaggre
gate travel choice models so that their transferability from the estima
tion context within which they were originally developed to an appli
cation context (which differs from the original estimation context 
geographically or temporally, or both) is presented. The case study for 
the empirical tests performed is a long-term temporal transfer of work 
trip logit mode choice models estimated using 1964 data for the greater 
Toronto area (GTA) to represent 1986 work trip mode choice in the 
GT A. Three updating procedures that have been previously presented 
in the literature are examined (Bayesian updating, transfer scaling, and 
combined transfer estimation), plus a fourth new procedure, joint con
text estimation. All four procedures assume that a "small" data set of 
observed travel choices is available for the application context, which 
can be used in the updating procedure. The case study results indicate 
that the latter three procedures all possess merit as potential updating 
methods, with the choice among the three depending on such items as 
model specification and application context sample size. The results 
also indicate that if the application context sample size exceeds 400 to 
500 observations, then updating may provide little or no improvement 
over simple estimation of an application context model, especially if 
"full" model specification is supported by the available data. 

The spatial and temporal transferability of random utility models 
of travel demand is a matter of considerable practical interest. 
Although the empirical evidence concerning the transferability 
properties of random utility models is mixed (J), consensus exists 
that the potential for model transfer is greatly enhanced if local area 
(i.e., application context) data are used to update the model so that 
it better reflects application context conditions (J-6). At least two 
major reasons underlie this need to update transferred models ( 4): 

1. Limitations in model specification, perhaps most notably as a 
result of omission of relevant variables; and 

2. Differences in unmodeled "contextual factors" (geographical, 
historical, etc.) between th.e estimation and application context that 
affect the evolution over time of trip-makers' travel tastes and pref
erences. 

Three major updating procedures have been presented in the lit
erature to date: 

1. Bayesian updating, in which parameter estimates from a small 
application context sample are combined with the estimation con
text parameter values using a classical Bayesian analysis to yield an 
updated set of parameters (2); 

2. Transfer scaling, in which the application context utility func
tion scales and alternative-specific constants are estimated from a 

D. A. Badoe, University of Toronto, Joint Program in Transportation, 42 St. 
George Street, Toronto, Ontario MSS 1A4, Canada. E. J. Miller, Department 
of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, 
Ontario M5S I A4, Canada. 

small application context sample, assuming that the remainder of 
the utility function parameters are transferable from the estimation 
context (3,4); and 

3. Combined transfer estimation, which can be viewed as a 
generalization of the Bayesian updating approach, which accounts 
for transfer scaling effects (6). 

These approaches all assume that the estimation context model 
parameter values are known and that a small sample application 
context data set is available which permits the estimation of an 
application context model that is identical to the estimation context 
model being transferred. If, however, the estimation context data set 
used to estimate the original model parameters is also available 
(which in many instances may well be the case), a fourth approach 
is possible. This fourth approach, labeled joint context estimation 
involves estimating a new joint estimation/application context 
model, using both the estimation context and application context 
data sets. 

This paper has two purposes. First, it provides a systematic com
parison of the four updating techniques within a common empirical 
application. Second, this empirical application is unique in the lit
erature because it involves assessing the relative effectiveness of the 
various updating procedures in achieving long-term temporal trans
ferability of a disaggregate choice model within the same geo
graphic area. Specifically the case study consists of updating 1964 
morning peak-period work trip mode choice models developed for 
the greater Toronto area (OTA), Canada, over a 22-year period to 
reflect 1986 conditions. 

The next section of this paper briefly reviews the four updating 
procedures. The paper's third section briefly describes the data sets 
used in the study, and the fourth section describes the test procedure 
employed. The fifth section presents and discusses the results 
obtained. The final section of the paper then summarizes the find
ings of the study and their implications for the state of practice in 
model updating and transfer. 

MODEL UPDATING METHODS 

It is assumed that a disaggregate multinomial logit choice model is 
to be transferred from an original (estimation) context to a new 
(application) context; that the estimation context parameter esti
mates are known; and that a small sample data set drawn from the 
application context that is suitable for estimating a model specified 

· identically to the estimation context model is available. 
Notation used throughout this discussion of methods includes the 

following: 
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0 = [K X l] vector of utility function parameters, where K 

= N + M - 1 = [ iJ; 
a = [(N - 1) X 1] vector of alternative-specific constants, 

where N is maximum number of alternatives available 
in choice set; 

~ = [M X I] vector of parameters consisting of utility func
tion weights for M explanatory variables in model; 

X;1 = [M X I] vector of explanatory variables for alternative 
i for individual t; 

V;1 = systematic utility for alternative i for individual t 
= wxit + O'.; (where O'.N = Q by definition); (1) 

P;1 = probability that individual t will choose alternative i 
from choice set C 

= exp(V;1)/~1rnexp(\/;1); (2) 
0i.02 = estimates of 8 derived from estimation context and 

application context data sets, respectively; 
~; = estimated parameter covariance matrix for context i (i 

= 1,2); and 
eupdate = final estimates of 0 to be used in application context, 

as generated by updating procedure. 

Bayesian Updating 

On the basis of the seminal work of Atherton and Ben-Akiva (2), it 
is well known in the literature that the Bayes theorem can be applied 
to the updating problem to yield asymptotically normal updated 
parameters with the following mean: 

(3) 

and covariance matrix: 

(4) 

Thus, to use this updating procedure, one must estimate an applica
tion context model using the available application context small 
sample using standard maximum likelihood methods to compute 0 2 

and ~2 • These can then be combined with the known values of 0 1 

and ~ 1 from the estimation context using Equation 3 to yield the 
updated model parameters. Atherton and Ben-Akiva (2) used this 
procedure with considerable success to update a 1968 Washington, 
D.C., work trip mode choice model to reflect 1963 New Bedford, 
Massachusetts, and 1967 Los Angeles applications. 

Transfer Scaling 

It is well recognized that alternative-specific constants are likely 
not to be transferable between applications, given the extent to 
which systematic but unmodeled "contextual factors" are captured 
within these terms. It is equally true that the overall scale of the 
model's utility functions (which are not statistically identifiable 
within a standard cross-sectional model) are also likely to vary from 
one application to another, again because of unmodeled contextual 
factors. 

A not unreasonable hypothesis on which to construct an updating 
procedure, therefore, is to assume that the utility function parame
ters computed in the estimation context, excluding the alternative
specific constants, are transferable to the application context, up to 
scale (note that, among other implications, this results in values of 
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time-as defined by the ratios of time-to-cost parameters within the 
utility functions-being equal in the two contexts). Indeed, as 
shown elsewhere (1,3,4), much of the transfer bias can, in fact, be 
eliminated by adjusting model constants and scales. The updating 
problem then becomes one of determining changes in alternative
specific utility function constants and scales relative to estimation 
context values. For example, given a set of estimation context para
meters (excluding alternative-specific constants), ~" one can 
assume that the application context systematic utilities, V;1,2, take the 
following form: 

Vi1.2 = µ;,2~(X;1.2 + a;.2 (5) 

where µ;,2 is the ratio of the application context utility function scale 
to the (unidentified) estimation context utility function scale for 
alternative i, and all other terms are as previously defined, with the 
addition of the subscript 2 to indicate the application context. 

Alternatively, Gunn et al. (3) apply scale factors to various group
ings of parameters, where these groupings are defined on the basis 
of variable type rather than alternative. Equation 5 is thus a special 
case of the Gunn et al. formulation, which also includes as special 
cases complete reestimation of the model parameters on the basis of 
the application context data set (i.e., 1 µ for every parameter) and 
"naive" transfer of the estimation context model (µ = l ). 

The updated application context alternative-specific constants 
(a) and scale adjustments (µ) are readily estimated given an appli
cation context small sample using standard maximum likelihood 
methods, with the constructed variable W;1 = ~(X;1, 2 being the sin
gle explanatory variable in the utility function for each alternative. 

Given that W;1 is constructed using the estimated values ~" the 
standard errors reported by typical logit model estimation packages 
will be biased downwards. If it is critical to the evaluation of the 
updating results to eliminate this bias, then appropriate corrections 
can be computed. More typically, the estimation results obtained 
will be sufficiently robust to allow the modeler to use the unadjusted 
standard errors, with the recognition that they somewhat overesti
mate the precision of the parameter estimates. 

Successful applications of transfer scaling techniques include the 
following: 

1. Gunn et al. (3), in which alternative transfer scaling schemes 
were applied to four different models: joint mode and destination 
choice models for personal business trips and shopping trips and trip 

-frequency choice models for the same two trip purposes; with the 
transfer occurring between two regions in the Netherlands (Rotter
dam/The Hague and Utrecht), and with the data sets for the two 
urbanized regions being collected 5 years apart and at different 
times of the year; and 

2. Koppleman et al. ( 4), in which both intraregional transfer
ability within the Washington, D.C., area and interregional trans
ferability among the metropolitan areas of Washington, D.C.; 
Baltimore; and Minneapolis-St. Paul were investigated for the case 
of work trip mode choice models. 

Combined Transfer Estimation 

Implicit in the Bayesian updating approach is the assumption that 
0, = 02 = 0; that is, that the estimation and application contexts 
share the same underlying set of parameters. The transfer scaling 
method, on the other hand, explicitly assumes that a "transfer bias," 
4, exists, where 
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(6) 

Ben-Akiva and Bolduc (6) present a generalization of the Bayesian 
approach, which accounts for a nonzero a, and which yields the 
minimum mean square error estimate of 0update achievable from a 
linear combination of the estimation and application context para
meter estimates. As shown in Equation 6, this minimum mean 
square error estimate is provided by 

Comparison of Equation 7 with Equation 3 indicates that the com
bined transfer estimator reduces to the Bayesian estimator in the 
case of a = 0. In practice, the unknown transfer bias a is approxi
mated by the estimated bias d = 0 2 - 9 1• Ben-Akiva and Bolduc 
also demonstrate theoretically that the combined transfer estimator 
is superior to simply using the application context parameter esti
mates 82, providing the transfer bias, a, is small. If the transfer bias 
a is large, then the term (:L 1 + ..i..i')- 1 in Equation 7 becomes neg

ligible and hence eupdate = 82. 

Joint Context Estimation 

The transfer scaling procedure described above for updating model 
constants and scales makes the following assumptions concerning 
the other model parameters (i.e., J3): 

1. J31 = J32, = J3; 
2. J3 1 - J3 is small (i.e., the sample error in the estimates of J3 

obtained from the estimation context are small); and 
3. These parameter estimates are obtained solely from the esti

mation context data, independent of and before consideration of 
application context data (which are allowed only to affect the appli
cation context constants and scales). 

A much more general model that is fully consistent with the behav
ioral assumptions mentioned earlier is one in which J3 is jointly esti
mated using both the estimation and application context data sets, 
simultaneously with the estimation of the alternative-specific con
stants for both contexts and the scales of one context relative to the 
other. 

The following notation is used in developing the joint context 

estimation procedure: 

p = 1 for estimation context; = 2 for application context; 
sf, = vector of explanatory variables for alternative i common to 

Periods 1 and 2 (i.e., associated with the constant parameter 
vector -y), but with values given for person tin context p; 

aP = vector of utility function parameters assumed to be specific 
to context p (at a minimum, this includes alternative-spe
cific constants for context p ); 

rf, = vector of context-specific explanatory variables for alterna
tive i for individual t within context p; 

µ; = utility function scale for alternative i in context 2 (context 
superscript has been suppressed to simplify notation; con
text 1 scales are assumed to be "imbedded" within aP and 
-y; given this, µ; is actually the ratio of context 2 scale to 
constant 1 scale for alternative i, with absolute values of 
either of these scales not being identifiable); 
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9 = combined vector of all parameters to be estimated within 
joint context model, excluding utility function scales 

xfr= combined vector of all explanatory variables in joint 
context model, for alternative i for person tin context p 

and 

= [r~l 
SuJ 

for p = 1 

Given these definitions, the systematic utility components for the 
two contexts are 

(8) 

(9) 

Given the explicit accounting for changes in scales and constants 
between the two contexts, the usual IID Gumbel Type I distribution 
is assumed for the random utility terms in each context, leading to 
conventional multinomial logit choice models: 

pP. = 
II 

exp (Vfr) 

I exp (ij';) 
jEC1 

p = 1,2 (10) 

If nP is the number of observations in the context p data set and yfr 
is the observed choice indicator for person tin context p (equals 
1 if alternative i is chosen; equals 0 otherwise), then the joint log
likelihood function for the joint context model is simply 

2 np 

L = In L * = """' """' """' yP In pP LL L ~It II 
(11) 

p=l t=I iEC1 

Substituting Equations 8 through 10 into Equation 11 yields, on 
rearrangement; 
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L = ln L* =I L y)1[0Tx)1 - In( L exp(0Tx)1))] 
t= I iEC1 jEC1 

With straightforward changes in notation, this model is identical to 
that developed by Ben-Akiva and Morikawa for combining 
revealed and stated preference data sets within the same choice 
model (7,8). As noted by Morikawa et al. (8), "nested logit" full 
information likelihood estimation procedures can be applied to this 
model. Such a procedure was programmed in Fortran by the authors 
and used in computing the joint context model parameter estimates 
presented in this paper. 

Joint context estimation can clearly be used as a model updating 
technique, providing that the estimation context data are available 
for combination with the small sample application context data set. 
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Although this will not always be the case, access to estimation con
text data is surely sufficiently feasible in many instances to warrant 
the testing of this approach compared with the previous three 
approaches discussed. In particular, potential advantages of joint 
context estimation relative to conventional transfer scaling tech
niques include the following: 

1. It eliminates biases within the updated application context 
parameters caused by estimation context sampling errors [a prob
lem discussed in detail elsewhere (6)]; and 

2. It provides an operational full-information maximum likeli
hood procedure for parameter estimation when multiple cross
sectional data bases are available, as opposed to current methods, 
which are all limited information estimation procedures and hence 
inefficient in their use of data. 

DATA 

The 1964 estimation context data set is obtained from the 1964 Met
ropolitan Toronto and Region Transport Study (MTARTS) survey, 
which was a home interview survey of 3.3 percent of the households 
in Metropolitan Toronto and the surrounding regions, consisting of 
24,000 households in total. This survey is documented elsewhere 
(9). The 1986 application context data set is obtained from the 1986 
Transportation Tomorrow Survey (TTS), a telephone interview 
survey of 4 percent of the households in the GT A, or 67 ,000 house
holds in total. This survey is documented elsewhere (10, 11). 

Both surveys were one-day travel surveys that collected generally 
comparable information, with the single biggest difference being 
that the 1986 TTS did not collect information on worker occupations 
and household income. Although coded to different zone systems, 
these zone systems are roughly similar in definition. Similarly, the 
study areas for the two surveys vary slightly but not significantly. 

All level-of-service data required, with the exception of parking 
costs and transit fares (which were assembled from other sources), 
were generated using EMME/2 network assignment procedures 
applied to 1964 and 1986 road and transit networks. All costs were 
scaled to 1986 Canadian dollars on the basis of consumer price 
indexes for transportation. 

RESEARCH METHOD 

Test Procedure 

In this study, the morning peak-period work trips contained in the 
1964 MTARTS data base define the estimation context data set. 
Two multinomial logit work trip mode choice models are estimated 
using the 1964 data set: one that contains only level-of-service vari
ables (i.e., modal travel times and costs), and one that in addition to 
these level-of-service variables includes as full a set of socioeco
nomic variables as is supported by the available data (referred to as 
the "fully specified" model). 

The morning peak-period work trips contained in the 1986 TTS 
data base then define the application context data set. All four of the 
updating procedures discussed assume the existence of a "small" 
sample of trips drawn from the application context to be used in the 
updating calculations. 

To simulate this small sample, random subsets of trip records are 
drawn from the full TTS data base (which consists in total of 32,328 
usable records for this application). To explore the impact of sam-
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pie size on updating performance, samples of 400, 800, 1,600, 
3,200, and 6,400 are used (with each larger sample containing all 
the records included in the smaller samples). Both the level-of
service and fully specified models are then updated using each of 
the four updating procedures for each sample size. 

In addition, level-of-service and fully specified models are esti
mated using each of the 1986 small samples. These small sample 
models are then used to compare the impact that the information 
contained in the transferred models contributes to predictive 
performance in the application context with respect to simply using 
the available application context data. 

The performances of the four updated models and the 1986 small 
model are evaluated for each sample size-model specification com
bination in terms of how well they replicate the full 32,328 record 
1986 TTS set of observed trips. The primary test statistic used is the 
log-likelihood value generated by the given model when it is 
applied to the entire 1986 ITS data set. 

In addition, however, various aggregate prediction test statistics 
were constructed, all of which compare in various ways the aggre
gate number of predicted trips by mode m for a given aggregate 
group g,N,,,g, with the observed number of trips by this mode for 
this group, N,,,g. In this paper, only one of these test statistics is 
discussed, the mean absolute error (MAE) defined as 

MAE = {I I IN,,,g - N,,,g 1}/{I I N,,,g} 
m g m g 

(14) 

Two aggregations are examined: seven major destination groups 
and worker gender. 

Model Specification and Estimation 
Context Parameters 

Three modes are potentially included in the choice set in this study: 
automobile drive allway, transit allway, and walk. Although auto
mobile passenger, automobile access to transit, and (in 1986) com
muter rail modes in principle were also available, these modes were 
excluded from this analysis to reduce the modeling complexity with 
respect to specification, decision structure, and introduction of new 
modes (the commuter rail service did not exist in 1964). Table 1 
defines the explanatory variables used in the two models, whereas 
Table 2 presents the estimation results obtained through standard 
maximum likelihood estimation of the models using the 1964 
MT ARTS data set. 

RESULTS 

Table 3 contains the 1986 full-sample log likelihood values com
puted for each model specification-sample size combination for the 
four updated models as well as the estimated 1986 small-sample 
models. Figures I and 2 display these log likelihoods for the level
of-service and fully specified models, respectively. Points to note 
from these figures and Table 3 include the following. 

First, in view of the significant transfer bias, the combined trans
fer procedure as expected yields results that are virtually indistin
guishable from the I 986 small-sample results. At very small 
samples (e.g., 400 observations), the "prior" information provided 
by the estimation context parameters contributes a very marginal 
amount of additional information (resulting in a 0.2 percent 
improvement in the full-sample log-likelihood value for the level-
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TABLE 1 Definition of Variables 
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dauto = 1 for auto-drive mode; = 0 otherwise 

dwalk = 1 for walk mode; = 0 otherwise 

aivtt = auto in-vehicle travel time (min.) for auto mode; = 0 otherwise 

tivtt = transit in-vehicle travel time (min.) for transit mode; = 0 otherwise 

twait = transit wait time (min.) for transit mode; = 0 otherwise 

twalk = transit access + egress time (min.) for transit mode; = 0 otherwise 

ivtc = auto in-vehicle travel costs ($) for auto mode; = 0 for walk mode; = transit fare 
($) for transit mode 

pkcst = auto daily parking cost ($) for auto mode; = 0 otherwise 

wdist = walk distance (km.) for walk mode; = 0 otherwise 

avplic = number of vehicles per licensed person in household for auto mode; =O 
otherwise 

wcbd = 1 if worker works in PD 1 (Planning District 1) for walk mode; =O 
otherwise 

am al = 1 for male worker for auto mode; = 0 otherwise 

tcbd = l if worker destination is PD 1 for transit mode; = 0 otherwise 

tgend = 1 if worker is female for transit mode; = 0 otherwise 

of-service model and a 0.1 percent improvement for the fully spec
ified model relative to the 1986 small-sample model results). 
Beyond this point, however, it is clear that the transfer scaling com
ponent of the procedure completely dominates the calculations. 
Because in this case the transfer scaling adjusts every parameter in 
the model, this is equivalent to simply reestimating the model on the 
basis of the small-sample application context data and using the 
reestimated parameters directly. To the extent that this result is ver
ified in other empirical settings, it implies that combined transfer 
updating contributes little relative to simply reestimating the model 
on the basis of the application context small sample (a theme that is 
discussed more generally later), except perhaps in the case of 
extremely small samples. 

Of the remaining procedures, the joint estimation procedure 
always performs the best, regardless of model specification or sam
ple size used. This is not surprising given that the joint procedure is 
the only full-information procedure of the three. The improvement 
in performance achieved with the joint procedure increases with 
model specification: at the application sample size of 1,600, for 
example, the joint procedure reduces the log-likelihood value rela
tive to the Bayesian procedure by only about 1 percent for the level
of-service model, whereas it generates about a 4 percent improve
ment for the fully specified model. 

Conversely, the joint estimation procedure performs marginally 
better than the combined transfer procedure for small sample sizes 
for the simpler level-of-service model, whereas the combined trans
fer procedure performs slightly better than joint estimation at all 
sample sizes for the fully specified model. In comparing these two 
procedures, however, it should be noted that the combined transfer 
procedure effectively requires the estimation of 2(N + M - 1) para
meters, where N is the number of alternatives and Mis the number 
of utility function parameters (excluding alternative-specific con
stants); that is, (N + M - 1) parameters from each of the estimation 
and application contexts. The joint context estimation procedure, on 

the other hand, requires 2(N - 1) altemati ve-specific constants, N 

scales, and Mother utility function parameters to be estimated, for 
a total of M + 3N - 2 parameters, M - N fewer than the combined 
transfer procedure. 

Given N = 3 in this case, for the level-of-service model (M = 7) 
18 parameters are estimated in the combined transfer model, 
whereas 14 parameters are estimated in t~e corresponding joint con
text model. This is a 29 percent increase in model parameters yield
ing no improvement in model performance below the 800 sample 
level and at most a 0.5 percent improvement in full-sample log like
lihood over the entire range investigated. 

Similarly, for the fully specified model (M = 12), 28 parameters 
are required by the combined transfer procedure versus 19 for the 
joint context procedure, a 47 percent increase in parameters, which 
yields at most a 3.3 percent improvement in full-sample log likeli
hood. Thus, joint context estimation would appear to be the more 
parsimonious of the two updating procedures, and, hence, all else 
being equal, preferred. 

The constant/scale updating procedure performs surprisingly 
well at small sample sizes. For the level-of-service model, it per
forms virtually as well the joint procedure up to the l ,600 observa
tion level and it clearly outperforms the computationally more com
plex Bayesian procedure up to at least the 6,400 observation level. 
The procedure's performance relative to the others decreases with 
improved model specification, but it is still comparable to the joint 
procedure at the 400 observation level and with the Bayesian pro
cedure up to the 1,600 observation level for the fully specified 
model. This sensitivity to model specification is a sensible one, 
given that the relative role of constants (in particular) within the 
model should decline as model specification improves. 

Given that small sample updating generally utilizes sample sizes 
in the order of 1,000 or less, these results imply that updating model 
scales and constants-a simpler and less onerous task than Bayesian 
updating-may well outperform the Bayesian procedure. The 



TABLE 2 1964 (Estimation) Context Model Parameter Estimates 

Parameter Level of Service (I) Model Fully Specified Model 

Estimate t-value Estimate t-value 

dauto 0.090 0.452 -1.266 -4.362 

dwalk 0.924 3.853 1.592 6.029 

aivtt -0.031 -10.731 -0.009 -2.217 

tivtt -0.043 -9.584 -0.029 -6.205 

twait -0.205 -12.444 -0.202 -11.653 

twalk -0.046 -3.205 -0.026 -1.729 

wdist -1.961 -21.892 -1.884 -20.935 

ivtc -0.389 -3.697 -0.388 -3.488 

pk est -0.333 -11.583 -0.282 -9.134 

avplic 1.874 12.185 

am al 0.740 4.842 

tcbd 1.224 9.142 

tgend 0.759 5.299 

wcbd 0.943 4.951 

Number of observations 8066 8066 

Log-likelihood at Zero -5929.6 -5929.6 

Log-likelihood at -2839.4 -2590.5 
Convergence 

Adjusted rho-square 0.5204 0.5625 

TABLE 3 Full-Sample 1986 TTS Log-Likelihood Values for Alternative Models and Updating Sample Sizes 

I Model T~e I Sample Log-Likelihood Values 
Size 

Bayesian Transfer Joint Combined Small 
Updating Scaling Context Transfer Sample 

Estimation Estimator 

Level of 400 -11201 -11081 -11076 -11081 -11105 
Service 
Model 800 -11156 -11076 -11075 -11077 -11086 

1600 -11133 -11052 -11045 -11012 -11014 

3200 -11072 -11012 -10991 -10937 -10937 

6400 -11013 -11000 -10963 -10930 -10930 

32328 -10942 -10996 -10931 -10920 -10920 

Fully 400 -10277 -10128 -10100 -9762 -9774 
Specified 

800 -10138 -10025 -9903 -9621 -9626 Model 

1600 -9999 -10013 -9805 -9555 -9555 

3200 -9865 -9952 -9622 -9471 -9470 

6400 -9712 -9945 -9545 -9470 -9470 

32328 -9501 -9941 -9475 -9453 -9453 
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FIGURE 1 Full-sample 1986 TTS log likelihood values, level-of-service models. 

results also imply that the joint estimation procedure may add little 
additional information to the updated model, relative to simply 
updating constants and scales, at least for sample sizes of 400 to 500 
or less. 

Comparison of the performance of the updated models with that 
of the 1986 small-sample models (i.e., the models simply estimated 
using the 1986 small samples) raises some question concerning the 
utility of updating a transferred model at all given the availability 
of an application context small sample. That is, the small-sample 
models outperform most of the updated models at most sample 
sizes. Thus, if one has a small sample of at least 400 to 500 obser
vations, these results imply that one would be at least as well off to 
simply estimate an application context model, rather than to update 
a model developed elsewhere, especially if a relatively good speci
fication is supported by the application data set. 

-9.4 
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Q) 
-9.6 
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Indeed, Table 3 and Figures 1 and 2 reinforce the importance 
of model specification in the determination of model performance 
by showing that the differences between the level-of-service 
model log-likelihoods and the corresponding fully specified model 
log likelihoods are far greater than the total differences between 
updating procedures or across sample sizes within either of 
the model specifications. In particular, note that the log likelihood 
for the 400-sample 1986 fully specified model of -9773.83 
is larger than any of the full 32,328 sample level-of-service 
models. 

Figures 3 and 4 present the aggregate MAE statistics for the four 
updated models and the 1986 small-sample models as a function of 
sample size for the level-of-service and fully specified models, 
respectively. The results here are less clear cut, reflecting the fact 
that different aggregations result in different combinations of com-
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FIGURE 2 Full-sample 1986 TTS log-likelihood values, fully specified models. 
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pensating errors. Nevertheless, some general trends are evident in 
these figures. 

In the case of the level-of-service models and small sample 
sizes (e.g., under 1,000), the Bayesian procedure consistently 
yields the best aggregate predictions, the joint estimation and 
constants/scales updating generally yield results similar to one 
another that are slightly poorer than the Bayesian results, and 
the combine transfer and 1986 small-sample models generally 
yield the poorest aggregate predictions. The results for the fully 
specified model are more mixed but, in general, are different 
from the level-of-service results in that the combined transfer 
and 1986 small sample model results are, overall, the best, 
whereas overall the Bayesian procedure performs the most 
poorly (especially at sample sizes under 1,000). The other 
two updating procedures are again fairly comparable at small 
sample sizes and again generally lie between the best and the 
worst, although in this case their performance is generally close to 
the best. 

Figures 3 and 4 again reinforce the importance of model specifi
cation in that the aggregate prediction errors are generally smaller 
for the fully specified model and the sensitivity to sample size is 
generally larger for the fully specified model as well. 

SUMMARY AND CONCLUSIONS 

This paper has provided an empirical comparison of four disaggre
gate choice model updating procedures using two data sets from the 
GT A representing travel behavior at two points in time 22 years 
apart ( 1964 and 1986). All the results obtained are based on this one 
case study, implying the need for additional tests employing other 
estimation/application contexts to be able to generalize any conclu
sions that arise from this study. On the basis of this study' s results, 
however, the following findings are noteworthy. 

I. The combined transfer estimation procedure consistently 
yields the best predictive performance in the 1986 application 
context, on the basis of the disaggregate full-sample log-likelihood 
measure used. This, however, is largely the result of the dominance 
of the transfer scaling component of the procedure, which 
effectively results in the procedure corresponding to a simple re
estimation of the model using the application context data set. 

2. The joint context estimation yields results generally compara
ble to the combined transfer procedure, but with a significantly 
more parsimonious parameter structure. Hence, if the estimation 
context data set is available to support joint context estimation, 
generally it should be preferred relative to combined transfer 
estimation. 

3. The computationally simpler transfer scaling procedure yields 
results that are similar to those of joint context estimation for small 
sample sizes. Hence, if the software required for joint context esti
mation or the estimation context data set, or both, are not available, 
then transfer scaling may well provide a useful and credible model 
update. 

4. The Bayesian updating procedure is generally dominated by 
the other updating procedures examined, all of which explicitly 
deal with transfer biases in various ways. Thus, on the basis of this 
case study, Bayesian updating cannot be recommended as an up
dating procedure, especially given alternative techniques, such as 
transfer scaling and combined transfer estimation, which are not 
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any more burdensome computationally and yet yield superior 
results. 

5. Once the application context small sample reaches the 400 to 
500 observation level, simply reestimating the model for the appli
cation context may yield results that are comparable or superior to 
any updated model transferred from an estimation context
providing that the application context data set supports develop
ment of a "fully specified" model. 

6. Model specification is important in the updating/transfer 
process. In this case study, improving the model specification 
yielded far greater improvements in model performance than either 
"optimizing" the updating procedure or increasing the application 
context sample size. 

In conclusion, this study indicates, in keeping with other studies 
cited in the paper, that updating a model estimated in another 
context through use of a small sample drawn from a new context 
significantly improves the model's transferability to this new con
text. In comparing the performance of a range of updating methods 
suggested in the literature, this study indicates that three procedures 
that all explicitly address the issue of transfer bias (transfer scaling, 
combined transfer estimation, and joint context estimation) all 
perform well at small sample sizes and possess merit as possible 
updating procedures for practical application. The choice among 
these methods depends on model specification, application context 
sample size, and availability of the estimation context data set. All 
else being equal, however, the joint context estimation procedure 
may be preferred given that it is a parsimonious, full-information 
approach to the problem. 
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Competing Risk Hazard Model of Activity 
Choice, Timing, Sequencing, and Duration 

DICK ETTEMA, ALOYS BORGERS, AND HARRY TIMMERMANS 

Recently hazard models have become increasingly popular in trans
portation research for modeling duration processes of various kinds. 
The application of hazard models is extended to the field of activity 
scheduling to account for the continuous nature of the decision-making 
process underlying activity performance. A competing risk hazard 
model of the accelerated time type, which describes simultaneously the 
duration of the present activity and the choice of the next activity, is pre
sented. Both a generic and an activity-specific version of the model 
were estimated. The covariates used in the model represent factors that 
affect activity scheduling, such as time of day, opening hours, travel 
times, priorities, and time budgets. An interactive computerized data 
collection procedure was used to obtain specific data needed to calcu
late the covariates. The estimated models performed satisfactorily, 
suggesting that competing risk models are a useful tool for describing 
activity scheduling as a continuous decision-making process. This is an 
important finding, especially because influencing the timing of activi
ties and trips is a subject of increasing interest to policy makers. 

In past decades, activity scheduling has been a topic of increasing 
interest in the transportation research community (J). The central 
assumption underlying this stream of research is that people travel 
to participate in various activities that satisfy their personal needs. 
Thus, the key question in understanding how travel decisions are 
made and how people will adapt their travel behavior to changes in 
their environment is how people decide about activity performance 
and related travel behavior. More specifically, it requires an under
standing of the activity scheduling process, which encompasses 
decisions about which activities to perform, at which locations, at 
which times, in which sequence, and which travel modes and routes 
to use. 

Modeling efforts in transportation have addressed several aspects 
of activity scheduling. For instance, discrete choice models of desti
nation choice, mode choice, and route choice are well known and 
widely applied, whereas multidimensional models encompassing 
several of these choices, often using a nested logit approach, are 
becoming increasingly popular (2). More specific applications 
include models of combined activity and destination choice through
out the day (3) and trip chaining models, describing the sequencing 
of activities (4,5). Other approaches describe the choice of complete 
activity patterns explained by their scheduling convenience (6) or the 
planning phase that precedes activity execution (7). 

Another approach in choice modeling with possibly relevant 
implications for activity scheduling is the development of dynamic 
discrete choice models (8,9). These models typically describe how 
choice behavior develops over time. By including state dependence 
and heterogeneity, the choice made at time tis explained partly by 
choices made previously so that changes in behavior are modeled 
rather than independent choices. Models of this type have been 

Urban Planning Group, Eindhoven University of Technology, P.O. Box 
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applied in the analysis of panel data to describe vehicle transactions 
and various kinds of travel behavior (8,7). Applications in the field 
of activity scheduling, however, are scarce. 

Dynamic discrete choice models, however, do not go without 
severe computational difficulties, especially if the number of alter
natives and waves is large, which is typically the case in activity 
scheduling analysis. Furthermore, activity performance is increas
ingly regarded as a continuous process, in which individuals can 
decide during activity performance to end an activity and start 
another one. The decision whether to continue or stop will therefore 
depend strongly on time and duration of the present and previous 
activities. Thus, the probabilities of pursuing different activities and 
travel to different locations will change continuously over time. 
Both static and dynamic discrete choice models do not explicitly 
account for this duration dependence. 

Recently, hazard models have gained increasing interest in 
transportation research as a means to describe the duration of 
processes such as activity performance (JO). Hazard models there
fore are promising tools for incorporating duration dependence into 
activity-based approaches and taking into account the continuous 
nature of the implied decision making. The specific contribution of 
this paper to the literature is the introduction of a competing risk haz
ard model to activity scheduling modeling to describe not only activ
ity duration but also activity choice. Spatiotemporal constraints were 
incor.porated by using specific individual data on available locations 
and hours obtained by using a computerized interactive data collec
tion procedure. The results indicate that transitions between activity 
types can be described by a competing risk model with covariates 
accounting for spatiotemporal flexibility of activities. 

The remainder of this paper is organized as follows. In the sec
ond section, hazard models are introduced and discussed. Special 
attention is given to competing risk models and issues of hetero
geneity and risk interdependency. In the third section, the model 
that was used in the present research is discussed. The model struc
ture and the covariates, representing spatiotemporal constraints, are 
outlined. In the fourth section, the data collection procedure, which 
was performed using a recently developed interactive computer 
procedure, is described. The fifth section describes the results of the 
analyses. Different specifications of the competing risk model are 
discussed. Finally, the sixth section summarizes the findings and 
addresses directions for future research. 

THEORETICAL BACKGROUNDS OF 
HAZARD MODELS 

Basic Concepts 

In this paper, a series of hazard models is applied to describe and 
analyze activity scheduling processes. Because hazard models have 
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not been widely used in transportation research the basic principles 
of hazard models will be discussed and summarized to allow a 
better understanding of the empirical findings of this study. 

Although hazard models only recently have gained increasing 
popularity in transportation modeling, they have been applied for 
decades in other disciplines, such as industrial engineering, biol
ogy, medical science, and labor market research (J 1,12). Hazard 
models typically are applied to describe duration data such as 
machine failure times or patient survival times under different med
ications or unemployment periods. More specifically, hazard mod
els describe the probability of occurrence of a certain event 
(machine failure, death, finding a job) within an interval [t,t + dt], 
given that it has not occurred up to time t. This conditionality can 
be considered the key concept of hazard modeling and offers a nat
ural framework for describing durations and intervals between the 
occurrence of events. For instance, in the case of activity duration, 
the probability of stopping an activity will be small when it has just 
started and will gradually increase with the time of execution. Haz
ard models offer the statistical tools to describe this conditional 
probability, which enables one to incorporate duration dependence 
into transportation modeling. 

Mathematical Formulation 

A number of functions are of particular interest with respect to the 
mathematical description of hazard models. First, a probability den
sity function f(t) giving an unconditional distribution of durations 
T within a population can be defined as 

P(t T ~ t +At) 
f(t) = lim A 

Llt~O u.t 
(1) 

The probability that in a specific case the event will occur before 
time t is then 

F(t)= P(T < t) = r f(u)du 
0 

(2) 

It follows thatf(t) is the first derivative of F(t) with respect to time. 
A key function in hazard modeling is the survivor function S(t), giv
ing the probability that the process has survived until t: 

S(t) = I - F(t) = P(T 2 t) = rf(u)du (3) 

The hazard function h(t), finally, describes the probability of occur
rence at t conditional on survival until t: 

P(t ~ T < t + A t IT 2: t) 
h(f) = lim A 

ut~O u.t 

f(t) 

s (t) (4) 

In principal, the hazard can take many different forms (see Fig
ure 1). It can be monotonically increasing (a), U-shaped (b), monot
onically decreasing (c), or constant (d). Lawless (J 1) and 
Kalbfleisch and Prentice (13) give examples of shapes that are typ
ical for certain types of duration processes. Given that the shape of 
the hazard yields important information about the nature of the 
process under study, remarkably little attention has been paid to the 
specific shape of the hazard in transportation applications. The 
emphasis has been primarily on the influence of covariates influ-
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h(t) 

t (duration) 

FIGURE 1 Some hazard functions. 

encing the scale of the hazard, indicating longer or shorter durations 
in general. 

The shape of the hazard function is determined by the distribu
tional assumptions that are made for the probability density func
tion f(t). A number of different distributions can be chosen (11), 
resulting in different hazard functions. Some distributions and their 
related hazard functions are listed below. For a detailed review of 
possible distributions the reader is referred to Lawless (J J) and 
Kalbfleisch and Prentice (13). 

1. Exponential distribution: 

h(t) = A. t 2 0 

2. Weibull distribution: 

h(t) = A.13(A.t)f3- l A.,13 > 0 

3. Log normal distribution: 

4. Log logistic distribution: 

A.13(A.t)f3-l 
h(t) = I + (A.t)f3 

(5) 

(6) 

(7) 

(8) 

The choice of a specific distribution and related hazard function 
usually will be made according to hypotheses based on existing the
ory. However, testing of different distributions with different scale 
and shape parameters may often lead to a better insight into the 
duration process under study. 

Parametric Hazard Models 

Apart from duration dependence other factors also influence activ
ity duration and timing. For instance, the start of an activity may be 
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influenced by opening hours, time of day, or priority of the activity. 
To incorporate such explanatory variables into the model two model 
types can be used. The first is known as the proportional hazard 
model, which takes the following form: 

h(t IX) = ho(t)g(X) 

where 

X = a vector of explanatory variables and 
h0(t) = the baseline hazard function. 

(9) 

The baseline hazard is the hazard function assuming that all 
covariates X have a value of 0. g(X) is usually defined as exp (13X), 
where 13 is a vector of parameters. The function g thus acts multi
plicatively on the baseline hazard. This causes the property of pro
portionality, implying that the ratio of hazards for specific sets of 
covariates (hi/h2) remains constant over time. This assumption how
ever can in some cases be undesired. For instance, Leszczyc and 
Timmermans (14) found that intershopping trip times differed, 
depending on the store chains that were visited. In this research, 
different duration processes may be expected for different types of 
activities. In such cases the proportion of hazards of different des
tinations is likely to vary over time. Accelerated liktime models can 
be used to describe such cases. These models are log linear for T: 

log T = x13 + E 

The hazard function in this case can be shown to be 

(11) 

Thus, the effect of the covariates X is on t rather than on the base
line hazard. The models are not proportional and offer greater 
flexibility in modeling durations of alternative processes. This, 
however, comes at the cost that heterogeneity cannot be incorpo
rated into the model. In both cases different forms of the hazard 
function are obtained by taking different distributions for the base
line hazard h0 as described earlier. 

Competing Risk Models 

The previous description has considered durations of processes with 
only one exit. However, the ending of an activity can be the means 
to starting various new activities so that there will be different pos
sible exits. A competing risk model was used to describe transition 
rates to these competing risks. In this case, hazards are defined 
specifically for different exits: 

hk(t) =Jim 
ilr.-,o 

P(t :5 T < t + 11t, Dk= IIT 2:: t) 

11t 
(12) 

where hk(t) is the probability that exit k occurs at time t and Dk is a 
dummy variable indicating whether or not exit k was chosen. 

The relation between hazards and survival functions for specific 
exits and joint hazard and survival functions is given simply by 
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(13) 

(14) 

Parametric versions of the proportional and accelerated time type 
are written as follows: 

(15) 

(16) 

where different distributional assumptions can be made for hob the 
k-specific baseline hazard. 

The probability that, if an exit is chosen, this exit will be k,7rk can 
be calculated as follows: 

7fk = f s(s) hk(S) ds 
0 

(18) 

Lancaster (12) shows that under the assumption of stationarity 
(hk(t)lh(t) = mk for all t) and a Weibull distribution for the proba
bility density function 7rk can be written as follows: 

exp (xk 13k) 

L exp (x1 13) 
j 

(19) 

Thus, the well-known logit model can be regarded as a compet
ing risk model under strong assumptions. This example clearly 
illustrates that competing risk models offer the attractive opportu
nity of relaxing the static assumption underlying discrete choice 
modeling and incorporating dynamic aspects into consumer behav
ior research. In a number of transportation applications, especially 
where the timing of travel decision is concerned, this might be a 
valuable contribution. 

Notwithstanding these attractive features, some issues should be 
addressed in the application of competing risk models. Competing 
risk models fall in the class of models with multivariate lifetime dis
tributions, with different distributions of lifetimes T; according to 
the competing risks. If information on all lifetimes T; is available, 
one can test for independence of the various lifetime distributions. 
However, in the case of competing risks only min (TI> ... , Tk) is 
observed so that the assumption of independence cannot be tested. 
This is caused by the fact that it is principally impossible to dis
criminate between different multivariate distributions f(t1> ... , tk) 

that give rise to the same cause-specific hazard functions based on 
min (T" . .. , Tk) only (11). Recently, Han and Hausman (15) intro
duced a proportional hazard model that allows for testing of inde
pendence among risks. In their approach, time is divided into T dis
crete periods and a proportional hazard model is formulated in an 
ordered logit or ordered probit form. Interdependency can then be 
incorporated by correlations in the stochastic terms of the model. 

A second issue that should be addressed is the problem of het
erogeneity within the sample. In case of observed heterogeneity, 
characteristics of subjects that can easily be measured, such as 
sociodemographics, influence the observed behavior. Heterogene
ity can then be accounted for by including the sociodemographics 
as explanatory variables in the model. Unobserved heterogeneity 
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exists when unobserved characteristics of subjects in the sample 
(e.g., motivations, tastes, and preferences) correlate with the 
observed behavior-in this case activity choice and duration. Not 
accounting for heterogeneity may lead to biased results. For 
instance, Meurs (9) found that linear regression models without 
heterogeneity lead to underestimation of elasticities. The effects 
of ignoring heterogeneity in duration models are less clear cut. 
Studies by Hensher (16) and De Jong et al. (17) seem to suggest 
that including heterogeneity does not have a dramatic effect on the 
parameter estimates of the explanatory variables but has a larger 
impact on the shape and scale parameters of the distribution of the 
baseline hazard. An additional complication arises when multiple 
observations for one subject are included in the sample, for exam
ple, if panel data or multispell duration data are used. If hetero
geneity exists, the observations of one subject will be interdepen
dent. By treating the observations as independent, one can easily 
overestimate the effects of state and time dependence and habit 
persistence (18). 

To account for heterogeneity in proportional hazard models usu
ally a heterogeneity term is introduced, which is a random variable 
with a certain (often gamma) distribution (13, 16). Lancaster (12) 
and Sueyoshi (19) extend the inclusion of a mixing distribution to 
the competing risk case. By specifying mixing distributions ~ for 
competing risks, the joint distribution can be used to account for 
interdependency between risks. However, in the case of accelerated 
time models, introduction of a heterogeneity term is not possible 
because of identification problems (20). 

COMPETING RISK MODEL OF ACTIVITY 
CHOICE, SEQUENCING, TIMING, 
AND DURATION 

In the current research, the sequencing and timing of activities 
during the course of a day are of interest. Two models were 
estimated to describe this process. Both models describe the transi
tion from one activity to another. The competing risks by which 
the origin activity can end are the possible following activities. 
The dependent variable in the models is the duration of the first 
activity that is equivalent to the time until a transition to another 
activity takes place. However, the covariates used to explain the 
duration are generic in one model and specific for various activity 
types in the other model. For this application, models should be 
obtained in which the proportion of transition probabilities to 
different activity classes can change over time. This implies an 
accelerated time formulation for each model. The generic model 
can be specified as 

where 

hk(t) = hazard function for transition to any activity k, 
h0 = baseline hazard, 
X = vector of generic covariates, and 
13 = vector of generic parameters. 

The specific model is given by 

(20) 

(21) 
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where 

hk (t) = hazard function specific for transition to activity k, 
Xk = vector of covariates specific for activity k, and 
13k = vector of parameters specific for activity k. 

Obviously, the choice for the accelerated time model has some 
implications. First, it does not allow incorporation of heterogeneity 
into the model. In addition, it is not possible to readily test for inde
pendence of activity choices. Hence, the choice of which model to 
use was based on a tradeoff between incorporating heterogeneity 
and interdependence between risks and the flexibility to allow the 
ratio of transition rates to different risks to vary over time. The latter 
should receive the priority that led to the choice of the accelerated 
time model in this project. 

The following activities were distinguished in the specific model: 

1. In-home leisure activities, 
2. In-home task activities, 
3. Work/education, 
4. Shopping, 
5. Personal business out of home (not item 3 or 4), and 
6. An end state in which no further activities are performed. 

The covariates X used in both models to explain activity duration 
and transition to other activities are derived from previous research 
(21), which revealed that spatiotemporal constraints and general 
characteristics of activity performance were relevant for activity 
scheduling behavior. The following covariates describing spa
tiotemporal flexibility were used: 

1. The activity from which the transition takes place. Five dum
mies are used to represent the possible activities, being the first five 
activity types mentioned earlier. These are generic variables in both 
models .. The dummies represent differences in average activity 
duration between different classes of activities. 

2. The activity to which the transition takes place. Dummy cod
ing was used in a similar way to represent the six possible destina
tion states. The dummies represent the effect of the destination 
activity on the duration of the preceding activity. 

3. START: the start time of the first activity in minutes. It is 
assumed that the time of day at which activities start may influence 
the probability of transition to another activity. For instance, the 
probability of switching to leisure activities may be higher at the 
end of the day, whereas switching to work is more likely at the 
beginning of the day. 

4. TILSTART: the time until the next activity can start in min
utes. This factor represents the influence of opening hours of facil
ities or the influence of fixed hours for certain activities, such as 
work or education. It is hypothesized that if less time remains until 
an activity can start, a transition to this activity is more likely to take 
place. If PS2 is the earliest possible start time of the destination 
activity, TILSTART is calculated as follows: 

TILST ART = PS2 - ST ART 

This measure takes a value of 0 if the activity can start before 
START. 

5. TILCLOSE: the time until the next activity can end at the lat
est in minutes. This factor represents the effect of closing times or 
the end of fixed hours for certain activities. The effect can be 
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twofold: if less time remains for the execution of an activity, it 
becomes more urgent so that transition to this activity is more likely 
to take place. However, if too little time remains for the execution 
of an activity a transition will become less likely. If PE2 is the latest 
possible endtime of the destination activity, TILCLOSE is calcu
lated as follows: 

TILCLOSE = PE2 - START 

If START > PE2, then TILCLOSE is set to 0. 
6. PRIORI: the priority of the first activity on a 0 to 10 scale. It 

can be hypothesized that the priority of the first activity will influ
ence the duration of this activity, in the sense that activities with 
lower priority are more likely to be ended to pursue other activities. 

7. PRIOR2: the priority of the next activity on a scaJe of 0 to 10. 
Analogous to PRIOR~, a transition to an activity with higher prior
ity is more likely to take place if the priority of this activity is higher. 

8. TRAVTIME: the travel time between the origin and the des
tination activity in minutes. This factor represents the distance 
decay over time of switching to different activities. 

9. TIMESPENT: the time spent on the destination activity type 
at earlier occasions during the same day in minutes. This factor rep
resents history dependence. That is to say, the amount of time spent 
on an activity earlier in the day is likely to influence the probability 
of switching to the activity once more. 

DA TA COLLECTION 

The competing risk model was estimated using activity scheduling 
data that were collected in January 1994. Subjects were 39 students 
of Eindhoven University of Technology, Eindhoven, The Nether
lands. The data were collected using the interactive computer pro
cedure MAGIC (22), which consists of two parts. In the first part 
general information on activity performance ~nd spatiotemporal 
constraints is collected. For 31 activities the following information 
is recorded for each subject: 

1. Will the activity be performed on the planning day according 
to an arrangement in which other people are involved (yes/no)? 

2. What was the last time the activity was performed (days ago)? 
3. What is the average frequency of performance of the activity 

(times per month)? 
4. How long does is take to perform the activity (minimum time, 

average time, maximum time)? 
5. How likely is it that the activity will be performed on the 

target day (on a 0 to 10 scale)? 
6. What are the locations at which an activity takes place? Of each 

location the subject is asked to provide the following information: 
(a) the name of the location, (b) the hours at which the subject would 
consider performing the activity at this location (this may be a 
smaller range than is implied by strict opening hours), (c) the attrac
tiveness of the location on a 0 to 10 scale, indicating how pleasant 
the location is to stay at, and (d) The address of the location. 

The list of 31 activities is designed to cover the spectrum of daily 
and incidental activities and includes both in-home and out-of
home activities; it includes the following: 

• Taking an educational course; 
• Studying at home; 
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• Practicing hobbies at home; 
• Buying provisions; 
• Visiting post office or bank; 
• Visiting a cafe, bar, or disco; 
• Visiting a sports match; 
• Sightseeing; 
• Eating breakfast; 
• Housekeeping; 
• Visiting someone; 
• Performing work; 
• Visiting cashpoint; 
• Participating in sports; 
• Attending the theater or a.concert; 
• Eating lunch; 
• Reading; 
• Having visitors; 
• Buying clothes or shoes; 
• Engaging in club activities; 
• Volunteering; 
• Attending a museum or exhibition; 
• Eating supper; 
• Watching television; 
• Getting food (s~ack bar); 
• Visiting a specialty shop; 
• Going to the movies; 
• Visiting the library; and 
• Visiting a restaurant. 

In addition, travel distances between the locations mentioned by 
the subjects are requested. These data enable the calculation of the 
covariates described earlier. 

In the second part of the procedure subjects are asked to perform 
a scheduling task; that is, they are requested to list all activities they 
plan to perform the day after the experiment. These activities are all 
on the list of activities used in the first part, so that detailed infor
mation on each selected activity is available. The schedule encom
passes the planned activities and the sequence in which they are 
executed, the locations at which the activities take place, travel 
modes used, and the start and end times of activities. From these 
schedules the data used for estimation of both the models was 
derived. For each observed transition from one activity to another 
all competing risks, that is, all possible destination activities, were 
included in the data set. The set of alternative destination activities 
for a transition encompasses all activities from the list of 31 that 
were assigned a likelihood greater than 0 in the first part of the pro
cedure. For each competing risk the values of the covariates in the 
generic and specific model were calculated on the basis of the infor
mation supplied in the first part of the procedure. The destination 
activity that was chosen by the subject was coded as an observed 
transition; the other competing risks were coded as right censored. 
The data set consisted of a total of 256 observed transitions and 
7,041 right-censored cases. 

The study described in this paper is exploratory in nature. A 
small sample that is not representative of the population of some 
geographic area as a whole has been used. The sample is homoge
neous with respect to age (18 to 25 years), main occupation, and 
income (students). Therefore, sociodemographic variables are not 
included in the model. Furthermore, a data set that was collected 
using this procedure, as detailed information about spatiotemporal 
constraints on an individual level was obtained, was preferred in 
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this case but is usually not the case with existing time budget and 
travel surveys. 

ESTIMATION AND RESULTS 

Estimation Procedure 

The models described earlier were estimated using the SAS pack
age. Independence between competing risks and homogeneity was 
assumed. This implies the following likelihood function: 

N A; C,,; 

L=TI TI TI Jc(f;a,XiaJdiac Sc(f;a,Xiac) 1 -diac (23) 
i=I a=I c=I 

where 

N = number of individuals in sample, 
A;= number of activities performed by individual i, 

C,; = number of possible exits for activity a of individual i, 
f,_. = probability density function of duration times for Exit c, 

Sc = survivor function for Exit c, 
t;0 = time at which activity a of individual i is ended, 

X;ac = vector of covariates associated with Exit c from activity a 
of individual i, and 

d;ac = dummy variable that indicates whether Exit c was chosen 
for ath activity of individual i. 

As noted earlier, the fact that heterogeneity is not included in the 
model may affect the scale and shape parameters of the baseline 
hazard and the estimation of lagged effects. However, the hetero
geneity in the sample used for this study is diminished by the fact 
that the subjects were all students who differed little with respect to 
sociodemographic characteristics. Further, the effect of hetero
geneity on the estimation of state dependence in duration models is 
less clear, compared with dynamic models based on panel data. 
Nevertheless, heterogeneity will have some effect, and this should 
be considered when interpreting parameter estimates. 

Generic Model 

The generic model was estimated with various distributions 
assumed for the baseline hazard. The goodness-of-fit measures for 
the various distributions are indicated in Table 1. As indicated by 

TABLE 1 Goodness-of-Fit Measures of Generic 
Models with Various Distributional Assumptions 

distribution loglikelihood 

weibull -1151.61 

exponential . -1163. 90 

lognonnal -1125.08 

loglogistic -1151.00 
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the goodness-of-fit measures, the log-normal distribution describes 
the transition probabilities best. 

The parameters that were estimated assuming the log-normal dis
tribution are indicated in Table 2. Positive parameter values indi
cate a positive effect on the duration of the origin activity, whereas 
negative parameter values suggest a shorter duration. The origin 
dummies thus suggest that work/education usually has a relatively 
long duration. The positive effect on the durations of in~home 
leisure, in-home task activities, and personal activities out of home 
is smaller, whereas shopping is the activity with the shortest dura
tion. The positive and significant sign of STARTTIME suggests 
that if an activity starts later, it will have a longer duration. Appar
ently, the probability of starting a new activity is smaller later in the 

TABLE 2 Parametric Estimates of Log-Normal Generic 
Model 

variable name ·parameter (t-value) 

intercept -0.08 (-0.18) 

in home leisure• 0. 93 (3.65) 

in home task 1 0.73 (3.08) 

work/ education 1 2.22 (8.70) 

shopping1 -0.08 (-0.24) 

pers. act. out of home 1 ·0.88 (3. 75) 

starttime 0.10 (4.02) 

tili;tart 0.07 (1.33) 

tilclose 0.06 (2.70) 

priori 0.05 (2.05) 

prior2 -0.08 (-5.71) 

travtime 0.27 (9.50) 

timespent 0.13 (2.25) 

scale 1.60 (22.22) 

1 dummy for origin activity 
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day. TILST ART does not have a significant effect. TILCLOSE, 
however, has a significant and positive effect, suggesting that tran
sitions are· postponed if more time remains for the destination activ
ity. Thus, if there is less time pressure for the destination activity, 
the preceding activity will have a longer duration, as one would 
expect. PRIOR 1 has a significant and positive value. This suggests 
that if the priority of the origin activity is higher, it will have a 
longer duration. However, a higher priority of the destination activ
ity has the reverse effect, as indicated by the negative value of 
PRIOR2. Thus, if the destination activity has a higher priority, the 
preceding activity will have a shorter duration. TRA VTIME has a 
positive and significant value. Thus, if travel time to the destination 
activity increases, this will postpone the transition to this activity, 
resulting in a longer duration of the preceding activity. TIME
SPENT, finally, has a positive and significant value: that is, that the 
more time one has already spent on an activity, the less likely one 
is to switch to this activity. Apparently, time budgets exist for var
ious types of activities that set limits to the amount of time spent on 
one activity. 

Specific Model 

The specific model was also estimated with different assumptions 
of the distribution of the baseline hazard. The goodness-of-fit 
measures are indicated in Table 3. Again, the best performance is 
achieved assuming a log-normal distribution. 

The parameters of the log-normal model are indicated in Table 4. 
In the specific model the origin activity was represented by a set of 
generic dummy variables; furthermore, an intercept was estimated 
for each destination activity. The parameters for the origin activity 
all have a significant positive value, so that the effects can be inter
preted only relatively to each other. The estimated values suggest 
that work/education usually has the longest duration, whereas shop
ping has the shortest duration on average. The intercepts represent 
the effect of the destination activity on the duration of the preced
ing activity. A significant negative parameter value suggests that a 
transition to personal activities out of home will shorten the 
preceding activity. In-home task activities, however, are usually 
postponed, resulting in a longer duration of the preceding activity. 

Positive and significant STARTTIME parameters were estimated 
for work/education and personal activities. Transitions to these 
activities are thus postponed if the preceding activity starts later. 
However, the negative value for the end state indicates that transi
tions to this category are more likely to happen later in the day. A 
significant parameter for TILSTART was found only for work/edu
cation. Thus, activities followed by work/education activities have 
longer durations if more time remains until this activity can start. 
The effect of TILCLOSE is significant only for in-home task activ
ities. Contrary to the expectation and to the findings of the generic 
model, transition to this activity takes place earlier if time pressure 
is less, resulting in a shorter duration of the preceding activity. Para
meters for PRIORI were significant only at the 10 percent confi
dence level for work/education and personal activities out of home. 
The signs indicate that a transition to work/education takes place 
earlier if the origin activity has a higher priority, which is contrary 
to the expectation in this paper. However, the opposite holds for 
personal activities out of home. The positive sign indicates a longer 
duration of the preceding activity if the priority is higher. Positive 
and significant parameters for PRIOR2 were found for in-home task 
activities, work/leisure, and shopping. If the priority of these activ-

TABLE 3 Goodness-of-Fit Measures of Specific 
Models with Different Distributional Assumptions 

distribution loglikelihood 

weibull -1073.56 

exponential -1106.82 

lognormal -1050.57 

loglogistic -1060.04 
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ities increases, transitions to these activities will take place earlier, 
resulting in shorter durations of the preceding activities. A positive 
and significant parameter value for TRA VTIME was found for all 
activities, except the end state. Apparently, all are postponed if 
travel time increases. This effect is strongest for in-home leisure and 
relatively weak for work/education and in-home task activities. This 
indicates a weaker distance decay for obligatory activities, as one 
would expect. Significant parameters for TIMES PENT were found 
for work/education and personal activities out of home, indicating 
that transitions to work/education and personal activities out of 
home are postponed if more time already has been spent on these 
activities. This holds to an extreme extent for personal activities. 
Apparently, there are strict time budgets for personal activities. So, 
with few exceptions (PRIORI and TILCLOSE) the parameter signs 
are in line with common sense. 

COMPARISON OF GENERIC 
AND SPECIFIC MODEL 

In terms of interpretation of the parameters, the two models are 
largely consistent. Shifts in the sign of parameters appeared only in 
the case of TILCLOSE and PRIOR 1. However, parameter values 
vary in sign and magnitude between destination states in the specific 
model, indicating that different types of activities ·are planned 
according to different criteria. Therefore, the extension from a 
generic model to a specific model is regarded as an important 
improvement. To test whether the specific model performed statis
tically better than the generic model, a likelihood ratio test was 
performed. The chi-square statistic of 149.02 with 35 degrees of 
freedom indicates that the specific model performs significantly 
better at a = 0.005. 

CONCLUSION 

In this paper an alternative method of modeling activity choice, 
timing, and duration has been described. Competing risk hazard 
models of the accelerated time type were used to describe the dura
tion of an activity, the choice of a next activity, and their mutual 
dependency. The estimated models performed satisfactorily, sug
gesting that competing risk models are a useful tool for incorporat
ing duration dependence into discrete choice modeling. This 
conclusion is particularly relevant as timing of activities and trips 



TABLE 4 Parametric Estimates of Log-Normal Specific Model 

DESTINATION ACTIVITIES 

in home in home task work shopping pers. act. out end state 
leisure education of home 

in home lei- 2.21 (13.23)2 

sure 1 

in home task 1 1.97 (13.83) 

work educa- 3.49 (21.17) 
tion1 

shopping1 1.08 (4.82) 

pers. act. out 2.34 (16.69) 
of home1 

intercept for -3.23 (-1.21) 1. 93 (2.03) -2.01 (1.85) -1.32 (-0.75) -2.34 (-3.66) 4.62 (3.70) 
destination 

starttime 0.20 (1.09) -0.11 (-1.83) 0.31 (4.25) 0.22 (1.85) 0.14 (2.98) -0.55 (-6.88) 

tilstart 0.21 (0.81) 0.09 (0.91) 0.35 (2.06) 0.12 (1.78) 

tilclose 0.22 (1.24) -0.17 (-3.40) 0.05 (0.64) 0.11 (1.22) -0.02 (-0.41) 

priorl -0.03 (-0.54) 0.06 (1.39) -0.15 (-1.93) 0.03 (0.23) 0.06 (1.84) 0.05 (0.60) 

prior2 0.00 (0.56) -0.16 (-4.06) -0.11 (-2.59) -0.25 (-3.29) -0.05 (-1.93) 

travtime 0.41 (3.52) 0.15 (2.46) 0.10 (1.77) 0.24 (2.53) 0.26 (6.77) -0.04 (-0.54) 

times pent 0.08 (0.28) 0.14 (1.08) 0.27 (2.32) 15.51 (4.06) 

scale = 1.34 (24.81) 

dummy for origin activity 
2 t-values in parentheses 
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becomes the subject of policy making to reduce congestion and 
preserve mobility. 

In this application two models were estimated: a generic model 
and a specific model, which is conditional on the destination state. 
The specific model was superior to the generic model because the 
goodness of fit of this model was significantly higher. Furthermore, 
the estimated parameters reflected differences between scheduling 
criteria for different activity types, which would remain unrevealed 
in the generic model. Parameter estimates suggest that spatiotem
poral constraints such as time of day, opening hours, and travel time 
play an important role in activity scheduling and timing. Also the 
history of the pattern and priorities of activities influence timing and 
choice of activities. The inclusion of these covariates was enabled 
by a specific computerized data collection procedure, which pro
vides an extensive record of individual activity scheduling 
processes. Application of such a procedure can be considered a pre
requisite if one wants to obtain models that are capable of describ
ing travel behavior at a detailed level. Both the generic and the spe
cific models were estimated by assuming different specifications of 
the baseline hazard. Of the tested distributions, the log-normal 
distribution provided the best fit in predicting activity transitions. 

The modeling approach described in this paper is a first step in a 
new direction of modeling and simulating the performance of activ
ity patterns. However, improvements still need to be made. An issue 
already raised is how heterogeneity and interdependency of risks 
should be handled. In this study flexibility of the model structure 
was allowed to prevail over heterogeneity and interdependency. 
Future research, however, should address possible ways of unifying 
the above properties into one model structure. Another development 
would be the extension of the unconditional competing risk models 
described above to conditional models, where transition probabili
ties are dependent on both origin and destination states. 
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Effects of Different Data Collection 
Procedures in Time Use Research 

NELLY KALFS 

A field that might play an important role in the future of travel demand 
analysis and modeling is time use research, although some issues need 
to be resolved. One such issue deals with the data collection procedure. 
To provide guidelines to researchers, the strengths and weaknesses of 
three data collection systems are reviewed. One system relied on the tra
ditional paper-and-pencil diary; another system was a self-administered 
electronic diary (computer-assisted self-interview, or CASI), and the 
third was based on an interviewer-administered electronic procedure 
(computer-assisted telephone interview, or CATI). These systems are 
compared in terms of the validity of the time use statistics, the unit 
response rate, and time involved in conducting the survey. The results 
show that none of the data collection systems is best in all aspects: the 
unit response rate is highest in CA TI, and the time to conduct the sur
vey is lowest in CASI. As far as the validity is concerned, one method 
was not found to be best for all activities. The comparison clearly shows 
that relatively large differences exist among the procedures. Conse
quently one must be careful using the results of studies that are based 
on different data collection systems. One specific activity that is of 
increasing interest to policy makers, that is travel, is illustrated. 

One of the challenges facing the field of time use research today is 
to clearly show its usefulness in guiding policy. A policy issue that 
can be addressed with time use data is travel behavior. According 
to earlier reports (J,2) time use research could play an important 
role in the development of new travel demand models (especially 
from the perspective of the activity-based .;tpproach), although there 
are some issues yet to be resolved. One of these issues is related to 
the fact that many researchers who work in the time budget field 
prefer to measure time use by means of a diary. In this approach 
respondents are asked to report their activities for at least 24 hr 
chronologically. Traditionally this is done with paper and pencil. 

The use of a dia_ry is preferred, because this type of data collec
tion technique is expected to produce the most accurate results [see, 
for instance, work by Juster (3), Niemi (4), and Gershuny and 
Robinson (5)]. However, diary surveys are expensive, and they 
demand a lot of time, from both respondents and researchers, who 
fill in the diary and process the data, respectively. These disadvan
tages and the fact that advances in computer technology have 
changed the methods of data collection have led to the development 
of an alternative diary form; the electronic diary. This electronic 
diary resembles the traditional one to a great extent, but the coding 
of activities is done by a computer-assisted tree-structured ques
tionnaire (6, 7). It was expected that this form of diary avoids many 
of the disadvantages of the hand-written diary. 

In the first place, the use of a computer in data collection can con
siderably reduce the amount of work. A second advantage is that 
coding is automatic. Another presumed advantage of computer
assisted data collection is that it can improve data quality, if careful 
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attention is given to automatic branching and coding, consistency 
checks, and help screens (8,9). . 

Until now little evidence has been given for these general find
ings. Although the literature on (time use) data collection mode 
comparisons is extensive (10-15), comparisons with computer
a.ssisted data collection are rare. Therefore, a comparison was made 
between the electronic and the conventional paper-and-pencil pro
cedure (paper-and-pencil interview, or PAPI). One environment 
was a self-registration method (computer-assisted self-interview, or 
CASI) and the other an in_terviewer-administered procedure 
(computer-assisted telephone interview, or CATI). In this study 
these data collection procedures are compared in terms of the valid
ity of the time. use statistics, the unit response rate, and time to 
conduct the survey. 

The simplest measure to establish is the unit response rate 
because the maximum number of possible participants is known or 
is possible to estimate. The time to conduct the survey is the most 
difficult criterion, as the design of the surveys differed consider
ably, and some time components were unknown. Therefore, atten
tion is paid to only two aspects: interviewers' time and assistance; 
and coding and editing time. These aspects reveal, for the surveys 
compared here, how much time can be gained by using the 
computer-assisted interviews instead of the P APL 

Validity is measured indirectly, because it is not normally known 
what real time use is actually like (15). Juster (J 1) formulated crite
ria that implicitly assume that greater detail in reporting and the abil
ity to account for time lead to more valid reporting. Besides this, the 
number of mistakes made by respondents and coders was evaluated. 

For the purposes of this comparison, a strict experimental d~sign 
was not used to evaluate the effect of the various aspects of the data 
collection modes. In the first place, the designers had no influence 
on some of the design characteristics. Second, systematic variation 
in characteristics does not appear to be practical for the specific sur
veys that were considered. Therefore, three existing procedures 
designed to be as efficient as possible given the mode of data col
lection were compared. Consequently, the data collection method is 
not the only factor that differs among the procedures: there are also 
differences in the methodology of the diaries (report and coding of 
activities and time and the kind of information requested) and the 
implementation aspects of the surveys (selection of households, 
individuals, and days). 

In the next section an overview of the characteristics of the time 
use diaries and the implementation features of the three surveys are 
presented. Because the interest of this study was mainly in the influ
ence of the registration method, some methodological issues are 
discussed briefly. These issues concern the corrections that have to 
be made before possible effects of the data collection procedure 
could be examined more clearly. Then a summary of the results of 
the comparison is given, and finally the impact of the differences 
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between the data collection procedures for the time use on one 
specific activity, travel, is illustrated. 

METHODOLOGY OF DIARIES 

The information gathered with a diary "can show for an individual 
what activities were done during the defined period, how many times, 
in what order, at what time, for how long, where and other objective 
and subjective information connected with the activities" (16). 

The diary itself can be designed in many different ways. The 
activity categories may be precoded or open, the time interval may 
be fixed (periods of 5, 10, I 5, or 30 min are the most common) or 
open (asking until what time an activity lasted), the activity code 
itself can be varied, and the diaries may provide space for record
ing only one (primary) or multiple simultaneous (primary and 
secondary) activities (17, 18). 

It is difficult to tell which design is preferred. The most impor
tant problem seems to be the balance between the task of the respon
dent and the processing of the data (10,19). This problem has been 
the major reason for designing an electronic diary. In the opinion of 
the author an electronic diary is less demanding for the respondent 
and it handles the data processing very well. However, before the 
features of the electronic diary are outlined, the design of the PAPI 
diary that was used for the comparison will be presented. 

PAPER-AND-PENCIL INTERVIEW 

Between I 987 and 1988, the Netherlands Central Bureau of Statis
tics conducted time use research. O_n the basis of a pilot study from 
1986 in which several methodological variants of the design were 
examined on response rate, selectivity of the response, and data 
quality, a design was ch_osen for the main survey (8). 

The diary design included the following features: for registering 
activities the closed variantwas chosen with a precoded list of activ
ities. In total, the list contained 106 activities divided into nine 
groups. The activities were registered in fixed intervals of 15 min, 
and secondary activities were ignored. Thus, the respondents had to 
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specify their activities and code them for each interval of 15 min. 
Next to the code, a verbal description of the activity could be given. 
In the events that concurrent activities were performed during acer
tain interval, the respondent had to choose either the activity that 
had lasted more than 7 min or the so-called productive activity. For 
the productive activities, supplementary questions had to be 
answered in the diary. 

COMPUTER-ASSISTED SELF INTERVIEW 
AND TELEPHONE INTERVIEW 

The electronic diary was developed by the Sociometric Research 
Foundation, and the main purpose of the study performed with this 
diary was the registration of time use. The diary is characterized by 
the following features: activities are recorded by answering a tree
structured questionnaire, the time interval is open, and activities that 
last for 10 min or more-with the exception of travel-and secondary 
activities have to be reported. In total, 368 activities are distinguished. 

What is meant by "activity coding by answering a tree-structured 
questionnaire" can best be illustrated by showing part of the ques
tionnaire (Figure 1). First, the respondent has to choose between a 
number of main categories. Subsequently, the activity is recorded 
in more detail. The code of the activity is generated automatically 
as it consists of the sequence of chosen answers in the tree. This pro
cedure leads to a unique code for each activity. 

If, for example, the activity is "preparing supper," the activity 
code is 213: first the respondent chooses the main category "running 
the household" (2), second "preparing food" (1), and then "supper" 
(3). It is obvious that t_his procedure saves the respondent and the 
research organization a lot of time with respect to coding and that 
more activities can be distinguished than in a coding list because the 
task for the respondent is easier: answering questions rather then 
referring to a list. 

An overview of the questionnaire is presented in Figure 2. In this 
figure the central question in the electronic diary is: Where were you 
after ... hours ... minutes? The answer to this question determines 
whether indoor, outdoor, or travel activities are shown. Next, the 
activity is registered in detail. 

What were you doing? What exactly? Further? 

l. job 1. mainjob 
2. secondjob 
3. unpaid job 

2. running the household 1. preparing food 1. breakfast 
2. dinner 
3. supper 
4. other 

2. washing up 
3. making tea or coffee 
4. cleaning the house 1. dust 

2. etc., etc. 

3. personal care 1. taking a shower 
2. etc., etc. 

4. etc. etc. 

FIGURE 1 Part of electronic questionnaire. 



no 

what were you 
doing? 

what exactly? 

extra question( s) 

did you like it? 

until what time? 

secondary activity? 

more of the same 
activity? 

Conditions: 
a: all activities, excluding night sleep 

where were you after 
..... hours ..... minutes 

travel 

extra question( s) 

mode 

did you like it? 

until what time? 

secondary activity? 

what were you 
doing? 

what exactly? 

extra question( s) 

did you like it? 

until what time? 

secondary activity? 

more of the same 
activity? 

b: if the reported activity is doing the housework, obtaining goods/services, work/job, media activities 

FIGURE 2 Flow chart of electronic questionnaire. 

no 



. Kalfs 

Specific additional information on the activity can be easily 
asked and may apply to all activities or to a specific kind of activi
ties (for the latter see, for instance, the questions asked about travel 
in Figure 2). For all activities, the respondents were asked whether 
they like performing the activity, and for nearly all activities, 
whether they performed another activity concurrent with the pri
mary activity. The amount of inadequate information in the elec
tronic diary is kept to a minimum by having immediate checks on 
the upper and lower boundary of answers, the time measure, and 
the sequence of activities, for example, report of travel between 
indoor and outdoor activities. 

Two drawbacks of the electronic diary are that it uses an open-time 
interval and that respondents are not provided with a list of activities. 
These could lead to confusion about the level of detail expected in 
the diary (19). To compensate, an example was given as an intro
duction to the diary exercise and an extra question was placed after 
each activity to check whether the answer given represented the 
activity performed and its duration. Possible mistakes could be 
reported in answer to this question and in the response to an open 
question at the end of the questionnaire. To get an accurate account 
of time use, if the duration of the reported activity exceeds a certain 
length of time ( 4 hr or more where "work" or "job" is reported, and 
3 hr or more for all other activities), the respondent is asked whether 
he or she is certain that all activities have been reported. 

With this electronic diary, data can be gathered in different ways; 
the questionnaire can be filled out by either a respondent or an inter
viewer. In this research, data were collected both ways. The same 
questionnaire was used for both procedures, and therefore the 
coding structure of the activity and time, the recording of the 
primary and secondary activity, and the extra information requested 
about the activities were all the same. In this paper these two forms 
are compared with the PAPI diary. But first the implementation 
characteristics are discussed. 

IMPLEMENTATION OF DIARIES 

In principle, the selection scheme for obtaining a sample of diaries 
that fully reflect the time use for activities in the population is as fol
lows: first, a probability sample of households must be selected; 
second, individuals within the household must be determined at ran
dom; and, finally, the dates for which time diaries are to be filled out 
by each respondent must be selected by a probability method (20). 
The most important decisions about these aspects follow. 

Paper-and-Pencil Interview 

For the PAPI survey a sample of households was randomly drawn 
from an address directory. All members of these households who 
were at least 12 years of age were requested to keep a diary for 
2 consecutive days. These days were determined at random by inter
viewers according to a scheme. 

One person per family was interviewed face-to-face on charac
teristics of the household. The remaining information was collected 
in writing and collated later by the interviewer. The respondents 
were asked to record their activities as soon as possible after the 
activities took place. To boost response, each household was 
offered a gift. 

The survey was held over 2 years. As a result, the sample of 
addresses was spread over the year to make it possible to present 
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results for periods of less than 1 year. For the purposes of this com
parison, data were provided for only one member of a household 
(where possible, randomly selected) who responded in October and 
November 1988. 

Computer-Assisted Self Interview 

One of the environments in which the electronic diary was used was 
the NIPO Telepanel. This panel consists of a sample of about 1,000 
households that were randomly drawn from an address directory 
(the same one that was used for PAPI). The NIPO has provided 
these households with a computer and modem, and with these facil
ities data are collected entirely automatically (9,21,22). 

The time use survey in the Telepanel had to be conducted within 
1 week in the 1988. One week in November was chosen because 
earlier research has shown that time use in the period between Octo
ber and November is closest to the annual average (23). At the end 
of October, all individual Telepanel members 12 years and older 
were asked whether they wanted to participate in the survey. To 
encourage them, a lottery with one prize was announced. Of the 
willing respondents, only one person per household was randomly 
selected. This person was asked to fill in the diary for three differ
ent days. A fixed scheme of assigning days to persons was used and 
respondents were given notice in advance of the days for which they 
had to report their activities. It was not a requirement that Telepanel 
respondents should fill in the electronic diary several times a day 
because during that time the computer would have to be switched 
on. Instead they were asked to fill in their diaries as soon as possi
ble after each given day. 

Computer-Assisted Telephone Interview 

The other environment in which the electronic diary was imple
mented was a centrally administered telephone survey conducted at 
the University of Amsterdam. Interviews were conducted 7 days a 
week during the afternoon and evening in October and November 
1988. The sampling source consisted of a telephone directory. 
Again one person per household aged 12 years or older was ran
domly selected to report his or her activities for 3 days. During the 
first call the respondents were asked about their previous day's 
activities and about their demographic characteristics. Afterwards, 
attempts were made to make appointments for interviews 2 and 
4 days later. If the respondent could not be contacted on these days, 
the interviewer tried to make appointments for 3 and 5 days later for 
the same diary day as before. If even this was impossible, another 
diary day was selected because it was felt that the recall period 
would otherwise become too long. 

These data clearly indicate that dissimilarities in the implemen
tation exist. Consequently, the registration process is not the only 
factor that differs between the procedures. To see if time use dif
ferences resulted from the registration method, some methodologi
cal issues had to be resolved. This is the topic of the next section. 

METHODOLOGY OF COMPARISON 

Before it is possible to concentrate on whether differences exist 
between the data collection procedures, two methodological issues 
need to be discussed briefly. The first one relates to the classifica
tion of the activities, and the second one relates to weighting. 
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To allow a comparison between the data collection systems, the 
lists of activities had to be brought into line with each other. To do 
this, the classification schemes were judged by four different 
researchers; after discussion they came up with one scheme of 
75 activities for the different surveys. For the evaluation of the time 
use estimates, the activities were finally grouped together even 
more (29 activities) because many activities were performed infre
quently, which hampered the comparison. 

A second important issue is that it is advisable to correct the data 
for differences between the procedures with respect to implementa
tion aspects. The most important aspects are assumed to be non
response and the sampling source. The coverage of the population 
may be selective and incomplete and may therefore bias the results. 
To examine whether the coverage is selective or incomplete, 
researchers often search for variables that are expected to be 
strongly related to the topic of the research and for which the pop
ulation distribution as well as the distribution for the respondents is 
known. If differences between the sample and population distribu
tions are found, the sample results can be weighted to adjust for a 
possible bias. In this study, weighting was done in such a way that 
all days of the week were equally covered in the three samples and 
that the distribution of certain demographic variables ·that are 
assumed to be strongly related to time use, perceived position on the 
labor market, age, gender, marital status, and urbanization in the 
samples corresponded to population estimates. By applying this 
weighting, it was possible to examine more clearly the influence of 
the data collection procedure on the time use. 

RESULTS 

The most salient finding of this research is that none of the proce
dures emerges as the outright winner in all respects:PAPI achieves 
the highest amount of detail (in PAPI, respondents reported on aver
age 22 primary activities, in CASI 20, and in CATI 19), but in CATI 
there are fewer mistakes (in CA TI 2 percent of the total time con
sisted of mistakes; in CASI, 4 percent; and in PAPI, 7 percent) and 
a higher response (CA TI, 52 percent; PAPI, 45 percent; and CASI, 
38 percent). The cost in terms of time is favorable in CASI (CASI, 
120 h; CA TI, I ,240 hr; and PAPI, I ,460 h), whereas social desir-

TABLE 1 Time Use Statistics for Travel 

Time Use Statistics d 

Data Collection Procedure 

PAPI (n=954) 

CASI (n=I 785) 

CATI (n=I208) 

Trip Diary Survey (n=21300)e 

( ) Unweighted Standard Error(.) Unknown Standard Error 
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ability has less of an effect in PAPI and CASI. For more details about 
these results we the reader is referred to other work by Kalfs (24). 

Further, it was found that each of the data collection procedures 
gives more valid results than the others for certain specific kinds of 
activity. The registration of routine activities is best in PAPI 
because in this procedure the recall period is short and respondents 
have the time to think about their time use thoroughly and are con
fronted with them in a list. Activities that may lead to a lack of 
understanding on the part of the respondent (for instance travel, 
child care, and social contacts) are best reported in CA TI, because 
a well-trained interviewer is in a position to significantly improve 
data quality by posing additional questions and clearing up misun
derstandings. On the other hand, the interviewer can also have a 
negative effect on the validity because the respondent may try to 
create a positive impression of him or herself on the interviewer by 
reporting socially desirable activities. This was found to be true for 
the time people spent watching television: in CA TI a tendency was 
found among more highly educated respondents to answer in a 
socially desirable way, leading them to underestimate the time they 
spent on this activity. To get an idea about the impact of the differ
ences, one activity, travel, will be discussed in detail. 

One of the activities for which the highest effect of the data 
collection procedure was found on time use was travel. In Table 1, 
the deviations between the data collection systems, in terms of the 
time use statistics that are normally used (mean total time, mean 
participation rate, and mean participation time), are relatively large. 

In Table 1 time use statistics were also included from another 
study, the "trip diary survey" for 1988, to validate the results of the 
various data collection procedures. In the trip diary survey (TDS), a 
one-day PAPI diary is used in which respondents have to fill in all 
the trips they make during a designated day. Comparison of the 
results of TDS with the outcomes of the time use surveys reveals 
that the participation rate in CASI and CA TI corresponds to the rate 
in TDS. In PAPI the participation rate is much lower. Examination 
of the participation time indicates that about equal estimates are 
found for TDS, PAPI, and CA TI, but the CASI estimate is much 
higher. 

The results suggest that the time use on travel is underreported in 
PAPI, given the lower participation rate and is overreported in 
CASI, given the higher participation time. The question then is: 

Mean 

Participation 

Ratea 

(%) 

57 <2> 

88 (l) 

91 (l) 

88 (.) 

Participation 

Timeb 

(Minutes) 

86 <4> 

107 (3) 

84 <2> 

80 (.) 

Total. 

Timec 

(Minutes) 

49 (3) 

94 (J) 

76 <2> 

70 (.) 

a Participation Rate = percentage participating per day for all respondents 

b Participation Time = time use in minutes per day for participating respondents 

c Total Time = time use in minutes per day for all respondents 

d It is possible that participation rate x participation time* total time due to rounding 

e CBS ( 1989). De rnobiliteit van de nederlandse bevolking. Centraal Bureau voor de Statistiek, Voorburg. 



How can we explain the lower participation rate in PAPI and the 
higher participation time in CASI? 

The lower estimate for the participation rate in the PAPI proce
dure is probably generated by the time interval and the lack of a 
check on travel. Because of the fixed interval of 15 min, travel of 
short duration was not reported in the PAPI diary, whereas these 
activities had to be reported in the electronic diary, which included 
a check on travel. It was thought that the lack of a check on travel 
would strongly influence the time use on travel concerning shop
ping and leisure (especially entertainment) because this kind of 
trip is often not viewed (and thus not reported) as trip making by 
respondents (6,25). 

The time use for travel seems to be overestimated in CASI 
because of the mistakes respondents made. A closer inspection of 
the data showed that some respondents in CASI had made mistakes 
with respect to shopping and leisure time trips (B. Bosch, unpub
lished data, 1991). Diaries were found in which only one trip was 
reported, when in fact three activities were expected: two trips
one from home to another location and vice versa-and the activity 
performed away from home. When this kind of mistake was made, 
the time use for the activity performed between two trips was added 
to the time use on travel. It is possible that more respondents have 
filled in the diary in this way than the ones who reported that such 
a mistake was made. 

These explanations for the deviations in the time use for travel in 
PAPI (time interval, omission of certain trips) and CASI (omission 
of certain activities performed between two trips) were examined 
further. The influence of the time interval was estimated on the basis 
of the total time in CASI and CATI for travel activities of short 
duration. The missing trips in PAPI were reconstructed in two ways. 
First, the activity performed was determined when a change in the 
activity's location took place. Second, the total time for travel was 
divided by its purpose on the basis of major clusters of activities 
(11 categories). The purpose of a trip was inferred from the activity 
at the origin or the destination of that trip (25;26). Besides this infor
mation, data were available in CASI and CA TI with respect to the 
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distance traveled; this information made it possible to examine 
whether the duration per distance unit traveled ( 1 km) differed 
between CASI and CA TI or, in other words, in CASI whether the 
time spent on the activity performed between two trips could have 
been added to the time use for travel. 

In the first place, an estimation was made of the total time 
involved in trips of short duration. Calculated in minutes, the total 
time involved in trips of short duration was only 3 to 4 min. This 
result illustrated that the time interval can explain only some of the 
large differences in the total time among the three procedures. 

More support was found for the idea that certain trips were not 
reported in the PAPI diary. The distributions of activities before or 
after a change in place (moving back to or away from the dwelling) 
indicated that, overall, in PAPI, travel was reported in only 36 per
cent of the activities. Activities that are realistic alternatives for travel 
(active leisure, such as walking or cycling for recreational purposes 
or walking the dog) consisted of 6 and 10 percent, respectively. 

If these estimates are taken together, it is found that in 52 percent 
of all changes in the activity's location trips were reported and in 
48 percent trips were not reported. This 48 percent mainly consisted 
of everyday needs (25 percent), visit/party, and similar social activ
ities (21 percent), other shopping (15 percent), and working time 
(11 percent). Thus, trips with respect to these latter activities were 
underreported in PAPI. Further evidence for this statem~nt is 
provided by the data in Table 2, in which the total time for travel is 
distinguished by the purpose of the trip. Moreover, if the CA TI esti
mates are taken as criteria, one can see that the time use for shop
ping and entertainment trips in particular are underestimated in 
PAPI. The trips related to these activities are also underestimated in 
CASI, but the differences between CASI and CATI are smaller. 

Looking now at CASI, a more striking result was found with 
respect to the category "traveling around." This activity concerns 
trips that are undertaken without a specific purpose of the trip. This 
estimate is much higher for CASI than for PAPI and CA TI. It sup
ports the idea that respondents in CASI tend to. forget to report the 
activity they performed between two travel activities. 

TABLE 2 Mean Total Travel Time for Specific Activities 

Mean Total Time PAPI CASI a CATI a 

(n=954) (n=1785) (n=1208) 

Activit~ Minutes 

Work 13 15 15 

Domestic activities 3 3 

Child care 1 

Shopping 5 7 13 

Personal needs 4 5 6 

Education 7 7 6 

Organisations 1 3 3 

Entertainment 8 12 16 

Active leisure 2 5 6 

Passive leisure 2 1 

Travelling around 6 29 5 

Totalb 49 87 75 

a The total times for CASI and CA TI are corrected for mistakes 

b Details may not add to totals due to rounding 
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TABLE3 Mean Duration for Travel Activities (min/km) 

Duration in Minutes CASI CATI 

Direction of Travel Mean Difference 

At home ~travel ~not at home 5.8 (0.3) 6.0 (0.2) -0.2 

CASI (n=l859), CATI (n=I685) 

Not at home ~travel ~not at home 6.1 (0.4) 5.5 (0.2) 0.6 

CASI (n=548), CATI (n=548) 

Not at home~ travel~ at home 5.5 (0.3) 6.1 (0.2) -0.6 

CASI (n=l873), CATI (n=l645) 

At home ~travel ~at home 38.0 c2.o) 16.5 (1.4) 21.5 

CASI (n=792), CATI (n=l57) 

( ) Unweighted Standard Error 

This possible effect was examined further by calculating the 
mean duration per kilometer for various situations in which travel 
was reported. The results are indicated in Table 3 and clearly 
support the existence of this effect. In the table, one can see that 
large deviations between the two procedures are found for only one 
category: at home --7 travel --7 at home. The mean duration per kilo
meter for this category in CASI is more than twice as high as the 
estimate in CATI. Thus, it appears that in this situation the time use 
for the activity performed between two travel activities is added to 
the time spent on travel. 

In general, Table 3 results show that in PAPI as well as in CASI, 
trips associated with shopping and entertainment are particularly 
underreported. Consequently, the time spent on activities for which 
the trips are missing is probably overestimated in PAPI. The situa
tion in CASI is different; despite underreporting of shopping and 
leisure time trips, the time use for travel is overestimated primarily 
because of the time spent on traveling around. Most of the time use 
for this latter activity consists of the time spent on shopping and 
entertainment trips, and the time actually spent on these activities. 
Therefore, if the total time for shopping and entertainment is added 
to the total time for travel, one would expect roughly equal results for 
PAPI and CASI. This is indeed the case, as one can see in Table 4; 
the overall estimate for PAPI is 168 min, and for CASI it is 169 min. 

In summary, it is concluded that the time spent on travel is under
reported in PAPI because of a lower participation rate. The over
reporting in CASI is because of a higher participation time. This 
under- and overreporting is mainly caused by the same factor: a 
problem in correctly classifying trips related to shopping and enter
tainment. In PAPI, respondents forgot to enter these kinds of trips 

in the diary. In CASI, however, trips associated with these activities 
were reported because there was a check on travel in the electronic 
diary, but at the same time the shopping and entertainment activi
ties were themselves omitted relatively frequently. The CATI inter
viewer was well trained to clear up misunderstandings with respect 
to these activities and therefore less-biased estimates were obtained. 

CONCLUSION 

In this paper, two forms of an electronic diary have been compared 
with the traditional PAPI. These diary forms are compared in terms 
of the validity of the time use statistics that are normally used, the 
unit response rate, and the time involved in conducting the survey. 
The results show that there is no single method that is best in all 
aspects. Each of the data collection procedures examined here 
reveals aspects for which better results are obtained if the results of 
the other procedures are compared. The same result was found with 
respect to the time spent on specific activities, which would suggest 
that one should use different methods if one is interested in the time 
use for all kinds of activities. However this use would be both 
expensive and impractical. Thus, the question remains: Which 
method should be chosen if one has to rely on only one method? 

Of course improvements in the questionnaire are still possible, 
particularly in the electronic diary. Given the large differences 
between the procedures with respect to the time involved in con
ducting the survey, which especially favors CASI, it is clearly 
worthwhile to put extra effort into improvements. To start with, 
sound training of the respondent, especially for problematic activi-

TABLE 4 Mean Total Time for Shopping, Entertainment, and Travel 

Mean Total Time PAPI (n=954) CASI (n=I 785) 

Activit}'. Minutes 

Shopping 36 (2) 15 (l) 

Entertainment 83 (4) 60 (3) 

Travel 49 <3> 94 (3) 

Total 168 (5) 169 (5) 

( ) Unweighted Standard Error 
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ties, can help every data collection method to provide better data. 
Besides this kind of assistance, it is also possible to improve the pre
cision of time use reporting in the electronic diary by implementing 
additional checks on activities and time reports. However, it is dif
ficult to see any way of avoiding bias because of social desirability. 
In general, therefore, if more effort were made in the design of the 
diary and if equivalent guidelines were applied to each diary, it 
would be possible to get data of comparable quality from PAPI and 
CASI, although some problems still remain in the case of CA TI. 

Although the analyses have touched on only three particular data 
collection procedures within one specific topic, and although they 
have been mostly concerned with aggregated measures, there is 
much more to be learned from data collection procedure compar
isons in which computers are used, especially given the technolog
ical advances being made nowadays. Therefore computer-assisted 
data collection is a topic to research more closely in the years to 
come. Travel behavior is another topic for future research. 
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Temporal Variations on Allocation of Time 

AJAY KUMAR AND DAVID LEVINSON 

A study of the allocation of time and trip making across time of day, day 
of week, and month of year, as well as over the past 40 years, revealed 
some interesting findings. People are working much more, shopping 
somewhat more on weekends, and staying at home Jess today than they 
did 40 years ago. Time spent in travel on each weekend day (Saturday 
or Sunday) exceeds that on any weekday, as it did 40 years ago. Time 
spent shopping on a typical day in the busiest month (December) is 
more than twice that in the least busy month (September). Monthly vari
ations in daily time in travel exceed 10 percent. The time-of-day pat
terns of shopping and other trips for workers and nonworkers are both 
rational: nonworkers peak in midday away from rush hour, whereas 
workers peak just after work, indicating trip chaining. 

Growing congestion and changing travel patterns in urban areas 
have forced transportation researchers to venture beyond the 
confines of the daily work trip. Although work trips have been the 
traditional focus in transportation planning and policy formulation, 
recent studies have shown that nonwork trips are a dominant com
ponent of daily trip making and are growing faster than work trips 
(1,2). The historic emphasis on work trips was justified by the fact 
that the temporal clustering of work trips resulted in peak-hour con
gestion, dictating most investment decisions. However, as the role 
of transportation planners moves from investment to management, 
it is worthwhile to reexamine this issue in the broader perspective 
of activity patterns. One purpose of this paper is to look at both work 
and nonwork activity patterns, across all 7 days of the week. 

Nonwork trips are tied to some basic and necessary human activ
ities, such as shopping, performing errands, and socializing. Previ
ous studies have related trip making and activity patterns to demo
graphics and socioeconomic conditions (3) and trip generation to 
variations in land use patterns and metropolitan size ( 4). However, 
these activity patterns vary even more significantly across some 
fundamental criteria: natural and cultural cycles reflected in the 
calendar and the clock. 

The study of human activity patterns has engaged tbe attention of 
researchers across disciplines. Recent developments by transporta
tion engineers and modelers include attempts to introduce the con
cepts of trip chaining, activity sequencing,and combined time of 
day and route choice into demand forecasting procedures (5-7). 
Although these models have focused on methods for simulation of 
activity patterns, less empirical work has analyzed their long-term 
stability and their placement in a broader economic context. 
Pioneering work quantifying the use of time has been conducted by 
Szalar, who compared these results internationally, and Robinson, 
who conducted and reported on the American portion of that study 
(8,9.) Meanwhile, sociologists have examined the impact of the 
increasing number of women in the labor force on the quality of life 

A. Kumar, Montgomery County Planning Department, 8787 Georgia 
A venue, Silver Spring, Md. 20910. D. M. Levinson, Department of Trans
portation Studies, Department of Civil Engineering, Room 108, McLaugh
lin Hall, University of California at Berkeley, Berkeley, Calif. 94 720. 

and changing roles of time at work and leisure (10-12); planners 
have studied the allocation of time by activity and location for 
demographic and socioeconomic classes (13-16); and economists 
have developed a theory of the allocation of time wherein individ
uals or households combine time and market goods to produce 
"commodities" (J 7). 

This study, part of a larger investigation into activity patterns, 
evaluates empirically the influence of temporal variations on the 
allocation of time. Much attention has been paid to trends in activ
ity patterns, that is, the aspects of behavior that increase or decrease 
as a linear function of time. Less has been placed on the cyclical 
aspects of time-recurring patterns over the course of days, weeks, 
and years. Although most previous studies of travel behavior and 
time usage are atemporal, assuming an average day, this study, 
using the 1990 Nationwide Personal Transportation Survey, inves
tigates variations in activity patterns by day of the week and month 
of the year, as well as the more traditional time of day. Information 
on weekend travel is sparse, and this analysis partially fills that gap. 
Answers to a number of questions are sought: What is the difference 
in activity patterns on Saturday versus Sunday? How different are 
the weekend activity patterns from an average weekday? Is there an 
average weekday? Does weekend travel exhibit the same diurnal 
relationship as weekday travel? How different are shopping trips 
from other nonwork trips? 

Next in this paper is a discussion of the data base used in the 
analysis. This is followed by a review of long-term trends in the use 
of time, comparing studies performed in 1954 and 1966 and the 
1990 Nationwide Personal Transportation Survey (NPTS) used 
here. Cyclical patterns are reviewed, and several hypotheses are 
tested in a comparison of month-of-year and day-of-week varia
tions, respectively. Last is a discussion of time-of-day variations 
across the weekdays, Saturdays, and Sundays. The paper concludes 
with a discussion of the relevance of considering nonwork as well 
as work travel and considering the temporal variations in human 
activity patterns. 

DATA 

The original data base used in this analysis comes from the 
1990-1991 NPTS. The NPTS was conducted as a telephone inter
view survey by the Research Triangle Institute, sponsored by the 
U.S. Department of Transportation (J 8). The survey collected data 
on household demographics, income, vehicle availability, all trips 
made on the survey day, long trips made over a 2-week period, and 
traffic accidents within the past 5 years. Characteristics of trips 
include departure time, distance, and duration of the trip, trip pur
pose and mode, day of the week, and month of the year. The survey 
was conducted between March 1990 and March 1991 and consisted 
of 21,817 household interviews and 4 7 ,499 persons making almost 
150,000 trips. Because each interview consists of a single day, it is 
important to remember that the comparisons in this study across day 



Kumar and Levinson 

of the week ana month of the year do not come from the same indi
vidual. Conclusions must therefore be treated with caution. Further 
research with panel data will be able to compare the same individual 
across these time slices, offering another perspective on this issue. 

First, it may be useful to define travel, activities, and their inter
relationship. Activities are of two classes: location-specific activi
ties and travel. Location-specific activities are defined on the basis 
of reported destination activity (purpose) from the travel survey. 
Travel is the activity that links other spatially separated location
specific activities. The core of this study comes from the 1990 
NPTS, which like most travel surveys, provided respondents with 
a choice of answering where they went next (trip purpose), how 
they got there (mode), and how long it took (trip duration). These 
location-specific activities are consolidated into the following 
categories: home, work, shop, and other. The time spent traveling 
is accumulated into the travel activity category. 

Only two pieces of time information were provided: the time of 
departure for a trip and the travel time for that trip. To create activ
ity data, this study takes the NPTS "travel day" data base and, by 
looking ahead to the departure time of the next trip, determines the 
duration of the stop at the destination. A number of individuals did 
not report the time of arrival or departure for one trip during the day. 
These individuals were excluded as their daily time did not add up 
to 1,440 min. Only individuals who ended the day at home were 
considered in this study, and time at home was computed on the 
basis of final arrival time at home and initial departure at the begin
ning of the day. This is added to any stops at home in the middle of 
the day. For the graphs and tables presented in this paper, only 
adults aged 18 to 65 were considered. The elderly and children 
clearly have different diurnal, weekly, and seasonal time allocation 
patterns, and these may be evaluated in further research. 

ANALYSIS OF LONG-TERM TRENDS 

Table 1 summarizes some long-term trends in activity patterns in 
the United States. These data are illustrative but cannot be com
pared in rigorous detail because of different methodologies used in 
the studies as well as limitations on the reported data. The 1954 
results are reported by de Grazia (11) from an unpublished study, A 
Nationwide Study of Living Habits, conducted for the Mutual 
Broadcasting System by J.A. Ward. The J.A. Ward study used quar
ter-hour diaries during March and April 1954. The 1954 sample was 
large; 7,000 households and 20,000 individuals. The diaries were 
collected from 6 a.m. to 11 p.m., the remaining time was assumed 
to be spent at home. 

The 1966 results are drawn from tables reported by Szalai and 
Robinson (8,9) in the mon!Jmental 1966 international use of time 
study. The sample was much smaller, over 2,000 adults, primarily 
as a day after diary. The data from this study were cross-classified 
in numerous ways and tables. Some of the tables, such as for travel, 
shop, and work were directly comparable with those from the other 
two studies. However, the results for home and other had to be 
inferred from several tables and adjusted to get a best estimate. This 
is because a number of activities that could occur at either location 
(home, other) were reported by type of activity (for instance, tele
vision watching or socializing with friends) rather than location. 

Despite the differences in methods, some clear trends emerge. In 
1990, adult Americans are working more on weekdays and less on 
Saturday than in 1954. The weekday rise is principally associated 
with the larger number of women working outside the home. 
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TABLE I Long-Term Trends in Use of Time 
Time Spent in Primary Activities by Day of Week 

(in hours) 

Average 
Activity Year Weekday Saturday &may 

fbre 1954 17.0 17.8 19.2 
1965/66 15.8 18.0 19.1 
1990/91 15.7 18.1 18.7 

Work 1954 4.6 2.6 0.8 
1965/66 5.0 1.8 0.8 
1990/91 5.4 1.8 1.0 

1954 0.3 0.6 0.1 
1965/66 0.3 0.7 0.3 
1990/91 0.3 0.8 0.4 

Other 1954. 1.2 2.0 2.7 
1965/66 1.5 2.1 2.7 
1990/91 1.5 2.2 2.8 

Travel 1954 1.0 1.1 1.2 
1965/66 1.4 1.4 1.1 
1990/91 1.0 1.1 1. 1 

Total 1954 24.0 24.0 24.0 
1965/66 24.0 24.0 "24.0 
1990/91 24.0 24.0 24.0 

Note: sources 1954 data- Sebastian de Grazia, J.A. Ward 
1966 data - Robinson, Szalai 
1 990 data - Kumar and Levinson, 1 990 NPTS 

see text for discussion 

Although Schor has argued that time at work has risen for men as 
well, this may not show up in a travel or activity survey but rather 
in wage data (12). The Saturday drop reflects the widespread adop
tion of the five-day work week since 1954. The amount of time 
spent shopping has held remarkably steady, although even small 
time differences in this category represent larger-percentage differ
ences. Americans would appear to be shopping more on weekends 
now than before. This is partially a result of Sunday shopping, 
which was rare in 1954 because of blue laws, but this also seems to 
be true on Saturdays. 

The amount of time in travel is almost identical between 1954 
and 1990, although the 1966 study shows 10 to 30 percent higher 
weekend and 40 percent higher weekday travel time. To what extent 
this is real and to what extent it is a result of survey methods is 
unclear. However another study by the authors (3) shows that time 
in travel in metropolitan Washington has increased between 1968 
and 1988 (from 1.3 to 1. 7 hr for men and from 1.2 to 1.5 hr for 
women on weekdays) caused by the rise in nonwork trips and the 
increase in workers. This increased time is not, as has often been 
supposed, caused by a longer duration of work trips. The most 
important information for transportation analysis, the amount of 
time spent traveling, is ironically the least clear. 

The two most curious categories are home and other. Given the 
increase in participation of women in the labor force, time spent at 
home from 1954 to 1990 should have been expected to decrease on 
weekdays. This is supported by the data. However several interact
ing factors made the issue more complicated. Saturday work has 
decreased, which makes more time available on Saturdays (for 
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home and shopping), and the opening of stores (and other activity 
locations) on Sunday enables people to get out on Sunday. 

ANALYSIS OF CYCLICAL PATTERNS 

The analysis of cyclical variations on the allocation of time in 1990 
America takes several forms: time of day, day of week, and month 
of year. Five activity patterns are identified in this paper: home, 
working, shopping, other, and travel. "Other" activities are defined 
to include trips for the following: family or personal business, 
school or church, doctor/dentist, visiting friends or relatives, 
social/recreational, and any otherwise nonspecified activity (not 
home, working, shopping, or vacation). The other trips were 
grouped to maintain sample size significance and simplify the 
analysis. Time spent at each of the activities and diurnal variations, 
average frequency, and duration of activities are computed for the 
different time slices: month of the year, day of the week, and time 
of day. These are addressed in turn. 

The information is presented in graphs that show the mean daily 
duration of each activity. Behind each graph lies a table, not pre
sented for space reasons but available from the authors on request, 
which contains matrixes of the t-statistic resulting from a difference 
of means tests for month verses month and for day verses day. 
In this way, the statistical significance of differences of points on 
the graph could be ascertained. Monday can be compared with 
Tuesday, and March can be compared with April, and comparisons 
between any given day and the average can also be made. The 
statistical significance of the difference of means that are reported 
were developed from those tables with a report of significance indi
cating that the difference is significant at the 90 percent confidence 
level or better on a two-tailed t-test. 

Hypotheses 

The NPTS data base offers innumerable possibilities for analysis. 
Keeping the focus on temporal variations, several hypotheses are 
explicitly evaluated in this study. First, it is hypothesized that there 
is a tie between human activity patterns and seasonal cycles, which 
will be indicated by differences in average activity durations in win
ter and summer, spring and fall. These differences are expected to 
occur in each of the activities, with different activity-specific 
patterns across the months of the year. 

The second hypothesis is that Saturday and Sunday behavior are 
expected to differ from each other and from weekdays, but weekdays 
are expected to be similar to each other. The difference in activity 
patterns between Saturday and Sunday results from a variety of obvi
ous religious and cultural reasons. This is tested across activities. 

A third hypothesis concerns the temporal distribution of regional 
and neighborhood shopping: longer shopping trips to stores farther 
away will occur on weekends. A similar pattern is also expected to 
emerge for other trips, which should be longer on the less
constrained weekends. 

The last set of hypotheses concerns time of day: that on week
days, workers will tend to perform shopping and other activities on 
the way home from work, whereas nonworkers will tend to perform 
shopping and other trips outside of the peak commuting hours. This 
results from a desire to avoid congestion during peak periods on the 
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part of non workers and to minimize travel time on the part of work
ers by combining nonwork trips with the work trip. In short, indi
viduals are assumed to make boundedly rational decisions on the 
allocation of time that produces this scheduling behavior (3). 

Activity Duration by Month of Year 

Figures l and 2 display average daily time distribution by month 
and activity. These graphs indicate seasonal variations in the time 
spent at various activities. It is hypothesized that there is a link 
between human activity patterns and natural (and cultural) cycles, 
which will be reflected by differences in activity durations. Future 
research may compare activity patterns and geography to get an 
indication of the relative importance of climate compared with other 
seasonal/cultural patterns. 

Several statistically significant results are found. Time at home 
peaks around the December holidays ( 1,015 min) and reaches a 
nadir in April (960 min). Many of the differences between months 
are significant, and although some pairwise comparisons of months 
do not appear significant, the trends seem to be. For instance, for 
time at home, January does not significantly differ from February, 
and February does not significantly differ from March. But January 
differs more from March for time spent at home (than February) and 
is significantly different from April, all suggesting a real trend. 

Time at work (per person, not per worker) is the opposite from 
time at home, peaking in April (275 min) and with a low in Decem
ber (220 min). Moreover, time at work has a secondary valley 
during July because of summer vacation (250 min). The differences 
here are not as significant; only December is significantly different 
from the average month. 

Time spent shopping per day peaks in December (34 min), from 
a September low (15 min). December, January, May, and Septem
ber are significantly different from the average month, and the 
months with a great deal of shopping are different from those with 
below-average shopping. 

Time at other is flat, ranging from 100 min in winter to 120 min 
in spring and summer. May and October are significantly different 
from the average months, and again, a number of pairwise compar
isons are also significantly different. 

Travel consumes 62 min/day in most months but in summer 
consumes 70 min. May, July, and August differ from the average 
month, and the winter months are different from the summer months. 

Activity Duration by Day of Week 

Figures 3 and 4 display time spent at each of the five activities 
(home, work, shop, other, and travel) by day of week. For each day, 
the total time of the five activities adds up to 1,440 min. The hypoth
esis is that weekday activity patterns are similar to each other but 
differ from weekends and that Saturday differs from Sunday. 

As expected, time spent at each of the activities tends to be some
what the same across the work week, although it differs over the 
weekend. However, even during the work week, some variations 
can be observed: 

Time at home on Mondays is greater than on the other four week
days, perhaps because of recovery from the weekend or the "3-day 
weekend" (associated with official holidays and personal vacation), 
whereas time at work is slightly less on Mondays. This difference 
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is statistically significant. However, the time at home on the other 
weekdays is not statistically different. Time at home is greatest on 
Sundays ( 1, 125 min) followed by Saturdays (l ,080 min). The week
ends are statistically different from the weekdays and from each 
other, validating the hypothesis. 

Also, time at work on Mondays is significantly different from 
that on other weekdays and, as expected, the weekends do differ 
from the weekdays and each other. However, Tuesday through 
Friday are similar. 

Time spent shopping rises from Monday to Friday, with a small 
peak on Thursday (19 min). Shopping peaks on Saturday (45 min), 
followed by Sunday (25 min). Although adjacent weekdays are not 
different from each other (the difference between Monday and 
Tuesday or between Tuesday and Wednesday is not significant), the 
difference between nonadjacent weekdays does tend to be signifi
cant, again suggesting a trend over the week. The weekend days are 
significantly different from each other and weekdays. 

Time at other activities is fairly flat over the weekdays, with a dip 
on Thursdays (90 min). Time at other activities peaks on Sundays 
(165 min) followed by Saturdays (135 min). The weekdays are not 
significantly different from each other, although the weekend days 
are different from each other and weekdays. 

Time in travel rises slightly from Monday to Wednesday but 
more sharply from Wednesday to Friday. Time in travel on the 
weekends is greater than on weekdays, with Saturday being the 
highest at 68 min. However, weekdays are not significantly differ
ent from each other, and Saturday is not significantly different from 
Sunday, but the weekends are significantly higher than weekdays. 

1.2 

123 

Trip Making by Day of Week 

Figures 5 through 7 show trip frequency, duration, and distance by 
day of week. These figures are classified by worker and non worker 
and come out as might be expected from the earlier discussion. 

Figure 5 shows trip frequency. Work trips for workers basically 
are flat across weekdays, as are trips for shopping. Work trips are 
more frequent on weekdays than on weekends, and higher on Sat
urdays than on Sundays. Other trips are fairly consistent across 
weekdays until Friday, when there is a rise for both workers and 
nonworkers. Weekends have more nonwork trips than weekdays. 
However, a higher share of other and shopping trips for workers 
occurs on weekends than on weekdays compared with nonworkers, 
indicating a displacement. Again, nonworkers can make these trips 
on weekdays in midday, which is relatively uncongested: whereas 
workers must perform these activities on weekends. 

Trip duration and distance by day of week, shown in Figures 6 
and 7, come out as might be expected, in part because work trips are 
longest. Weekend work trips are shorter than weekday trips, likely 
because of different types of jobs (weekend employment is more 
often part time, retail jobs). Somewhat surprisingly, the work trip 
duration variances within the week show statistical significance. 
Among those who work, Thursday and Friday trips take longer than 
Monday or Wednesday trips. The Monday verses Friday difference 
may be explainable by congestion (there are fewer trips on Monday 
than other days, and many 3-day weekends begin during Friday 
evening rush hour). Alternatively, some of the difference may be 
because of trip chaining, which might add to reported times, but for 
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some activities (getting gas, stopping at a convenience retail) may 
not be reported 100 percent of the time. 

Interestingly, social/recreational trips are longer than personal 
business, which are longer than shopping trips, indicating that not 
all nonwork trips share the same characteristics. Other trips on 
weekends are longer than on weekdays, but this is hardly true for 
shopping trips. Personal business is significantly longer on Friday, 
Saturday, and Sunday than the rest of the week, and social
recreational trips are longest on the weekend and shortest on Monday. 

It was anticipated that regional shopping (mall-going, shopping 
for durable goods, etc.) would necessitate longer trips than neigh
borhood shopping (groceries); they are somewhat longer in distance 
(6.5 versus 5.5 mi) and somewhat shorter in duration (Friday and 
Saturday have durations of 13 min, whereas other days average 
12 min), indicating higher speeds because of both less congestion 
on weekends and the use of different, higher-speed roads for 
regional shopping as opposed to local shopping. The differences 
between Friday and Saturday and the rest of the week are statisti
cally significant. 

Another noteworthy point is that although the trip frequency for 
other trips exceeds that of the non-other categories, even for work
ers, the average other trip (either personal business or social recre
ational) is shorter than the average work trip. So their impact on 
total travel (e.g., vehicle-miles traveled) is similar. Fortunately, they 
do have different peaking patterns, as shown in the next section, and 
use different roadways. 
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Time-of-Day Distribution 

The time-of-day distribution of trips for workers and nonworkers 
for the average weekday, Saturday, and Sunday, classified for shop 
and other trip purposes was analyzed. The time-of-day distribution 
for work trips on weekdays is well documented and has remained 
largely stable over the past few decades, with some peak spreading 
(3). Figures 8 and 9 indicate the time-of-day distributions for shop
ping and other trips, respectively. 

Given the obligatory and regular nature of work trips, it is 
expected that workers and nonworkers will have somewhat differ
ent behavior. The hypothesis is that, on weekdays, workers will tend 
to perform shopping and other activities after work, often on the 
way home, to minimize travel through trip chaining; nonworkers, 
also to achieve travel economies, will tend to perform weekday 
shopping and other trips outside of the peak commuting hours. In 
addition, for a variety of religious and cultural reasons, Saturday 
and Sunday behavior is expected to differ from each other and from 
that on weekdays. Probably because of the need to rise early for 
work on Monday, as well the closing of shops, Sunday "ends" 
for most people earlier than Saturday. 

Several results are found from inspection o~the graphs. On week
days, for workers, shopping trips peak after the close of work, 
whereas other trips have two peaks: at lunch and after the close. of 
work. On weekdays, for nonworkers, shopping trips peak before 
midday and decline thereafter, and other trips peak after midday 
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FIGURE 8 Time-of-day distribution for shopping trips. 
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(3:00 p.m.). Saturday shopping patterns are similar to nonworkers' 
weekday patterns, although Saturday, like a typical workday, has 
two peaks for other activities, at noon and 6:00 p.m. People shop 
earlier on Saturday than on Sunday, probably because of Sunday 
church-going, as evidenced by other activities (which include school 
and church) being conducted earlier on Sunday than Saturday. 

CONCLUSIONS 

The prime mover in the rise in both work and nonwork trip making 
over the past few decades has been the growth in women's partici
pation in the labor force. This rise has directly increased the number 
of workers and thus work trips. It also resulted in the increase in per 
capita (if not household) incomes while reducing available time and 
thereby permitted the substitution of household commodities from 
outside the home (day care for at-home child rearing, eating out for 
home-cooked meals), which leads to more non work trips per person. 

This analysis brings out some interesting results. People are 
working much more, shopping somewhat more on weekends, and 
staying at home -less today than they did 40 years ago. Time spent 
in travel on each weekend day (Saturday or Sunday) exceeds that 
on any weekday, as it did 40 years ago. This finding underscores the 
need to focus greater attention on weekend travel. Time spent shop
ping on a typical day in the busiest month (December) is more than 
twice that in the least busy month (September). Monthly variations 
in daily time in travel exceed IO percent. The time-of-day patterns 

of shopping and other trips for workers and nonworkers both are a 
result of rational decision-making processes: nonworkers peak in 
midday away from rush hour, whereas workers peak just after work, 
indicating trip chaining. 

Several factors suggest that, in the future, nonwork activities will 
become relatively more important. First, advances in telecommuni
cation should enable more work at home and thus free some time 
formerly spent commuti-ng for nonwork trips. Second, the large 
increase in the number of workers in the labor market caused by 
women joining the workforce is ending. The share of the labor force 
held by men and women is equalizing. One factor that is certainly 
related to travel demand is income, but over the past two decades 
income growth has slowed (3). If this is in part because of the rapid 
rise in women's participation in the labor force (and a relatively 
higher labor supply), this trend of sluggish income growth may end 
as labor becomes scarcer and more costly. These higher incomes 
may result in nonwork travel and changes in activity patterns. 

Thus an understanding in the patterns of non work activity should 
become even more important in coming years. This is pertinent with 
the growing concern about developing strategies for traffic mitiga
tion and environmental control, which focuses almost entirely on 
work trips. Some of the findings of this study may be particularly 
relevant for effective travel demand management programs as well 
as monitoring environmental consequences. Most air pollution emis
sions analyses derived from traffic forecasting models assume the 
"average" day. But as can be seen from these figures, not all week
days are created equal, weekdays differ from weekends, and travel 
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patterns vary seasonally. As weather patterns also vary seasonally, 
climate-specific, as well as congestion-inspired, demand programs 
may be targeted to account for these variations. In addition, dynamic 
travel simulation models, which estimate changes over time, should 
incorporate variations associated with these cycles. 

In brief, this· study shows empirical relationships between activ
ity patterns and trip making and natural and cultural cycles (time of 
day, day of week, and month of year). Although many causes can 
only be speculated about, the results are predictable. Further analy
sis is required to tie down the causes of many of these variations and 
determine how the same factors influence different individuals. This 
research should focus on the interaction of temporal, spatial, socio
economic, and demographic characteristics of individuals in 
consuming various amounts of activities. 
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Sample Selection Bias with Multiple 
Selection Rules: Application with 
Residential Relocation, Attrition, and 
Activity Participation in Puget Sound 
Transportation Panel 

JIN-HYUK CHUNG AND KONSTADINOS G. GOULIAS 

Two sources of sample selection bias emerging simultaneously from 
panel attrition and residential relocation and their effect on activity par
ticipation are examined. The data used were from two time points 
(Wave 1in1989 and Wave 2 in 1990) of the Puget Sound Transporta
tion Panel. Data regarding relocation decisions, taking place between 
Wave 1 and Wave"2, are available for the households that participated 
in both waves (participants) and are not available for the households that 
participated in the first wave only (dropouts). Double selection was 
associated with the possible simultaneous or sequential decision process 
underlying participation in the survey and household residential reloca
tion. The method used is based on a bivariate probit model that accounts 
for selectivity. The method emerges from the unknown relocation sta
tus of the dropouts in Wave 2. Subsequent creation of correction terms, 
needed to account for the lack of data on dropout households' activity 
participation in Wave 2, uses the probit model. The method, called the 
Tunali method, is a two-step procedure that follows the usual Heckman 
method. The models estimated, that is, the bivariate probit model of 
double-selection and activity participation linear regressions corrected 
and uncorrected for selection, are provided. 

Dynamic analysis of travel behavior is greatly facilitated when 
panel survey data-information from repeated observations of the 
same individuals over time-are available. A common problem to 
all panels, however, is the potential selectivity bias emerging from 
attrition or refusal to participate in a subsequent time point of the 
survey. Ordinary least-squares (OLS) regression coefficient esti
mates are inconsistent if attrition occurs in a systematic way, and it 
is not accounted for in estimation. Analogously, selectivity bias 
may also emerge from other sources. For example, nonrandom res
idential relocation (or, more generally, migration) during the panel 
survey may also produce similar biases. In addition, attrition and 
residential relocation decision making may also be related. For 
example, relocating residents may be more likely to refuse partici
pation in the panel in subsequent waves. A method is needed to 
remove selectivity bias in which attrition and residential relocation 
are considered simultaneously. This would allow researchers to test 
hypotheses about the relationship between attrition and relocation, 
derive sample weights that can be used for subsequent waves of a 
panel, and provide for a complete correction method for regression 
models that suffer from selectivity biases. 

The most common selectivity bias correction method, used in 
transportation modeling, takes the form of an equation that repre
sents the selection process with a discrete dependent variable (e.g., 
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participation or nonparticipation in a survey). Another equation rep
resents the outcome of some decision-making process (e.g., number 
of household trips or number of cars owned by a household). This 
is the equation for which consistent estimates are needed. The usual 
technique to account for selectivity bias has been to create "correc
tion" terms used to augment the target regression equation and 
"eliminate" the selectivity bias as if it were a specification error. 
This method treats selectivity as a specification error and is·named 
the Heckman correction method (J,2). The method has been used 
by Mannering (3), Kitamura anq Bovy ( 4), Hensher et al. (5), and 
Monzon et al. (6). In this paper this method is called the single
selection model because it includes only one source of selectivity. 
When the sources of selectivity are several, similar methods can be 
devised and multiple correction terms can be used to eliminate the 
bias. These methods, however, are more complex than the single
selection method. Their complexity increases exponentially when 
relationships exist between the selectivity sources and when por
tions of the "selected" sample are unobserved (7). 

In this paper two sources of selectivity are considered: panel attri
tion and residential relocation. Their effect on activity participation 
is also examined. The data used are from the first two time points 
(Wave 1 in 1989 and Wave 2 in 1990) of the Puget Sound Trans
portation Panel [PSTP, described by Murakami and Watterson, 
(82)]. Data about relocation decisions, taking place between Wave 
I and Wave 2, are available for the households that participated in 
both waves (participants) and are not available for the households 
that participated in the first wave only (dropouts). This precludes the 
use of the methods devised by Kitamura et al. (9) and may be the 
source of "double selection," as a result of the possible simultane
ous or sequential decision process underlying participation in the 
survey and residential relocation. The method, based on a bivariate 
probit model, accounts for selectivity caused by the unknown relo
cation status of the dropouts. The lack of data on activity participa
tion for the panel dropouts is another source of selectivity. The 
method creates two correction terms to be used in the Wave 2 activ
ity participation equations. 

First the paper presents a more general model of double selection. 
Then, the selectivity model is described with a few estimation 
issues. It then provides a short description of the data .analyzed. 
Then, estimation results for the bivariate probit model of attrition 
and residential relocation and the augmented regressions (with the 
two correction terms) of activity participation are provided. A 
summary and conclusion are offered last. 
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MODEL 

The general model of double selectivity, of which the model used 
in this paper is a particular case, is formulated as follows. Each 
household in the sample is characterized by two discrete-outcome 
decisions, to participate in the Wave 2 of the panel and to change 
the residential location between Wave 1 and Wave 2. A third deci
sion is characterized by a "continuous" outcome, that is, frequency 
of activity participation in Wave 2. Using the dichotomous vari
ables, Yi and Y2, to represent the two discrete outcome decisions and 
the continuous variable Y3 to represent the continuous outcome, it 
is possible to write the two selection "rules" in terms of explanatory 
variables such as 

Yf; Ii= f3[Xli +Eli 

yli = 1 if Yf; > 0 

if n :5 o (1) 

and 

if Yf; > 0 

Yr; =O if n :5 o (2) 

The third equation describing the continuous dependent variable 
is as follows: 

where 

Xk; = vectors of explanatory variables (k = 1,2,3), 
cr3 = unknown scale parameter, and 

(3a) 

f3k = unknown regression coefficient vectors to be estimated 
with the elements of the variance-covariance matrix of (Ei;, 
E2;, E3;) reported in Equation 4: 

Frequencies 

Yi 0 

0 N, 

I N3 

Probabilities 

Y, 0 

0 -f31X1-f32X2 

BN._{3 1Xt> {32X2, p) = J J f ( E 1E 2) de 1dE 2 
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1 oo -f32X2 
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-f31X1 -oo 

Y2 

[

1 

I= p 
Pu 
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Pu ] Pn 
1 

(4) 

Equations 1 through 4 describe the structure of the model under 
consideration. The household observations contain information on 
Yi;, Y2;, Y3;, and Xi;, X2;, X3i. Yf; and YT; can be interpreted as the 
propensity of the household to relocate and to participate in the sec
ond wave of the panel survey, respectively. Considering the two 
discrete outcome variables, described by Equations 1 and 2, there 
are four possible joint outcomes. In Figure 1 this can be indicated 
by a four-cell table containing the frequency of the number of 
households in each combination of outcomes. Assuming that the 
assumptions E.i;, E2;, E3; are trivariate normally distributed with 0 
mean and covariance given by Equation 4, and error terms inde
pendent across households and the explanatory variables, then it is 
possible to write the joint cell probabilities reported in the second 
part of Figure 1. 

The probability density, associated with each cell, of Y3;, can be. 
written as a function of the cell probability and the trivariate normal 
density of the E's. These components in turn can be used to derive 
a likelihood function for the entire system of equations and then use 
it for estimation via maximum likelihood. A problem arises, how
ever, when some cells in Figure 1 are not observed. 

In Figure l the data present four possible distinct regimes defined 
by the combination in outcomes depicted by the variables Y1 and Y2• 

[There will be four pairs of possible joint outcomes for Yi and Y2• 

(0,0), (0, 1),(1,0), and (1, 1 ).] Letting [Yi X Y2] be the joint outcome 
of the two variables in Figure 1, the expectation of Equation 3a can 
be written as 

(5) 

In Figure 1 there are four distinct subsamples. One equation of 
the type described in Equation 5 applies to each. However, panel 
attrition and residential relocation are characterized by the lack of 
information on residential relocation of households that dropped out 
of the panel. In terms of Figure 1, there are only three distinct cells: 

1 

N2 

N4 

Y2 

I 

-f31X1 00 

BN._ -f31X1, f32Xz, - P) = J J f(E1E2)de1dE2 
-oo -{3zXz 

00 00 

BN._ -f31X1, -f32Xz, P) = J J f(E1Ez)de 1dE.z 
-f31X1-f32Xz 

FIGURE 1 Four discrete outcomes and associated probabilities. 
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1. Participants who change residential location (movers) and 
took part in both panel waves (participants), 

2. Participants who did not change their residential location 
(stayers) and took part in both panel waves, and 

3. Participants in Wave 1 only (dropouts) of unknown residen
tial relocation choice. 

It is clear then, that observation of residential status is conditional 
on panel attrition (herein called incomplete information). In terms 
of Figure 1 this is equivalent to "collapsing" two cells into one. For 
these cells instead of a bivariate normal cell probability one obtains 
a univariate normal probability (e.g., corresponding to the proba
bility of panel attrition). Estimation of Equations 1 and 2 also can 
be performed using a log likelihood function that is analogous to the 
usual bivariate probit likelihood function. 

Consider Y1 representing residential relocation status (taking the 
value of 1 if the household did not move and 0 otherwise) and Y2 

representing panel participation (taking the value of 0 if the house
hold is a dropout and 1 otherwise). The cells with incomplete infor
mation are (Y1 = 0, Y2 = 0) and (Y1 = 1, Y2 = 0). The sample size 
of each distinct cell is (N1 + N3) for the dropouts, N2 for participant
movers, and N4 for participant-stayers. The log likelihood function 
associated with Equations 1 and 2 is as follows: 

N4 N? 

L* = L In BN [f31'X1;, f3 2 'X2;, p] +I ln BN [()!Xu, - f3~X2;,- p] 
i=I i=I 

N1+N3 

+ L ln<l>[-f3~X2;] 
i=I 

where BN is the bivariate normal standard distribution and <I> is the 
univariate normal standard distribution (this is the effect of "col
lapsing" two cells because of a lack of residential relocation data on 
the dropouts). This function can be used to estimate the regression 
coefficients in Equations 1 and 2 and the correlation coefficient 
between their two error terms (p). One can use either maximum 
likelihood or any other method as in work by Amemiya (JO). A 
pseudo t-test associated with p can be used to verify that a bivariate 
probit model is a more appropriate formulation than two univariate 
probit models for Equations 1 and 2. Alternatively, a nested likeli
hood ratio chi-square test can also be applied. 

The second objective of estimation in this paper is to obtain con
sistent estimates of (33 and to examine the sign and magnitude of the 
parameters in Equation 5. The selectivity "problem" arises when 
E(E3; I X3;, Y1 X Y2) * 0 and OLS is used to estimate Equation 3a. 
For the cells in which Y3; is observed a trivariate normal density 
applies and the related likelihood function is analogous to the com
plete cell membership discussed before. In this paper, instead of 
employing a method that involves trivariate normal densities, an 
alternative procedure that produces equally consistent estimates 
is used. 

The method was devised by Tunali (J 1) and is the double
selection analog of the Heckman single-selection correction method 
(called the Tunali method here). It is a two-step procedure, which 
at the first step employs maximum likelihood estimation for Equa
tions 1 and 2 to obtain consistent estimates of the two correction 
terms (A 1 and A2). At the second step, the estimates of the A's are 
used to correct for specification error (emerging from selection bias) 
in the regression of Y3;. The system of the equations to consider is 
given by Equation 1, Equation 2, and the following, augmented 
continuous dependent variable regression: 

(3b) 
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where 'Yi and 'Y2 are functions of cr3 and the correlations in Equation 
4 and can be estimated by least-squares regression. A1 and A2 are the 
double-selection analogs of the Mill's ratios in single selection. The 
A's are functions that involve data from the selection rules in Equa
tions I and 2. E'.\'; is a heteroskedastic error term. When OLS is 
applied to Equation 3b the usual standard errors of the coefficient . 
estimates are biased. This is allowed for by "correcting" the OLS 
standard error estimates used for hypothesis testing. Estimation of 
the correction terms (A 1 and A2), their associated coefficients ('Yi and 
'Y2), and the associated standard error follows LIMDEP (12), which 
follows the Heckman two-step method. 

DATA 

PSTP is the first general-purpose urban transportation survey in the 
United States. The major goals of the panel are to (a) track changes 
in employment, work characteristics, household composition, and 
vehicle availability; (b) monitor changes in travel behavior and 
response to changes in the transportation environment; and (c) exam
ine changes in attitudes and values of transit and nontransit users. 
PSTP includes household, person, trip, and attitude information of 
four waves, with each pair of waves a year apart. The first-wave data 
collection took place from September to early December 1989. The 
second-wave survey was conducted in the fall of 1990. An extensive 
description of the panel is provided by Murakami and Watterson (8). 

In this paper, the analysis uses selected travel diary information 
from the first two waves. The travel diary includes continuous 
48-hr activities (excluding the in-home activities) for each wave. It 
includes every trip a person made in 2 days. Each trip was charac
terized by trip purpose, type, mode, start/end time, travel duration, 
origin/destination, and distance. From this data set out-of-home 
activity engagement information can be derived using the trip 
purposes. The raw data were "cleaned" from any inconsistencies 
and the records with complete information are used here. 

In the original data set, trip purposes are classified into eight dif
ferent types (work, school, college, shopping, personal business, 
appointments, visiting, and free time). Models for all the activities 
.considered together (sum of activities) and by grouping activities in 
a few categories were estimated. Assuming that a household, within 
a given 24-hr period, prioritizes its activity participation according 
to the relative importance of each activity, a natural grouping would 
be the following hierarchy (with a decreasing degree of constraint 
and importance): subsistence (work, school, college), maintenance 
(shopping, personal, appointments), and leisure (visiting, free-time) 
activities. The models treated for selectivity are models of subsis
tence frequency, maintenance frequency, and leisure frequency, 
each considered separately. A fourth model representing the sum of 
all activities is also estimated to identify possible "loss" of infor
mation when usual trip generation models are formulated. 

Information on residential relocation was also collected within 
the panel. The data analyzed in this paper are from 1,662 house
holds, of which 1,313 (79 percent) participated in both panel waves 
and 349 (21 percent) participated in Wave I only. From among the 
1,313 participants, 111 (8 percent) changed residential location 
between the two waves, whereas 1,202 (92 percent) did not. 

EMPIRICAL EXAMPLE 

An application of the double-selection model mentioned earlier is 
provided here to address two related issues. The first is with respect 
to potential sample biases in a Wave 2 sample emerging from selec-
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on attrition and relocation and indications from past literature. tive attrition and possible selective residential relocation. Restoring 
representativeness in the PSTP can be performed using weights 
derived from the bivariate probit model (joint attrition and reloca
tion) mentioned earlier. Sample weights for subsequent waves aim 
at recreating population representativeness in the panel. One can use 
the results up to this point as seen elsewhere (9) to create sample 
weights. The second is with respect to consistent parameter estima
tion for the regression equations representing activity participation 
in Wave 2. The sample in Wave 2 contains only partial information 
on the population because of the double selection with part of the 
observations containing incomplete classification (i.e., the dropouts 
cannot be classified into movers and stayers). This affects the 
expectation of the error term in Equation 3b. The Tunali double
correction terms can be used to gain coefficient consistency. The 
definition of variables, cell frequencies, and average characteristics 
per group are presented in Table 1. The average value for each vari
able used in the models is presented separately for each of the three 
groups considered in this paper. 

The first model of interest is the bivariate probit model with 
selection. Table 2 contains the single equation results, that is, esti
mates of two independent univariate probit equations (p = 0) and 
the bivariate probit estimates (p -=F 0). Model specification was 
defined mainly on the basis of past results using a similar data set 

The regression parameter estimates are consistent (in terms of 
signs and relative magnitude) in the two models. With respect to the 
attrition model, as expected, the results confirm previous research 
using a similar data set. Households with a higher car ownership 
level, higher employment, and longer duration of residence in Wave 
1 are more likely to participate in both waves of the panel. Con
firming the usual tendency reported in other surveys, low-income 
households, single-adult households, and childless households with 
relatively young household composition tend to drop out after the 
first panel wave. People recruited via random digit dialing (in the 
sample analyzed here 92 percent are recruited via random digit dial
ing and 8 percent by special choice-based methods) tend to stay in 
the panel. The relocation equation exhibits agreement between the 
single-equation estimation and bivariate probit estimates. The 
household life-cycle stage is an important determinant of relocation 
(that is, households at their earlier stages are more likely to move 
than at their later stages). This is reflected by the coefficients of the 
two variables representing the number of children in the household. 
An interesting result is that the residence tenure (the dummy vari-

. able associated with 5 years or more in the current residence) has a 
negative coefficient. This may be an indication that, as residence 
tenure increases, the household is less likely to move. All three indi-

TABLE 1 Definition of Variables and Sample Characteristics 
Variable Description 

FEMALESx 
DRIVERSx 
WORKERSx 
KID(0-5)x 
MIDINCOMEx 

HIGHINCOMEx 

SGLADULTx 

YNGADULTSx 

MIDADULTSx 

YRHOME(0-1 )x 

YRHOME( 1-5)x 

YRHOME(5-10)x 

ONECARx 
TWOCARSx 
MULTICARSx 
TELE-ROD 
HHLDSIZEx 
KINGx 
PIERCEx 
SNOHOMISx 

Number of females in the household in wave x 
Number of drivers in the household in wave x 
Number of workers in the household in wave x 
Number of children whose age is less than five years in wave x 
Dummy variable = 1 if annual household income is between $15,000 and $50,000 in 
wave x ; 0 otherwise 
Dummy variable = 1 if annual household income is more than$ 50,000 in wave x ; 0 
otherwise 
Dummy variable = 1 if household has only one adult less than 35 years and no children 
in wave x ; 0 otherwise 
Dummy variable = 1 if household has two or more adult less than 35 years and no 
children in wave x ; 0 otherwise 
Dummy variable = 1 if household has two or more adult aged 35-64 years and no 
children in wave x ; 0 otherwise 
Dummy variable = 1 if number of years in current residence is less than one year 
in wave x ;O otherwise 
Duminy variable = 1 if number of years in current residence is between one and five 
years in wave x ;O otherwise 
Dummy variable = 1 if number of years in current residence is between five and ten 
years in wave x ;O otherwise 
Dummy variable = 1 if household owns one car in wave x ; 0 otherwise 
Dummy variable = 1 if household owns two cars in wave x ; 0 otherwise 
Dummy variable = 1 if household owns more than two cars in wave x; 0 otherwise 
Dummy variable = 1 if household recruited by telephone random digit dialing 
Household size in wave x 
Dummy variable = 1 if residence locate in King County in wave x ; 0 otherwise 
Dummy variable = 1 if residence locate in Pierce County in wave x ; 0 otherwise 
Dummy variable = 1 if residence locate in Snohomish County in wave x ; 0 otherwise 

Relocation Bfnary Choice Dependent Variable = 1 if household has moved in second wave 
in panel 

Attrition Binary Choice Dependent Variable = 1 if household continues to participate in 
second wave of panel 

Note : x = 1 and 2 m variables md1cate wave 1 and wave 2. 

(continued on next page) 
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TABLE 1 (continued) 

Sample Mean of Variables 

Participants and stayers 

FEMALESl .975 
DRIVERSl 1.735 
WORKERS! 1.256 
KID(0-5)1 .218 
KID(0-5)2 .204 
MIDINCOMEl .651 
HIGHINCOMEl .194 
MIDINCOME2 .523 
HIGHINCOME2 .333 
SGLADULTSl .029 
YNGADULTSl .050 
MIDADULTSl .292 
YRHOME(0-1)1 .122 
YRHOME(l-5)1 .333 
YRHOME(5-10) 1 .546 
ONECARl .229 
TWOCARSl .449 
MULTICARSl .289 
ONECAR2 .216 
TWOCARS2 .426 
MULTICARS2 .297 
TELE-RDD .950 
HHLDSIZEl 2.575 
HHLDSIZE2 2.513 
KINGl .400 
PIERCE! .207 
SNOHOMISl .262 

Frequency 1202 

cators of county of residence (King, Pierce, and Snohomish) show 
that the movers are more likely to be from the fourth county 
(Kitsap). The most important result here is the lack of significance 
(and relatively small magnitude) of the error correlation coefficient 
between relocation and attrition (p). (The use of this method 
provides for clearer indications about the relationship between relo
cation and attrition. The usual caveat on the estimated standard error 
of p applies as well.) Similar to previous results on attrition and 
mode choice (9) and based on this paper, attrition is not correlated 
with other choices households make. 

The results here provide some guidance on sample weight 
creation procedures. The results also reinforce past approaches to 
"sequential" and independent weight creation, that is, deriving 
weights that transform the Wave 2 panel sample into a representa
tive sample by sequentially applying single-source derived weights 
to account for each source-specific sample bias. 

The estimated bivariate probit model is used to create consistent 
estimates for the A.'s for two out of the four cells in Figure 1. The 
first, corresponding to (Y 1 = 0, Y2 = 1), represents the panel 
participants in both waves who did not relocate (participant stayers) 
and the second, corresponding to (Y1 = 1, Y2 = 1 ), represents the 
panel participants in both waves who relocated (participant movers). 
Four models are presented here for Y3 • The first three, in Table 3, 
depict 2-day household activity participation frequencies for 
subsistence, maintenance, and leisure. The fourth model depicts the 

Participants and movers 

.883 
1.523 
1.243 
.297 
.288 
.685 
.153 
.478 
.396 
.117 
.153 
.207 
.297 
.469 
.234 
.324 
.414 
.225 
.270 
.297 
.162 
.793 

1.820 
1.182 
.541 
.109 
.198 

111 

Non-participants in Wave2 

.966 
1.653 
1.206 
.310 

.590 

.198 

.063 

.109 

.238 

.241 

.384 

.375 

.264 

.415 

.255 

.560 
2.752 

.410 

.261 

.249 

349 

sum of subsistence, maintenance, and leisure (called the total 
frequency of household activity participation resembling a trip 
generation model). 

Table 3 provides a comparison between OLS and the Tunali 
method. The specification of all the models is the same in an attempt 
to provide a common basis for comparison. Alternative specifica
tions provided similar results and are not presented here. Some of 
these models are underspecified, and this has an effect on the 
significance of the correction terms (J 1). 

The standard errors of the coefficient estimates reported here 
(denominators in the "t-stats") are also corrected for selection on the 
basis of the method reported in LIMDEP (7). This is the same 
method used by Tunali for the two groups analyzed here (11). A 
consistent estimator is used for the standard error of the regression 
equation (Equation 3b) and is based on the usual OLS residuals with 
a correction (12). Estimates for the error correlation coefficients (p 13 

and p23) are obtained with algebraic manipulations that involve the 
coefficients of the correction terms, the correlation in the bivariate 
probit model, and the standard error of the regression in Equation 
3b. Unfortunately, in practice, this may produce correlation coeffi
cients that are not within the unit circle, posing great difficulties in 
interpreting the coefficients. 

With respect to the subsistence equation, one can observe a 
general agreement in the signs and relative magnitudes of the co
efficients between the OLS and the Tunali ·models for both groups, 
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TABLE2 Residential Relocation and Panel Attrition Models 

Univariate Probit 

Coef. "t-stat" 

Relocation 
Constant -.831 -3.680 
FEMALES! .015 .121 
DRIVERSl -.212 -2.104 
KID(0-5)1 .118 1.398 
MIDINCOMEl -.010 -.067 
HIGHINCOMEl -.075 -.386 
SGLADULTl .565 2.572 
YNGADULTSl .597 3.131 
MIDADULTSl .087 .624 
YRHOME(5-10) 1 -.511 -4.289 
TELE-RDD -.050 -1.469 
KINGl .021 .135 
PIERCE! -.383 -1.926 
SNOHOMISl -.121 -.682 

Attrition 
Constant .869 4.431 
ONECARl .405 2.201 
TWOCARSl .582 3.098 
MULTICARSl .574 2.896 
WORKERS! .135 2.534 
YRHOME(0-1)1 -.425 -4.065 
YRHOME(l-5) 1 -.209 -2.489 
LOWINCOMEl -.188 -1.522 
HIGHINCOMEl -.116 -1.229 
SGLADULTl -.457 -2.533 
YNGADULTSl .:.532 -3.614 
MIDADULTSl -.211 -2.151 
HHLDSIZEl -.174 -4.800 
TELE-RDD .037 1.618 

p (1,2) 

Goodness-o(:fjt Statistics 

Relocation 
Log-likelihood -343.37 
Restricted Log-likelihood -380.40 
Chi-Squared (df= 13) 74.06 

Attrition 
Log-likelihood -817 .82 
Restricted Log-likelihood -854.17 
Chi-Squared (df = 13) 72.70 

that is, participant stayers and participant movers. For the stayers, 
as car ownership increases, the households are more likely to 
participate more frequently in these activities. The movers provide 
the exact opposite relationship between car ownership.and activity 
frequency (but with loss of significance). Higher-income house
holds tend to have higher frequencies, and the presence of young 
children inhibits participation in these activities (presumably to 
school and college). As expected, as household size increases, sub
sistence frequency also increases. Household size may also capture 
the effect of employed people in the household. In the OLS model 
its associated coefficient is unity; this was increased by 25 percent 
when the regression was corrected for selectivity. In Equation 3b a 
variable X influences Yin two ways: directly via its associated J3 and 

Bivariate Probit 

Coef. "t-stat" 

-.959 -2.916 
.007 .067 

-.200 -2.028 
.100 .965 
.009 .051 

-.067 -.315 
.513 1.845 
.533 2.027 
.083 .559 

-.478 -3.328 
-.046 -1.226 
.031 .187 

-.367 -1.708 
-.113 -0.611 

.880 4.376 

.396 2.095 

.569 2.963 

.558 2.785 

.132 2.448 
-.435 -4.158 
-.204 -2.403 
-.198 -1.580 
-.114 -1.211 
-.455 -2.519 
-.526 -3.575 
-.210 -2.207 
-.172 -4.811 
.037 1.497 

.310 .415 

Log-Likelihood -1161.03 
Restricted Log-likelihood -1234.57 
Chi-squared (df=27) 147.08 

indirectly through the correction terms (A.'s), and this explains the 
difference between the two models. The significance of the 'Y's indi
cates substantial selectivity bias for the participant stayers, whereas 
this is not true for the participant movers. 

The maintenance activity frequency provides similar indications 
to the subsistence model. An exception to this is the effect of 
income. It appears that lower-income households are more likely to 
engage in this type of activity than higher-income households. One 
correction is significant for the participant-stayer model, and none 
is significant for the participant-mover model. Evidence of selec
tivity is present or absent depending on the type of frequency exam
ined. This is even clearer when one examines the results in the 
leisure frequency models. None of the correction terms is signifi-
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TABLE 3 Activity Regression Models 

SUBSISTENCE 
ACTIVITY FREQUENCIES 

MAINTENANCE 
ACTIVITY FREQUENCIES 

LEISURE 
ACTIVITY FREQUENCIES 

OLS Tunali method OLS Tunali method OLS Tunali method 
(without correction) (with correction) (without correction) (with correction) (without correction) (with correction) 
Coef. "t-stat" Coef. "t-stat" Coef. 

Participants and stayers 
Constant 1.547 3.157 2.342 2.497 2.836 
ONECAR2 -1.308 -2.590 -1.835 -2.791 -.724 
TWOCARS2 -1.145 -2.297 -1.742 -2.641 -.190 
MULTICARS2 -.220 -.422 -.758 -1.118 -.194 
HHLDSIZE2 1.005 9.255 1.252 8.751 1.372 
KID(0-5)2 -1.151 -5.379 -1.341 -4.869 -.657 
MIDINCOME2 .949 2.991 .773 2.342 -.287 
HIGHINCOME2 2.208 6.438 2.106 5.710 -.091 
R2 .159 .173 
>.., -6.415 -2.296 
>--2 -4.779 -2.148 
p13 -1.693 
P23 - .958 
C13 2.914 

Participants and movers 
Constant -.306 -.189 -6.603 -.721 3.729 
ONECAR2 -.592 -.390 -.015 -.008 - .843 
TWOCARS2 -.906 -.562 1.756 .759 -2.725 
MULTICARS2 -2.293 -1.263 -1.226 -.439 -1.222 
HHLDSIZE2 1.315 2.642 .906 1.180 .989 
KID(0-5)2 -.839 -1.055 -.450 -.371 .654 
MIDINCOME2 2.056 1.668 2.493 1.539 -1.964 
HIGHINCOME2 4.507 3.003 4.724 2.341 -.531 
R2 .199 .212 
>.., 2.782 .689 
>--2 6.242 .585 
P13 0.152 
P23 0.964 
C13 5.579 

cant in these models. The higher standard error of the regression 
equation for all the models of the participant movers indicates 
higher variation in activity participation when compared with the 
stayers. The possibility of this functioning as an indicator of mis
specification is discarded mainly because of the lack of significance 
of the correction terms. Table 4 presents a model with dependent 
variable the sum of the three activities in Table 3. The results par
allel the indications of the subsistence models (signs of coefficients 
and relative magnitude). In general, the coefficients are higher 
because of the higher values of the dependent variable. Unlike the 
subsistence model, the correction terms are not significant. This 
leads to the conclusion that the effects of selectivity can be better 
captured by considering frequency of activity types separately. A 
refinement of the method here is under way using more complete 
specifications for the regression models, for example, incorporating 
transportation system attributes and better descriptors of household 
composition. In addition, a sensitivity analysis of the method to the 
specification of the bivariate probit model is also needed. The resi
dential relocation model needs to consider additional determinants 
of relocation. This is also left as a future task. 

SUMMARY AND CONCLUSIONS 

A method to account for the possible simultaneity of multiple selec
tion in panel surveys is presented in this paper. Two sources of selec
tivity are considered together-residential relocation and panel attri
tion-using a bivariate probit model that considers the lack of 
observed residential relocation for the sample of the dropouts. The 

"t-stat" Coef. "t-stat" Coef. "t-stat" Coef. "t-stat" 

4.675 3.782 4.159 1.791 3.650 2.093 3.239 
-1.158 -.662 -.979 -.925 -1.830 -.908 -1.716 
-.308 -.297 -.433 -1.009 -2.021 -1.045 -1.944 
-.301 -.442 -.621 -.462 -.886 -.543 -.969 

10.204 1.251 7.983 1.322 12.161 1.285 10.282 
-2.481 -.317 -1.049 -1.396 -6.517 -1.289 -5.750 

-.730 -.103 -.261 .243 .764 .300 .940 
-.215 .046 .108 .728 2.120 .771 2.245 
.122 .141 .153 .156 

6.961 2.490 2.175 1.330 
.946 .465 .281 .204 

2.135 .599 
-.388 -.122 
3.122 3.488 

3.453 -7.806 -.585 4.090 3.617 -8.393 -.609 
- .833 .345 .138 - .858 - .810 .525 .205 
-2.534 -.939 -.338 -1.120 -.994 .986 .346 
-1.010 1.024 .291 -.060 -.047 2.708 .748 
2.981 .226 .241 .684 1.969 -.151 -.155 
1.233 1.318 .816 -.305 -.548 .376 .227 

-2.389 -1.019 .543 -2.051 -2.383 -.919 -.482 
-.531 .099 .040 -1.025 -.978 -.168 -.066 
.249 .330 .138 .239 

4.720 .772 4.826 .763 
13.105 .847 15.438 .961 

.080 .005 
1.410 1.484 
8.260 9.393 

method can be applied to derive sample weights for subsequent 
panel waves and to create correction terms that can be used to obtain 
consistent estimates of activity participation equations. 

In the first two waves of PSTP, residential relocation and attrition 
are not correlated. This supports the use of sequential weighting for 
the Wave 2 sample. The application of correction terms to regres
sion models of activity participation provided many insights. The 
effect of selectivity on activity participation may depend strongly 
on the type of activity analyzed. When all the activity types are 
aggregated to form a single model of frequencies (e.g., a trip 
generation model) selectivity bias may appear to be absent. When 
activities are considered separately, selectivity bias is present in 
some equations. 

Many extensions and improvements are needed in the method pre
sented here. The models need to be specified in radically different 
ways and the results need to be compared with those from this paper. 
This will provide some guidance on the effects of misspecification 
on selectivity equations. The Tunali method provides consistent 
estimates but is not fully efficient. Efficiency loss is associated with 
the two steps involved. A full information maximum likelihood 
method would be a suitable alternative. The three activity equations 
in Table 3 have been considered separately. It is well known that par
ticipation in one type of activity influences participation in another. 
This can be easily modeled by creating a system of equations and 
applying the Tunali method to the system. During an earlier review 
it was suggested that potential improvements in the method here may 
emerge from alternate forms of the activity frequency equations. One 
could extend the method using a system of "TOBIT" models with 
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TABLE 4 Sum of Activity Frequencies (Trip Generation) 

OLS 
(without correction) 

Tunali method 
(with correction) 

Coef. "t-stat" Coef. "t-stat" 

Participants and stayers 
Constant 6.174 
ONECAR2 -2.957 
TWOCARS2 -2.344 
MULTICARS2 -.876 
HHLDSIZE2 3.699 
KID(0-5)2 -3.203 
MIDINCOME2 2.905 
HIGHINCOME2 2.845 
R2 

"-1 
"2 
Pn 
Pn 
U3 

Participants and movers 
Constant 7.512 
ONECAR2 -2.294 
TWOCARS2 -2.939 
MULTICARS2 -3.456 
HHLOSIZE2 2.989 
KID(0-5)2 -.490 
MIDINCOME2 -1.958 
HIGHINCOME2 2.951 
Rz 

A1 
"-2 
Pn 

Pn 
CT3 

double "Probit" selectivity. With respect to model specification, the 
method here can be improved by the inclusion of level-of-service 
variables that are currently created for PSTP. In addition, for the 
relocation model a more in-depth specification analysis is needed. 
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Influence of Dutch Mobility Policy on 
Emancipation Process for Women and Men 

MARIETTE POL, DICK ZOUTENDIJK, AND URSULA BLOM 

In the literature on emancipation and mobility it is often assumed that 
mobility policy impedes womens' chances acquiring equal opportuni
ties in paid employment and activities outside the house. It is said that 
too much emphasis is placed on the use of the traffic and public trans
port system by men; therefore, the demands women have in using the 
transport system are not met. A literature research is conducted to deter
mine the influence of the Dutch mobility policy on the emancipation 
process in The Netherlands. Further, the validity of this assumption is 
tested. Relevant policy measures with respect to mobility and traffic 
safety are evaluated on the basis of three emancipation indicators: 
(a) the increase in possibilities to participate in employment by women, 
(b) the increase in possibilities to do activities outside the house by 
women, and (c) the increase in housekeeping by men. One conclusion 
of this study is that mobility is just one of the many aspects influencing 
emancipation. Mobility can be seen as more or less facilitating emanci
pation, but never as decisive in itself. Another finding is that the effects 
of the mobility measures do not impede the emancipation process as is 
assumed in current literature. Most measures are rated neutral or slightly 
positive on the indicators. This can be explained by the fact that most 
policy measures tend to increase the attractiveness of modes of trans
port other than the car. Only few policy measures aim to decrease the 
use of cars directly. 

In the last decades mobility in The Netherlands has taken flight. The 
most important reason for this growth is the general economic and 
population growth (1). Next to the increase in the economy, the 
massive growth in mobility is also influenced by social cultural 
shifts like the emancipation process. During the last decades the tra
ditional sex role models have been changing, causing women to 
become more mobile (2-4). 

It is obvious that the growth in mobility (and, specifically, road 
traffic) has negative consequences. The mobility policy of the Dutch 
Ministry of Transport is formulated in the Second Transport Struc
ture Plan. The major goals of this plan are as follows; first to restrain 
the increase in road traffic for travel considered less necessary and 
second, to encourage people to switch from the car to alternative 
modes of transport. In addition to this mobility policy, the central 
Dutch government policy is to stimulate the emancipation process 
(5). Therefore, the mobility and emancipation policies are apparently 
conflicting issues. In current literature on emancipation and mobil
ity it is often assumed that the mobility policy impedes women's 
chances of acquiring equal opportunities in paid employment and 
activities outside the house (4,6-8). It is said that too much empha
sis is placed on the use of the road traffic and public transport sys
tem by men and, therefore, the traveling needs of women are not met. 
Therefore, policy makers at the Ministry of Transport are concerned 
about the aims of emancipation policy in relation to mobility. 

M. Pol and D. Zoutendijk, Traffic Test bv, Landjuweel 22, 3905 PG Vee
nendaal, The Netherlands. U. Blom, Ministry of Transport, Public Works 
and Water Management, Transport Research Center P.O. Box 1031, 3000 
BA Rotterdam, The Netherlands. 

Because of the apparently conflicting interests between emanci
pation and mobility, the Ministry of Transport initiated a (pilot) 
study to uncover the relationship between the mobility policy and 
the emancipation process (3). In this paper the results of this study 
are summarized and interpreted. The goal is to establish the extent 
to which the mobility policy actually impedes or stimulates the 
emancipation process. First, three "measurement tools" (emancipa
tion indicators), derived from targets set by the Dutch central 
government in its emancipation policy as formulated in the policy 
program, are defined. Using these indicators, the travel behavior of 
women and men that can be related to the emancipation process is 
measured. Next the differences between women and men in aspects 
of mobility behavior are discussed. These differences give some 
insight into differences in demands for traffic and transport facili
ties. Finally, the influence of the Dutch mobility policy on the eman
cipation process is evaluated. 

DATA USED IN STUDY 

Data that directly relate policy measures to observable (emanci
pated) behavior are, unfortunately, not yet available because most 
policy measures have only very recently been implemented or are 
still in the process of being implemented. Therefore, the conclu
sions of this study should be considered only preliminary. 

The study is carried out on the basis of data on mobility behavior 
of women and men. For this reason, the differences in mobility 
behavior of women and men are formulated and ·used. 

METHOD 

Defining Emancipation Indicators 

The first step in the evaluation of policy measures is to formulate 
emancipation indicators. With these indicators the possibilities of 
changing mobility behavior of women and men have to be scored 
because of changes involving more emancipated ac!ivity patterns. In 
this study it was decided that emancipation indicatOrs should involve 
observable mobility behavior that can be· directly "measured." 
Therefore, the emancipation indicators are to be found in activities 
or in patterns of activities. The central aim of the emancipation 
policy as formulated in the Dutch policy program reads as follows: 

To promote the transformation process in current society, in which the 
differences based on sex are still institutionalized to a large extent, to a 
multiform society in which everyone, regardless of sex or marital state, 
has the possibility of living independently and in which women and men 
can realize equal rights, opportunities, liberties and responsibilities.(5) 
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In this same document, this emancipation aim is "translated" to 
the various departmental areas. The goal of the Ministry of Trans
port and Public Works is as follows: 

Realizing an optimal situation for traffic and transport, thereby creat
ing the conditions for equal participation of both women and men in 
public and, especially, economic activities and in unpaid work in 
private life.(5) 

This is the Dutch formulation of the targets set for the emancipation 
process. In other (Western) countries similar policy targets have 
been set. For example, the Swedish policy aims to build a society in 
which each individual participates fully in four major roles of daily 
life: the household/family role, the work/career role, the interper
sonal/social role, and the leisure/recreation role (9). 

In Dutch society the following three emancipation indicators 
(fulfilling the prerequisite to be observable activities) can be derived 
as follows: 

1. The goal of "equal participation of both women and men 
in ... economic activities" leads to the first indicator: "the increas.e 
of possibilities of women to participate in employment"; 

2. The aim of "equal participation of both women and men in 
public ... activities" leads to the second indicator: "the increase of 
possibilities of women to do ac;tivities outside the house"; and 

3. The goal of "equal participation of both women and men 
in ... unpaid work in private life" results in the third indicator: "the 
increase of housekeeping and caring tasks by men." 

Recent Developments in Activity Patterns 
of Women and Men 

The proportion of the working population of Dutch women 
increased from 5 percent in 1960 (JO) to 34 percent in 1975 and to 
50 percent in 1991 (2). Working (more than 1 hr week) women 
spent an average of 21 hr week at their jobs. For reference, 75 per
cent of the Dutch men participated (at a minimum of 1 hr/week) in 
paid labor and spent an average of 36 hr/week at their jobs, both in 
1975 and 1990. No shift was observed between 1975 and 1990 in 
this respect (2). In this research conducted by Batenburg and Knulst, 
people are considered workers when they spend at least 1 hr of paid 
work in the week the research was conducted. Congruently, people 
are engaged in housekeeping and child care if they spend at least 
1 hr on these caring tasks in the week the research was conducted. 
In 1975, 99 percent of the Dutch women spent an average of 28 hr 
per week on housekeeping and child care tasks [referred to as 
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"caring tasks" in this paper, which include private housekeeping 
and child care-volunteer aid (paid and unpaid) and are considered 
activities outside the house]. In 1990, a slight decrease was 
observed to an average of 25 hr per week. Of the Dutch men in 
1975, 85 percent spent an average of 9 hr/week on caring tasks, 
whereas in 1990 89 percent of the Dutch men spent on average 10 
hr/week on caring tasks. From these data it can be concluded that 
the increase in the amount of women participating in paid jobs has 
not resulted in an equivalent decrease in the amount of time spent 
by women on housekeeping tasks, or an equivalent increase in the 
amount of time in which men participated in caring tasks (2). 

Until the 1960s, Dutch women (and especially married women) 
traditionally did not participate in paid employment. Instead of paid 
employment they were engaged mainly in housekeeping, child care, 
and volunteer aid. Having a job is appreciated much more than 
housekeeping, child care, or volunteer aid. Traditionally the prime 
task of men in Dutch society is to participate in paid employment. 
Women, on the other hand, are primarily responsible for the less
appreciated activities. The high appreciation of paid jobs directs the 
emancipation process to a society in which women combine tasks. 
From this observation one can also conclude that the emancipation 
process has not been 'completed' yet because men did not emanci
pate at the same rate as women and are not yet taking over women's 
tasks (2,9). A significant body of evidence from the emancipation lit
erature ( 7, 10-13) indicates that more and more women need to com
bine paid work with caring tasks as a consequence of the emancipa
tion process. Facilitating the combination of these tasks (for both 
women and men) is crucial to the realization of emancipation aims. 

One of the main effects of combining tasks on mobility behavior 
is that people try to organize their commutes as efficiently as 
possible by combining different purposes into one trip. This 
phenomenon is called trip-chaining (I 4, 15). An example of trip
chaining is escorting a child to school on the way to work. In Table 
1 the percentages are presented of Dutch full-time employed moth
ers and fathers who combine trips while commuting. Far more 
mothers than fathers are making trip-chains. These findings are con
sistent with Dutch research carried out by Drooglever Fortuijn (I 6). 

She finds that women combine on the average 3.3 trips (round trip) 
during commuting, whereas men on the average combine 
2.9 trips. Moreover, 84 percent of the purposes combined with com
muting of women can be regarded as unpaid work (mostly caring 
tasks) compared with 79 percent of the men's trip-chains while 
commuting. Similar trends were found in the United States in 1989 
and 1990 (I 7). In this study the authors found that women spend 
1.3 times as much time combining household activity trips with 
commuting as did men. 

TABLE 1 Percentage of Full-Time Employed Married Mothers and Full-Time Employed Married Fathers Who 
Make Trip-Chains While Commuting (15) 

Youngest Child Younger Than 6 Youngest Child Older Than 6 

From Home to From Work From Home to From Work to 
Work to Home Work Home 

Married Mothers 28% 52% 23% 68% 

Married Fathers 12% 24% 15% 12% 
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How Mobility Measures Affect 
Emancipation Indicators 

The next step is to determine how relevant mobility measures 
described in the 'second transport structure plan' will influence the 
emancipation indicators and task combining. These measures can 
have a direct influence on activity patterns of women and men, 
thereby directly affecting the emancipation indicators. For example, 
decreasing the frequency of bus lines has a direct negative effect on 
the possibilities of activities outside the house for people depending 
on buses. Another (indirect) influence from these measures depends 
on the way the measures will affect trip-chaining, because trip
chaining is a fundamental need of people combining paid work and 
caring tasks. As a result, measures that impede the possibilities of 
trip-chaining will also decrease the possibilities of task combining. 
This, in turn, will impeded the possibility of women combining 
their caring tasks with paid work and the possibility of working men 
performing (more) caring tasks. 

Differences in Travel Behavior 
Between Women and Men 

In this section the focus is on the most important differences 
between women and men with respect to mobility behavior because 
these differences offer insight into differences between women and 
men in their demands for traffic and transport facilities. 

1. Because women combine various tasks, they also combine 
different travel purposes in a single trip. This means that far more 
women than men are engaged in making trip-chains (14,15,17). 

2. Typically, in The Netherlands, men commute during peak 
hours. Women also commute during off-peak hours because of part
time jobs. For the caring tasks (traditionally done by women), 
people travel often in off-peak hours (2). The number of trips for 
caring tasks during peak hours has increased iri the last decades, but, 
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at present,. the largest part of these trips is still being made during 
off-peak hours in The Netherlands. 

3. Although women and men make the same number of trips, the 
travel distances of men are much larger than those of women 
(6, 18-20). In Table 2 travel distances and number of trips for the 
various modes of transport of Dutch women and men are presented. 

4. Women and men use different modes of transport (Table 2). 
In The Netherlands most households own a single car that is used 
mainly by the man; far fewer woman than men use cars (18). The 
car is often used for commuting by men. Women, on the other hand, 
use more diverse modes of transport than men (2 J). Until recently, 
far fewer women than men had drivers' licenses (18). 

5. Far more often than men, women are involved in caring tasks. 
Women escort (young) children to day-care centers, schools, doc
tors, hospitals, and other activities more frequently than do men 
(4,6,14,21). 

6. As a result of their housekeeping tasks, women carry heavy 
shopping bags more often than men (4). 

7. Far more women than men are involved in voluntary aid. 
Therefore, far more women than men escort elderly and sick people 
to doctors, hospitals, and other activities or just for a short walk. 
Voluntary aid is part of the indicator activities outside the house 
(22). 

8. Women (far more than men) are concerned about their social 
safety. Their fear of assault, especially at night, restrains them in 
traveling (21,23). 

Women and men differ in (almost) every aspect of mobility 
behavior. Having different mobility behavior implies that women 
have other kinds of travel demands than men. In this sense the 
assumption that men have other demands on transport than women 
is true. The assumption that too much emphasis is placed on the use 
of the transport system by men and that, therefore, demands women 
have are not met, has, however, not yet been proved. This different 
mobility behavior is for the greater part directly based on the tradi
tional roles many Dutch women and men (still) have. 

TABLE 2 Average and Percentage of Travel Distances and of Number of Trips per Day by Mode 
of Transport in 1992 of Men and Women 12 Years and Older 

Kilometers Trips 

Men Women Men Women 

Car driver 27 ,8 (61 %) 8,6 (30%) 1,7 (47%) 0,8 (23%) 

Car passenger 6,2 (14%) 10,5 (36%) 0,3 (8%) 0,6 (17%) 

Public transport 5,9 (13%) 5,3 (18%) 0,2 (6%) 0,2 (63) 

Moped 0,4 (1 %) 0,2 (1 %) 0,05 (1%) 0,03 (1 %) 

Bicycle 3,4 (8%) 3,0 (10%) 0,9 (25%) 1,1 (31 %) 

Walking 0,9 (2%) 0,9 (3%) 0,5 (14%) 0,7 (20%) 

Total 45,3 (99%) 28,8 (98%) 3,6 (101 %) 3,5 (98%) 

Note: Percentages do not add up to 100% because of rounding. 
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EFFECT OF MOBILITY MEASURES 
ON EMANCIPATION INDICATORS 

In the Second Transport Structure Plan 35 policy areas are formu
lated to restrain the increase in road traffic. In the study by Pol 
and Zoutendijk (3) 12 relevant policy areas are evaluated. For the 
purposes of conciseness, the focus in this paper is on the three 
policy areas that have the strongest impact on the emancipation 
indicators: 

1. Concentration of housing, employment, recreation, and other 
public facilities; 

2. Urban remodeling schemes; and 
3. Pricing policy. 

Some of the policy measures have recently been implemented; 
others have plans in an advanced stage and some measures still do 
not have a (detailed) plan. 

In the following section these three policy areas are evaluated 
with respect to the three emancipation indicators and use of the 
knowledge of the differences between women and men in aspects 
of mobility behavior. 

Policy Area: Concentration Policy on Housing, 
Employment, Recreation, and Other Public Facilities 

The policy on urban planning and (regional) transport aims to reduce 
the need to travel (by shortening travel-to-work distances) and pro
mote public transport and cycling. The target scenario is as follows, 

• Serving every major housing development from 1995 onwards 
by high-grade public transport; and 

• Equipping residential areas with appropriate public transport 
services and bicycle infrastructure. 

This concentration policy makes facilities more accessible for 
everyone traveling by bike or public transport. Those who will 
profit most are people who do not have access to a car. In the 
Netherlands far fewer women than men have access to a car (18). 

This concentration policy also facilitates the combination of paid 
work and caring tasks for women and men. Community facilities 
such as day-care centers, schools, and shops are allocated to be 
situated in a way that optimizes the accessibility by bicycle and 
public transport. Consequently, no car is required and less time is 
needed to travel to these facilities. For a lot of married women with 
(young) children, participation in paid employment is highly depen
dent on the ability to combine work with caring tasks (7,8,14). This 
concentration policy has probably a bigger positive effect on the 
participation in paid employment by women than on the participa
tion in caring tasks by men. This effect can be concluded from the 
fact that the increase in the number of women participating in paid 
jobs has not resulted in an equivalent increase in men participating 
in caring tasks. 

Another objective of the employment location policy is improved 
accessibility of paid work with short commuter distances and com
muter times. To what extent this last objective can be reached is not 
certain because (in The Netherlands) more and more people are 
willing to travel long distances to find a job that fits their education 
and ambitions. 
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An unwanted (by the Ministry of Transport) side effect can occur 
in households consisting of two adults who own a single car that is 
used for commuting by the man. When this man makes the transfer 
from commuting by car to commuting by bicycle or public transport 
the car will be available for the woman. This availability of the car 
will only positively influence the emancipation indicators if she uses 
the car in a way that alters her activity pattern, such as in participat
ing in paid employment, increasing the amount of working hours per 
week, or becoming involved in (more) activities outside the house. 
On the other hand, if she uses the car for making caring tasks more 
convenient, it will not have a positive effect on the emancipation 
indicators because her activity pattern does not change. 

Policy Area: Urban Remodeling Schemes 

A reappraisal of the car's role in Dutch cities will lead to the target 
scenario of discouraging nonessential traffic in the inner city. The 
use of the car for short journeys will be discouraged by the imple
mentation of a coarse-mesh structure for the road network using 
ring and loop systems in which urban and residential areas only can 
be reached by car from an external ring route. Bicycles, public 
transport, and delivery vehicles will be advanced through keeping 
open the internal routes for these modes of transport. 

As a consequence of the urban remodeling policy, community 
facilities such as schools, day-care centers, and shops will be less 
accessible by cars and more accessible by walking, biking, or pub
lic transport. This can have some negative effect on the indicator 
"participation of women in employment" because the use of a car 
to escort very young children to day-care centers can be crucial. 
Mothers may consider the amount of organizing and time they need 
to bring and pick up their babies and toddlers to and from day-care 
centers too high a barrier to continue their work or to start a new job. 
This impeding effect can be overcome by an integration of this 
policy area with the policy area of "concentrating housing, employ
ment, recreation, and other public facilities" and by improving the 
service of the public transport in off-peak hours. 

It is possible that the travel behavior of men will be more con
strained than that of women because far more men than women rely 
on car mobility (18). The mobility of women can be enhanced 
because they, more often than men, use a bicycle or public trans
port. The urban remodeling policy may have a positive effect for 
women participating in activities outside the house because the 
accessibility of these facilities will be improved also. 

To require a modest role for the car as the mode of transport the 
notion of "low-car-density" residential areas with parking facilities 
on their fringes has emerged. This concept probably has the same 
negative effect as that described earlier because it impedes the 
escorting of young children to day-care centers by car. 

A positive effect of low-car-density residential areas can be 
expected as well, however. Cars hinder children in their ability to 
play outdoors because of the risk of accidents and the parking space 
cars require. A prime advantage of low-car-density residential areas 
is that children can play outdoors without adult escort. This will 
ease the caring tasks of mothers who, in Dutch society, as said 
before, are often responsible for caring tasks. This might have a 
positive effect on the emancipation indicators depending on the 
personal interpretation of this free time by women. For instance, if 
this time is used for education or personal development, it will have 
a positive effect on the indicator "the increase of possibilities of 
women to do activities outside the house." 
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Policy Area: Pricing Policy 

Pricing policy consists of the increase of the price of certain modes 
of transport. Measures will be taken to substantially increase the 
variable costs of the car, to introduce charges on certain sections of 
the road network at certain times, and to keep the costs of car use in 
line with the costs of public transport. 

Pricing policy is one of the key tools to achieving the target 
scenario of deterring the use of cars on certain sections of the road 
network at certain times to reduce congestion problems. Raising 
fuel tax in combination with a cut in annual vehicle tax will deter 
car use in general. Tolls and peak-hour surcharge will deter car use 
in peak hours on congestion points. 

The effect of pricing policy is uncertain because most of the 
pricing policy measures have not yet been introduced in ·The 
Netherlands. The pricing policy aims to stimulate car drivers into 
avoiding the expensive and busy rush hours. Further, it aims to stim
ulate car drivers to switch and use public transport or a bicycle. 

An unwanted possibility of the pricing policy is that people might 
just pay the price and continue to use their cars. Increasing costs 
have to be paid by the households of these car drivers who do not 
change their behavior. These costs have to be compensated in 
households with a rather small income. One way of compensation 
is to reduce car use for the kinds of traveling considered less neces
sary. This will more often lead to reduced car use by women than 
by men because women are more willing to curtail their car use than 
are men. This may, therefore, have a negative effect on outdoor 
activities by women or even on participating in paid employment 
by women. 

A lot of women have part-time jobs and, therefore, have small 
relative incomes. If women who work are restricted to commuting 
during peak hours, the pricing policy can have impeding effects on 
the participation of married women in employment. In this particu
lar case, when the household is not dependent on the salary of the 
woman, the costs of traveling are not counterbalanced by income. 

TABLE3 Scores on Emancipation Indicators 

Policy Area Effect Measure 

Concentrating To reduce travel needs 

housing, employment and to promote cycling 

and other public and public transport 

facilities 

Urban modeling To discourage traffic in 

schemes inner cities 

To advance cycling and 

public transport 

To create low-car-

density residentials 

Pricing policy To restrain car use 

TRANSPORTATION RESEARCH RECORD 1493 

When car drivers do change their commuting behavior in trans
ferring from car to other modes of transport, this often means that 
the car will be left available for the woman. As discussed before, the 
implications of the availability of the car will positively influence 
the emancipation indicators only if she uses the car in a way that 
alters her activity pattern. On the other hand, if she uses the car for 
making caring tasks more convenient, this will not have a positive 
effect on the emancipation indicators because her activity pattern 
does not change. 

DISCUSSION 

In another section, Effect of Mobility Measures on Emancipation 
Indicators, a description is given of the expected effects of the pol
icy measures as presented in policy areas. This description is trans
lated into scores on the three emancipation indicators presented in 
Table 3. The range of the scores in this table is from + +, meaning 
a very positive effect to - - , meaning a very negative effect. A 0 
indicates that the expected effect of the policy area on the specific 
indicator is neutral. 

The scores indicated in Table 3 suggest that mobility measures 
do have only a small influence on the emancipation process. On a 
scale from + + to/- - the scores of the policy areas mostly have 
neutral (0) or slightly positive (O/+) or slightly negative (0/-) 
effects. It is true that aspects of transport such as supply, comfort, 
and price can certainly (indirectly) impede or stimulate participa
tion in paid work and activities outside the house by women, but 
aspects of transport are only a decisive factor in a restricted number 
of cases. 

The scores indicated in Table 3 also suggest that most measures 
set by the Dutch Ministry of Transport as formulated in the Second 
Transport Structure Plan have, in fact, a neutral or slightly positive 
effect on the realization of the aims set by the emancipation policy. 
Only a few measures tend to have a negative impact on the eman-

Paid Activities Caring 

Employment Outside the House Tasks by 

by Women by Women Men 

+ 01+ 01+ 

01- 01- 0 

01+ 01+ 0 

01- 01+ 0 

01- 0/- 0 
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cipation indicators. Especially the scores on the third emancipation 
indicator, "the increase of housekeeping and caring tasks by men," 
indicate that policy measures hardly have any impact on the eman
cipation process of men. 

CONCLUSIONS 

Used Methods 

In this study, the aim is to evaluate the effects of policy measures 
on emancipated behavior in an objective way. For this purpose three 
emancipation indicators from the goals act by the central govern
ment on emancipation policy are derived. Using these indicators, 
the potential changes in emancipated activity induced by mobility 
policy can be "measured." Three policy areas are found suitable for 
evaluation using emancipation indicators: (a) the increase in possi
bilities to participate in employment by women, (b) the increase in 
possibilities to do activities outside the house by women; and (c) the 
increase of housekeeping by men. Unfortunately, there is still insuf
ficient direct data about changes in mobility patterns. Consequently, 
the discussion and conclusions are based on current literature on the 
mobility behavior of women and men. The conclusions of this work 
should, therefore, be viewed as preliminary only. Future research 
should aim to acquire direct data on the consequences of mobility 
policy on emancipated behavior and to further explore these conse
quences in terms of the emancipation indicators developed in this 
paper. For each policy area the effects of the policy measures are 
described. This description is into scores on the three emancipation 
indicators. 

Conclusions on Basis of Scores 
on Emancipation Indicators 

From this survey the following conclusions are drawn. Mobility 
measures have only a modest influence on the emancipation indi
cators. It is true that aspects of transport certainly (indirectly) 
impede or stimulate participation in paid work and activities outside 
the house by women, but aspects of transport are decisive argu
ments in only a few cases. This can be explained by the fact that 
emancipated behavior requires a change of attitude. This change of 
attitude cannot be achieved solely by mobility policy. If, however, 
an attitude change were to occur, mobility policy would be able to 
both facilitate and to impede the emancipated behavior. 

Most policy measures as formulated in the Second Transport 
Structure Plan can be concluded to have a neutral or slightly posi
tive effect on the realization of the aims set by the Dutch emanci
pation policy. Few measures tend to have a negative impact on the 
formulated emancipation indicators. Thus, the commonly made 
assumption that mobility measures have an impeding effect on 
emancipation seems unwarranted. This finding can be explained by 
the fact that most policy measures are pull measures, that is, they 
reward the desired behavior by improving the attractiveness of 
alternative modes of transport. Far fewer policy measures are push 
measures for which there is a penalty for undesired behavior, such 
as decreasing the attractiveness of car use in pricing policy, whereas 
the expected effect of push measures is stronger, that is, to deter the 
increase in car use, than the expected effect of pull measures. 

Another conclusion of this study is that almost none of the eval
uated measures have any impact on the increase in caring and 
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household tasks by men. This finding can also be explained by the 
fact that an attitude change by men is required, which cannot result 
from transport policy. Again, if an attitude change does take place, 
the measures that facilitate task combination will have a positive 
effect on men doing caring and household tasks and women partic
ipating in paid jobs. 

In this study, the expected effects of the intended policy measures 
are discussed, as formulated in the policy program Second Trans
port Structure Plan on the emancipation process in The Netherlands. 
The effects of the current Dutch mobility situation on the emanci
pation process were not addressed. Further research evaluating the 
current mobility situation on the formulated emancipation indica
tors is needed. Potentially this research could give insight into the 
aspects of the current mobility situation that have impeding effects 
on the emancipation process and that may have stimulating effects 
on the emancipation process. With these results in combination with 
the results of the study discussed in this paper, the mobility policy 
can be reviewed to reach the aims set by the emancipation policy. 
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Effects of Increased Highway Capacity: 
Results of Household Travel 
Behavior Survey 

RICHARD G. DOWLING AND STEVEN B. COLMAN 

Travel behavior is likely to change when road congestion and travel 
times are improved as a result of new highway capacity. The behavioral 
change is complex and may manifest itself over both the short and long 
run. Short-term impacts may include changes in route choice, time of 
day that trips are made, mode choice, trip frequency, trip chaining, and 
destination choice. Longer-term impacts may include changes in auto
mobile ownership, residential location, choice of workplace location, 
and land development patterns. These changes occur against a back
ground of economic, demographic, and pricing changes affecting the 
population as a whole. A fresh approach is taken to illuminate the ques
tion of whether highway improvements induce new travel. The research 
has been framed in terms of relating the time "released" by a highway 
improvement to how households would use this time. The question then 
becomes, Do travelers use the time saved to make more (or longer) trips, 
or do they use it for other activities? To make the responses more real
istic, respondents were asked to relate hypothetical changes in conges
tion levels to their previous day's travel and activity patterns. The 
results of a stated preference/activity survey of nearly 700 urban Cali
fornians indicate that congestion-relieving projects are likely to induce 
a small (3 to 5 percent) but not trivial increase in trip generation. This 
effect could be accounted for by modifications in the traditional "four
step" travel forecasting models, which gives transportation and air qual
ity analysts a better sense of how to assess the potential induced travel 
impacts of new highway capacity. 

Few current transportation issues engender more controversy than 
the effects of new highway capacity on traffic and travel demand. 
The purpose of adding highway capacity is to reduce traffic conges
tion and improve automobile travel times and, in some cases, air 
quality. These changes, in turn, affect travel behavior by affecting 
peoples' choice of modes of travel, their choice of destination, and 
their choice of travel route. Less well known is how travel time 
changes caused by capacity increases may affect total travel demand, 
especially trip generation (i.e., the number of vehicle trips made per 
person or per household). Estimating the magnitude of this effect on 
trip generation is particularly uncertain. A primary purpose of this 
project was to examine the effects of new capacity on trip genera
tion, because in most North American travel forecasting models, trip 
generation is not sensitive to transportation supply variables. 

IMPORTANCE TO CLEAN AIR 
AND TRANSPORTATION 

Federal, state and local governments spend billion dollars a year on 
new road improvements to reduce congestion, improve safety, and 

Dowling Associates, 180 Grand Avenue, Suite 995, Oakland, Calif. 94612. 

provide for economic development. There is popular and some 
professional opinion that new capacity in urban areas is eventually 
swamped by new demand so that in the end motorists are no better 
off than they were before the improvement was made (1 ,2). Dis
agreements arise about whether this effect· exists and, if it does, 
what its magnitude is. The issue has moved to center stage because 
the 1990 Clean Air Act Amendments prohibit recipients of federal 
transportation funds from constructing projects that worsen air 
quality in nonattainment areas. 

A road improvement may improve air quality depending on 
whether a trip-inducing effect occurs. New road capacity, to the 
extent that it reduces speed variations (stop-and-go driving) and 
allows vehicles to travel a steady 30 to 45 mph ( 48 to 72 kph), 
improves air quality. This claim has been challenged by others, who 
maintain that any air quality b.enefit of new road capacity in the 
short term will be offset in the longer term by increased travel 
demand that will nullify ari.y improvement in total emissions. Of 
course, the trip induction effects of new highway capacity do not 
have to be 0 for there to be a net air quality benefit, but they must 
be smaller than the increase in emissions per vehicle. 

STUDY PURPOSE AND RESEARCH APPROACH 

The purposes of this study were to answer two fundamental 
questions: Do capacity increases incr:ease trip making? If so, what 
is the magnitude of this increase, if it exists? The overall research 
objectives were accomplished through a variety of means; this 
paper reports on the results of a household survey of traveler behav
ior conducted as part of the study. Past attempts to assess the travel 
impacts of new highway capacity have mostly relied on before
and-after traffic volume comparisons. In some cases traffic counts 
have been supplemented with roadside interview or home interview 
surveys. A few investigators have attempted to fit regression 
models for predicting regional vehicle kilometers of travel 
(VKT) increases that result from regional increases in highway 
capacity. However, this approach has generally not been fruitful 
because a variety of extraneous factors can affect the results, 
including the availability of alternative modes and routes in each 
corridor; the condition of the local economy (growing or stagnant); 
zoning; and natural constraints to development. These factors not 
only affect the conclusions but also limit the validity of extending 
these results to other situations and locations. Shortcomings 
of the case study approach are documented in the literature (3,4). 
A brief summary of the reasons for proposing an alternative 
approach follows. 
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Control of Exogenous Variables (Economic Conditions) 

Transportation changes take place in a highly dynamic environ
ment: household income, population, employment, fuel and park
ing prices, and other variables cannot be directly controlled for. A 
time series approach may not control for the distributional shifts in 
land use activities that transportation investments may induce if the 
area of analysis is limited. This creates a considerable problem in 
distinguishing between a shift along the demand curve (because of 
the reduced price of travel caused by added capacity), and a shift in 
the demand curve itself (see Figure 1). Demand curves may shift as 
a result of changes in income, tastes, and demographic factors. Point 
1 represents an initial condition with a four-lane freeway; Point 2 is 
the result of a capacity increase (travel time reduction) and the asso
ciated movement along today's demand curve. Point 3 is purely the 
result of a demand curve shift, possibly caused by such factors as 
increased population or income but also possibly caused by reduced 
transit service, higher fares, or changes in taste. Point 4 is the final 
equilibrium-a combined result of capacity and demand increase. 

Completeness of Data Sets 

The data requirements of a case study approach include (as a mini
mum) annual traffic counts on the new facility and all paralleling 
routes along with good records of land use changes in the corridor. 
Local agencies often lack consistent annual count programs with 
counters at the correct locations to assess changes in corridor 
demand because of capacity changes. Even if all of the count data 
were available perfectly, the appropriate temporal resolution 
needed to assess the impacts of new capacity may be missing. Ide-
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ally, counts would be available at 15-min intervals to assess the 
impacts of temporal shifting in travel, and especially the "peak 
within the peak." Information needs to be available on all parallel
ing transit services; even then, one would not know what the 
changes in destination choices were (were people driving further 
because of the new capacity to reach a "better" destination?); or the 
shifts in land uses that took place over time. 

Differences in and Comparability 
of Data Collection Years 

Traffic counts, income, and other demographic information typi
cally are not available annually. Most agencies make projections at 
5-year intervals, and generally traffic counts are made only at 2- or 
3-year intervals (sometimes less often than that). This requires inter
polating between demographic data, traffic count, and traffic fore
cast years. Increased real income and family size (lifecycle issues) 
typically result in higher levels of automobile ownership and a 
desire for more residential space. Detailed geographic information 
at the corridor level is usually available only from the US. Census, 
which is conducted too infrequently (every 10 years) to be useful. 

Institutional Bias 

Forecasts may contain an institutional bias, perhaps unconsciously. 
An agency may make reasonable assumptions within a "gray area" 
of discretion that favors the action that the constructing agency 
wishes to take. Biases can vary with time, place, and the individu
als involved, but can all lead to forecasting errors. An agency could 
use optimistic or pessimistic views of the economy, of population 
growth, and so forth. 

All of these considerations pointed toward the need for an 
approach that 

• Considers trips in the context of the overall activity patterns of 
travelers, 

• Considers a wider range of alternatives than would be possible 
to test with the case study approach, and 

• A voids the shortcomings of incomplete data sets, control of 
exogenous variables, and other limitations noted earlier. 

RESULTS OF PREVIOUS RESEARCH 

Increased highway capacity may affect travel in a number of ways. 
In urban areas, new capacity typically reduces congestion, resulting 
in shorter travel times during some or all of the day, and a less 
stressful driving experience. In rural areas and small cities, where 
congestion is minimal, new capacity may or may not change travel 
times. The literature (5-8) documents a strong relationship between 
reduced travel times and the following short-term effects: 

• The choice of the route taken. This effect has been found to be 
consistently important in the literature. A major assumption under
lying the conventional four-step travel forecasting process is that 
people seek routes that minimize travel time and cost. 

• The scheduling of the trip (time of day the trip starts/ends). 
This effect also has been found to be consistently important in the 
literature; new highway capacity often has been found to cause 
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shifts from off-peak or "shoulder" transitional times to the "core" 
peak periods of travel. This effect was found in examining traffic 
count data before and after widening of CA-78 in San Diego, the 
Amsterdam M 10 Orbital Motorway (7), and other locations. 

• The choice of the travel mode used (e.g., carpool, transit, drive 
alone). This effect has been shown to have a much weaker impact 
than route and scheduling choice but is still important. The effect is 
probably more important in the longer term, as changes in automo
bile ownership and land use take place. Studies of the substantial 
and sudden capacity reductions caused by the 1989 Loma Prieta 
earthquake indicate substantial shifts to transit modes (9), with 
about a I 0 to 15 percent reduction in the number of total daily per
son-trips (Markowitz, unpublished data). This reduction is modest 
compared with the large increase in travel time (often 50 to 100 per
cent) occasioned by many transbay travelers during the approxi
mately 1-month period when the San Francisco-Oakland Bay 
Bridge was closed because of the Loma Prieta quake. 

• The frequency the trip is made. The literature has been incon
clusive on this topic, with some studies indicating significant 
impacts and others indicating little or no measurable impact. This 
impact was one of the primary concerns of this project. 

• The linking of trips with several destinations together (some
times known as "trip chaining" or "trip tours"). This appears to be 
an important impact but has proven difficult to measure and is 
generally outside the scope of this paper. 

• A change in the choice of the destination of a trip; likewise, this 
impact has proven difficult to measure. 

A study of disaggregate household vehicle trip generation rates as 
a function of proximity to freeway ramps (10), using distance as a 
proxy for accessibility to destinations in 24 urban California coun
ties, was recently made of 6,200 randomly selected households. The 
study found no significant correlation between the two variables 
after controlling for other factors. However, this approach had lim
itations in that distance to the freeway could be measured only as 
distance to the census tract centroid because survey address records 
were destroyed (11). Furthermore, the results are complicated by 
the fact that the frequently found convergence of freeways near the 
core of central cities meant that lower-income residents were often 
the most proximate to one or more freeway interchanges. 

Areawide models (derived by correlating VKT growth to high
way system increases) seem more desirable than facility-specific 
studies because they eliminate the route choice effects by consider
ing entire regions (11, 12). They are also able to take into account 
long-term land use effects by extending the analysis over several 
decades. However, they focus on VKT instead of person-hours of 
travel and consequently confuse mode shift effects with true 
induced demand. These studies have been inconclusive about the 
elasticity of demand (VKT) with respect to new lane-miles of 
capacity; although all the reported results have been inelastic, they 
range from a very inelastic 0.1 to a much more elastic 0.8 (8). 

Even the areawide studies suffer from several critical deficien
cies: first, they use a single relatively simple measure of capacity 
increase (such as lane-kilometers or lane-miles) that is insensitive 
to the potentially significant different demand effects that would 
occur if the same investment were made in the center of the region 
versus the fringes. There are definitional problems in computing the 
denominator of the elasticity equation; the percentage increase in 
capacity must be estimated, meaning that a "base" capacity must be 
measured. Should the base capacity be measured at the corridor, 
county, primary metropolitan statistical area or consolidated metro-
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politan statistical area (CMSA) level? Economic theory, as well as 
experience with transportation and land use forecasting models, 
indicate that transportation supply cannot be treated as a homoge
neous product (13). 

Common sense suggests that new highway capacity has different 
impacts in an area that is already "built out" as opposed to one 
where much undeveloped land exists simultaneously with strong 
pressures for development. The costs of parcel assembly, structure 
demolition, and so forth, are simply too high. In most cases the 
structure built on a parcel of land in the United States is the only one 
that has ever occupied that piece of property (14). 

Second, most areawide studies assume a constant elasticity of 
demand, probably because of the lack of enough data points. Intu
ition and economic theory suggest that elasticity is not necessarily 
constant but instead depends on the amount of current congestion 
and capacity of the system, the time frame involved (short-versus 
long-term), the trip purposes of road users, and possibly other factors. 
This issue requires further research. 

Because of the problems associated with the case study before
and-after approach (facility specific or areawide), it was decided to 
use a survey of household travel behavior to isolate the various 
effects of new highway capacity and identify those effects not 
currently treated by conventional travel forecasting models. The 
travel survey and its results are described below. 

TRAVEL BEHAVIOR SURVEY 

A travel behavior survey was developed and administered to fill in 
the missing information from the case studies on the relative impor
tance of the different effects of new highway capacity on travel 
behavior. Each potential effect (mode, time, destination, trip gener
ation) would be identified and quantified for the purpose of deter
mining its relative importance in estimating the total demand effects 
of new highway capacity. 

Selection of Survey Approach 

There are two general approaches to conducting behavioral surveys: 
stated preference (SP) and revealed preference (RP). Other refer
ences provide a comparison of these two methods (15); briefly, a 
stated preference survey poses various situations to the interview 
subject and asks How would you respond to the given situation 
given certain constraints? A revealed preference survey relies on 
measurement of actual responses to alternatives existing in the field. 
RP surveys can test only for the conditions that exist at the time of 
measurement, but an SP survey can explore behavioral changes 
because of a much wider range of options. RP surveys traditionally 
have been used to calibrate travel forecasting models. RP surveys 
provide information on the actual choices made by individuals in 
the face of two or more options. RP surveys have several limitations 
when applied to the problem of estimating the behavioral effects of 
new highway facilities. Critical shortcomings are the difficulty in 
avoiding bias in the selection of the survey sample and accounting 
for persons moving into and out of the presumed "impact" area of 
the new facility, and controlling for changes in background vari
ables, such as economic and demographic changes. 

The major difficulty in applying an SP survey to the research 
problem is that traditional SP surveys require that the respondent be 
offered a choice between trip or transportation system attributes that 
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force a realistic trade-off by the user. In a classic SP survey, the 
respondent is offered a higher fare/shorter travel time option, and a 
lower fare/longer travel time option. With increased highway 
capacity/reduced congestion, such a trade-off is not possible 
because presumably everyone would prefer a shorter travel time. 
To make meaningful tradeoffs between alternatives, respondents 
were asked to describe all of their previous day's activities and then 
contemplate how they would alter them if more (or less) time were 
available on that day to perform those activities. Perhaps more 
precisely, it is how people would use "released" or "freed-up" time, 
if congestion-relief projects made such time available. 

The survey also embodied concepts from the developing field of 
activity analysis (16). Within the survey instrument here, people 
were asked about all of the previous day's activities and then asked 
to respond to changes in travel and activity patterns given changes 
in travel time for trips made on the reference day. Although the 
24 hr available each day is fixed for every individual, the allocation 
of ti~e to each activity is not. The time and money allocated to 
travel is further subdivided among mandatory activities such as 
going to work, school, and so forth, and discretionary activities such 
as going to a movie. These various daily activities can be thought 
of as "goods" in the economic sense that people "purchase" by 
spending "time" and money on the activity. A 1987 survey (17) 
found that the average California adult spends 1.8 hr a day travel
ing, more than 10 percent of his or her waking hours. 

Each survey respondent was told the following: 

We are trying to find out how traffic congestion affects what people 
do. I am going to describe what might happen if traffic congestion got 
better or worse, and ask you how you might change your activities or 
travel as a result. Please take some time to think carefully about what 
you might do. · 

The respondent was then read back all of the trips he or she made 
the previous day, and asked, 

Consider what you told me about what you did yesterday. For each trip 
I am going to ask you what you would have done if it had taken less 
time to make the trip. Consider your first trip yesterday. You started 
at ... [time] and went to ... [destination] by ... [mode]. This trip 
took ... [duration previously stated by respondent]. Now suppose that 
this trip took [randomized duration] less time to make. Please select 
one or more of these statements that best describe what you would 
have done. 

Respondents were not asked about trips that were less than 
10 min in duration, because the minimum travel time savings 
"offered" was 5 min, and it was thought that for trips of less than 
10 min, a time savings of 50 percent or more would be unrealistic 
and unlikely to be achieved by any plausible capacity-increasing 
project and also because of the desire to offer travel time savings in 
increments of 5 minutes. In fact, one of the survey problems was 
that the total travel time change was independent of the individual's 
reported trips. Also the total released time during the day was not 
keyed to a specific hour, which some respondents indicated would 
condition their response of how the time would be used. 

Survey Methodology 

Adults over the age of 16 in the San Francisco and San Diego met
ropolitan areas were randomly selected; these two areas contain 
about 8.7 million people. Respondents were interviewed a~out their 
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existing travel behavior, activity patterns, and hypothetical behav
ior under changes in travel time. "Number plus one" dialing was 
used to reach unlisted numbers. The Los Angeles area was excluded 
because the Northridge earthquake occurred shortly before the 
survey commenced and had dramatically affected travel patterns 
there. The survey was administered using computer-assisted tele
phone interviewing (CA Tl) because of the complex branching 
required in the survey. Interviews were conducted on Tuesday 
through Friday evenings and Saturday midday, with survey ques
tions asked about the prior day's travel. Randomization techniques 
were used to ensure that the person who answered the phone was 
not necessarily the person interviewed. 

After all trips were enumerated, the CA TI program selected each 
trip made that was at least 10 min long. For trips between 10 and 
15 min, a 5-minute reduction in travel was offered. For trips longer 
than 15 min, a randomized travel time savings of between 1 and 
50 percent was offered; the randomized savings was a minimum of 
5 min if the survey number was odd and 10 min if the survey 
number was even. 

Survey respondents were given the following options: doing 
nothing differently; starting at the same time and arriving earlier; 
starting later and arriving at the same time; changing mode; chang
ing trip destination; making an extra stop along the way; and 
"other." Only one additional "extra stop" was allowed for in the 
questionnaire, although in reality it is possible that some individu
als might add two (or more) trips to their tour. The possibility of 
entirely new trips was allowed for at the end of this process by ask
ing, Would you have left home again before the end of your day if 
you had [randomized time] minutes extra time? If the answer was 
yes, the respondents were asked where they would have gone, how 
much time they would have spent there, and for what purpose. 

Survey Results 

A total of 676 individuals over the age of 16 were interviewed in 
676 households. They collectively made a total of 2, 182 trips the 
previous day. The respondent demographics (age, income, educa
tional achievement, and automobile ownership) were compared 
with those from the 1990 Census. The respondent pool was close to 
the state average, except that poor households (those earning under 
$15,000 per year) were somewhat underrepresented. About 90 per
cent of the respondents were willing to report their household 
income. Of those answering the question, 9.5 percent reported 
household incomes under $15,000 per year. The 1990 Census found 
the same group constituted 15.1 percent of the households in the 
San Francisco Bay Area (CMSA). Some of the difference can be 
accounted for by inflation between 1989 (the reference year for the 
census) and the year of the survey ( 1994 ). 

Very-low-income groups tend to be underrepresented in most 
telephone surveys, but the importance of these households is miti
gated by the fact that they produce a small percentage of VKT. The 
National Personal Transportation Survey (18) found that house
holds with incomes under $10,000 generate VKT/household that is 
only 40 percent of the average rate for all households (using auto
mobile driver miles as the measure). The 1990 Census found that 
these households represent about 15.5 percent of all households in 
the United States; therefore, it appears that they are responsible for 
somewhat over 6 percent of VKT. 

The key results of the survey (Tables 1 and 2) were as follows: 
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TABLE 1 Responses of Travelers to Travel Time Savings for Each 
Trip 

Travel Time Savings due to Congestion Relief (minutes) 

Response 5 IO 15 20+ All 

No Change 46.5% 49.6% 35.l % 38.l % 46.5% 

Arrive Earlier 34.9% 33.9% 40.5% 31.0% 34.6% 

Leave Later 12.9% 12.5% 16.2% 23.8% 13.5% 

Change Mode 0.4% 0.4% 2.7% 2.4% 0.6% 

Change Destination 0.9% 0.5% 

Make Extra Stop 2.9% 2.8% 5.4% 4.8% 3.1% 

Other 1.5% 0.8% l.l % 

Total I00.0% I00.0% I00.0% I00.0% 100.0% 

• Over 35 percent of the trips made would be unaffected when 
the trip travel time increased or decreased by 15 min or less con
sidering all trip purposes. 

• Another 20 to 40 percent of trips made would change only to 
the extent that the respondent would arrive earlier or later at a des
tination and make no change to the departure time to compensate 
for the effect of the travel time change. 

• About 10 percent to 15 percent of the trips would be resched
uled to compensate for or take advantage of the travel time change. 

• A time savings of 5 min would generate extra stops for about 
3 percent of the trips. This percentage increased to 5 percent when 
a 15-min time savings was offered. The average across all time 
savings offered was 3 percent. 

The overall result is that 90 percent to 95 percent of the trips 
would be unchanged or would have schedule changes in response 
to travel time increases and reductions of 15 min or less. As 
expected, the greater the magnitude of the travel time change, the 
greater the traveler response. Interestingly, the results are not sym
metrical: respondents tended to react slightly more strongly to 
increases than to decreases in travel time (see Figure 2). When faced 
with a travel time increase, respondents would try to adapt by 
changing mode, destination, and route for a higher percentage of the 
ti-ips than if they were offered an equal amount of time decrease. 
Given the nature of the two metropolitan areas in which the survey 
was conducted, it is likely that more respondents had recent experi-

TABLE 2 Responses of Travelers to Travel Time Increases for Each 
Trip 

Travel Time Increase due to Congestion (minutes) 

Response 5 IO 15 20+ All 

No Change 53.5% 41.3% 38.6% 24.4% 45.7% 

Arrive Later 22.1% 31.0% 38.6% 36.6% 27.8% 

Leave Earlier 17.3% 17.6% 9.1% 24.4% 17.4% 

Change Mode 1.2% 1.5% 4.5% 2.4% 1.6% 

Change Destination 1.0% 0.4% 2.3% 0.7% 

Make Extra Stop 0.2% 1.3% 0.7% 

Other 4.6% 6.9% 6.8% 12.2% 6.1% 

Total I00.0% I00.0% I00.03 I00.0% I00.0% 
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ence adjusting to travel time increases than decreases. Asymmetric 
behavior is probably not surprising; some gaming simulations have 
shown that even given the same actuarial odds (expected value), 
people are much more concerned with a possible loss of wealth than 
they are with a possible gain. 

The respondents indicated that only approximately 1.6 percent of 
their trips would be susceptible to a modal change given increased 
travel time for a specific trip. Of these hypothetical "mode switch
ers," most (38 percent and 35 percent, respectively) said they would 
switch to driving alone or public transit. It was implicit in the sur
vey that the travel time by alternative modes was not changed. 
Greater time increases and decreases had a greater effect on traveler 
responses than smaller amounts of time changes. However, given 
that only 13 percent of survey trips were greater than 30 min in 
length, it was not realistic to ask the majority of the respondents 
about time savings of greater than 15 min. 

CONCLUSIONS AND RECOMMEND A TIO NS 

Most previous investigations of the effects of new highway capac
ity have been facility-specific "before-and-after" studies. At first, 
this approach seems appealing and logical, but on reflection, it 
becomes clear that it is nearly impossible to isolate the effects of 
new highway capacity on induced trip making. There are too many 
extraneous factors that can affect the results, including the avail
ability of alternative modes and routes in each corridor; the condi
tion of the local economy; zoning; and natural constraints to devel
opment. These factors not only affect the conclusions but also limit 
the validity of extending these results to other situations and loca
tions. These factors may have been responsible for the conflicting 
conclusions that other researchers frequently arrived at in the past. 

The results of this survey must be qualified by its relatively small 
size (under 700 households) and limited geographic scope. How
ever, the following are some of the indications from this survey: 

• Current travel forecasting practice probably results in an 
underprediction of 3 to 5 percent in the number of trips that may be 
induced by major new highway capacity projects. Where a project 
is expected to yield travel time savings of more than 5 min for a 
large number of trips, adjusting travel demand upward to reflect 
induced travel is probably warranted. 

• A key impact of new highway capacity is temporal shifts in 
demand (trips formerly made in the off-peak moving to the peak 
periods). From the highway user's perspective, this is not necessar
ily bad because it means that he or she can make a trip in response 
to personal needs rather than to traffic conditions. On the other 
hand, it will affect the congestion, speeds, and emission estimates 
produced by travel models. There is a strong need to develop better 
models to predict peak spreading/time of day of travel. 

In the longer term, new highway capacity may influence deci
sions about automobile ownership, residential location, employ
ment location, and the locations of expansion areas for businesses 
and government. These effects are important but are beyond the 
scope of this paper. Several of these effects cannot be addressed 
with a household travel behavior survey. However, some of these 
impacts are already accounted for in current transportation/land use 
forecasting practices in California's largest metropolitan areas, 
using models such as DRAM/EMPAL and POLIS. 
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FIGURE 2 Response of travelers to hypothetical trip time changes. 

Key Conclusions 

Highway capacity changes influence travel behavior principally by 
affecting travel time and cost. The principal conclusions from the 
survey are as follows: 

• The sample indicated definite preferences about how travelers 
would respond to changes in travel time. Their response preferences 
are in the following order: 

- Change route (find a faster route if the current one becomes 
congested); 

- Change schedule (find another time of day when congestion 
is lower); 

- Consolidate trips (reduce number of daily trips by accom
plishing more activities with a given trip); 

- Change mode (switch to more convenient mode); and 
- Change destination (find another location with similar 

services). 
• Whether a person prefers to change mode over destination (or 

vice versa) may depend on the trip purpose, for example, a destina
tion change is probably preferred over a mode change for most 
shopping trips. 

• The order of preference responses appears to be similar for 
travel time increases and decreases, although the magnitude is dif
ferent. Whether faced with travel time increase or decrease, both 
changes would result in the respondent preferring a different route 
or rescheduling the trip, rather than changing the trip mode or desti
nation. 

• Survey respondents indicated a high degree of resistance to 
change in their travel behavior when offered travel time savings of 
between 5 and 15 min per trip. A 5-min travel time savings (on aver
age) resulted in a 3 percent increase in daily trips made per person 
and a 15-min time savings resulted in a 5 percent increase in trips 
per person per day. 

Because most trips in metropolitan areas are Jess than 15 min 
long and realistic time savings on such short trips would rarely 
exceed 5 min, it is unlikely that adding new lanes to an existing 

highway would significantly reduce travel times for the majority of 
trips, although this general observation may not apply to new high
ways or to home-work (commute) trips. Commute-related trips are 
longer at an average of between 20 and 30 min and are more likely 
to encounter peak'."period congestion. The commute trip also drives 
many other decisions, such as vehicle holdings and household 
location, and those considerations have a substantial influence on 
generation of short trips. Thus, there could be some important 
secondary impacts that are not accounted for here. 

Recommendations for Future Research 
and Survey Improvement 

There were questions that could not be answered in this study. They 
include assessing whether the results are transferable to other areas; 
how congestion affects interactions between household members; 
and how qualitative factors (such as stress) may influence travel 
behavior when congestion is reduced. It seems logical to presume 
that a 30-min drive in stop-and-go traffic would be perceived dif
ferently from a 30-min drive in free-flowing traffic, but the survey 
instrument was not able to distinguish between the two. A small 
sample of commuters in Orange County, California (19), found that 
most, but not all, drivers perceived commuting in congested traffic 
as more stressful than commuting in uncongested traffic. To the 
extent that this is true, it suggests that the results of the travel survey 
conducted here could underestimate the true effects on tripmaking 
of reduced congestion. 

It is recommended that the following steps be taken to improve the 
understanding of the effects of increased highway capacity on travel 
behavior and to improve the ability to forecast these effects at the 
regional level. Repeating the behavioral survey in other metropoli
tan, and possibly rural, areas to determine whether the survey results 
can ~e reliably extrapolated to all travelers would be desirable. A 
larger survey sample would also yield more information on the effect 
of new highway capacity on various trip types and purposes. 

The wording of survey questions and presentation of alternatives 
are critical in most SP surveys and are among the known weak""' 
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nesses of the method. Some respondents were confused about 
whether a visit to a different location meant a different location for 
the same purpose or a different location for a different or additional 
purpose. For some respondents who made fairly short trips, the total 
travel time savings presented was near or greater than the amount 
of time the respondent had reported in travel. Some respondents 
who realized this were confused. 

This survey did not allow for the possibility that people could 
save a trip time reduction over a week, and "spend" it as a block. 
The survey approach was thought to be appropriate since, unlike 
money, time is not easily "banked." However, the authors recognize 
that the greater an individual's flexibility in allocating time, the 
more likely that travel time savings should be investigated using a 
week as the reference period (rather than 24 hr). Nonworkers or 
those working part time would appear to have the greatest flexibil
ity in this regard (the increasing use of 4-day work weeks may also 
be important). 

It would be useful to use other research approaches to corrobo
rate the results of this survey. One is activity gaming and simula
tion, which allows researchers to better understand the intrahouse
hold allocation of travel and other activities. This study made only 
a rudimentary attempt to consider how one household member's 
travel time changes might affect the travel and activity patterns of 
other members of the household. Another approach would be to 
collect detailed information on the before-and-after effects of those 
living in a corridor where travel times are improved. Recently 
developed automatic vehicle location technology, using cellular 
phone technology, would allow detailed multiday travel diaries to 
be analyzed without the tedium and error associated with the tradi
tional manually kept diaries. 
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Travel-Time Uncertainty, Departure Time 
Choice, and the Cost of Morning Commutes 

ROBERT B. NOLAND AND KENNETH A. SMALL 

Existing models of the commuting time-of-day choice were used to ana
lyze the effect of uncertain travel times. Travel time included a time
varying congestion component and a random element specified by a 
probability distribution. The results from the uniform and exponential 
probability distributions were compared and the optimal "head-start" 
time that the commuter chooses to account for travel time variability, 
that is, a safety margin that determines the probability of arriving late 
for work, was derived. The model includes a one-time lateness penalty 
for arriving late as well as the per-minute penalties for early and late 
arrival that are included by other investigators. It also generalizes ear
lier work by accounting for the time variation in the predictable com
ponent of congestion, which interacts with uncertainty in interesting 
ways. A brief numerical analysis of the model reveals that uncertainty 
can account for a large proportion of the costs of the morning commute. 

The choice of home departure time for commuters is an important 
element in determining how congestion levels will vary during 
morning peak travel. This choice has been related empirically to the 
cost of early or late arrival relative to some preferred work arrival 
time (J,2). The planning of on-time arrivals is, however, compli
cated by the presence of uncertainty in actual travel times. 

This paper describes a model in which commuters simultane
ously trade off costs of inconvenient schedules, lateness penalties, 
and the desire to minimize time spent in congested traffic. Like 
Gaver (3) and Polak ( 4), the authors assumed that commuters face 
a probabilistic distribution of travel times and choose departure time 
to minimize an expected cost function. In contrast to these authors, 
the cost function includes a discrete lateness penalty as ~ell as per
minute penalties for both early and late arrival; it also accounts for 
variation over time in the predictable component of congestion. 
Furthermore, the optimized expected cost function (i.e., the costs 
resulting after an optimal departure time is chosen) is derived ana
lytically. This is done for both a uniform and an exponential distri
bution for uncertain travel time. 

The results show how changes in the uncertainty of travel time 
affect both the departure time decision and the resulting expected 
costs. For example, as uncertainty increases, commuters shift their 
departure schedules to earlier hours to compensate for the increased 
probability of late arrival; in some cases they overcompensate in the 
sense that the probability of late arrival decreases as uncertainty 
increases. As for the resulting expected costs, the functional rela
tionship that is derived by relating costs to the underlying parame
ters of the model is of great interest for empirical studies of traveler 
behavior under uncertainty (5-7). For example, only when lateness 
penalties are disregarded is that functional relationship linear in the 
standard deviation of travel time, as is frequently assumed. 

Department of Economics, School of Social Sciences, University of 
California, Irvine, Calif. 92717. Current address, R. B. Noland: Environ
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Changes in the level of congestion over the course of the peak 
period also play an important role in commuter decisions. Rapidly 
rising congestion shifts the commuter to earlier departure times but 
also lowers the probability of late arrival. The opposite is true when 
congestion levels are falling. These types of trade-offs are fully 
accounted for in the model. 

The paper begins with a review of the literature on departure time 
and route choice, especially previous work dealing with uncertain 
travel times. The analytical model is then presented and solved. 
Some numerical examples that provide quantitative information 
about the possible importance of various components of the model 
are given. Implications for both research and policy are discussed 
in the conclusion. 

LITERATURE REVIEW 

The reliability of arriving at a destination on time is a key component 
in the decisions made by commuters for their morning trips. Prashker 
( 8) attempts to classify some perceived components of reliability into 
a measurable framework using factor analysis. More recently, 
researchers have produced direct empirical estimates of how travel
ers respond to reliability (5-7). Much of this work has been aided by 
the development of stated preference survey techniques. 

It is useful to begin with an understanding of how travelers 
choose departure time choice under certainty. Most research has 
focused on schedule delay, defined as the difference between the 
actual time of arrival and some ideal time, usually identified with an 
official work start time. Typically the commuter is assumed to 
receive some disutility from schedule delay as well as from travel 
time (J,2,9). In Small's specification (2) this disutility is piecewise 
linear in schedule delay, that is, disutility rises linearly in either the 
early or late direction. In addition, there is a discrete penalty for 
being late. In all these studies scheduling disutility is traded off 
against the possible advantages, caused by variation in congestion 
over the rush hour, of shifting one's schedule to take advantage of 
lower congestion. In Cosslett's (I) continuous model, this tradeoff 
appears as a maximization condition involving the slope of the 
congestion function. 

Scheduling models such as these have been incorporated into 
equilibrium analyses of congestion formation. Basic models for a 
single link (I 0-15) have been extended to a variety of circum
stances including elastic demand (16,17); networks (16,18,19); het
erogeneous commuters, including arbitrary population distributions 
for desired arrival times (19,20); and uncertain capacity or demand 
(21,22; Arnott et al., unpublished data). Small gives a more com
plete review (23). Although most of these analyses use determinis
tic models of the traveler's choice of departure time, a few (16,24) 
use a discrete-choice model analogous to that of Small (2). 
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Other researchers have incorporated a simpler version of this util
ity specification into models analyzing uncertain travel times. Gaver 
(3), Polak ( 4), and Bates (5) all consider the piecewise linear dis
utility specification when travel time is uncertain, but none consid
ers congestion that varies over the rush hour. Hence they examine 
only the trade-offs inherent in trying to minimize the expected dis
utility from given arrival times given the randomness in travel times. 

Mahmassani and associates (22,25-27) simulate time-of-day 
departure choices using hypothetical data collected from actual 
commuters and fed through a traffic simulation model. These 
papers focus on day-to-day variations in travel time as commuters 
gain experience with the system. Although travel times may be 
uncertain, these simulations emphasize how people learn about the 
shape of the congestion profile as opposed to uncertainties caused 
by nonrecurrent events. 

Mannering (28) and Abdel-Aty et al. (7) investigate how likely 
commuters are to make changes in their departure time or route 
choices, or both. Mannering finds that those commuters with longer 
travel times are more likely to make changes and speculates that these 
trips may have larger variances. His results also indicate that nonre
current events may not allow a steady-state equilibrium to evolve, 
which may have implications for simulating traffic congestion. 

Mannering and Hamed (29) find empirical evidence that work
to-home departure decisions are influenced by similar factors. Such 
decisions may not be independent of home-to-work departure deci
sions: for example, some commuters may delay the morning depar
ture with the intent of staying at work until evening congestion 
levels have fallen. Neither the model in this paper nor any other one 
known to the authors attempts to deal with this dependence. 

Mahmassani and Hermari (25) and Mahmassani et al. (30) show 
that commuters tend to adjust departure times more readily than 
they do routes. In fact, route switches tend to occur when com
muters are continually dissatisfied with the outcomes from depar
ture time switches alone (27,30). The lower likelihood of route 
switching adds credibility to models that examine only the choice 
of departure time, which can have important impacts on the devel
opment and timing of peak congestion levels. 

ANALYTICAL DERIVATION OF MODEL 

A model is described that explains how uncertainty in travel time 
affects the expected cost of the morning commute. First, the basic 
components of the cost model, including how changes in conges
tion levels are accounted for are specified. Then the commuter's 
scheduling problem is formulated and solved using both a uniform 
and· an exponential probability distribution. The solution is then 
inserted into the expected cost function to determine how total 
commuting cost depends on the parameters describing the com
muter's travel environment. This cost consists of various compo
nents that offer a better understanding of how significant unrelia
bility is as a contribution to travel cost. 

Cost Model 

The following cost function for the morning commute is assumed: 

C = aT + 13 (SDE) + -y (SDL) + 8DL (1) 
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where 

T = travel time; 
SDE, SDL = schedule delay early and late, respectively (defined 

later), 
DL = 1 when SDL > 0 and 0 otherwise; 

a = cost of travel time; 
13, -y = costs per minute of arriving early and late, respec

tively; and 
e = discrete lateness penalty. 

The variables SDE and SDL are defined with respect to the 
official work start time, t11,, and the home departure time, t1i. Let 
SD = t1i + T - t"' be "schedule delay," the difference between 
actual arrival time and official work start time. Define 

SDL=gD 
if SD> 0 
otherwise 

.{ 0
-SD 

SDE = 
if SD< 0 
otherwise 

(2) 

(3) 

This formulation of costs is that of Small (2) Table 2, Model l. It 
could result if pay is docked for late arrival, or if in some other way 
the frequency and magnitude of late arrival are costly to one's 
career. Many analyses of time-of-day decisions have used the first 
three terms of Equation 1; others have implicitly added the fourth 
term with e set to infinity by excluding the possibility of late 
arrivals. A more complex model formulation could also vary the 
amount of time spent at work and could thus account for evening 
travel conditions as additional determinants of the morning 
commute decision. 

The total commute time, T, consists of three elements. Tj is the 
free-flow travel time when there is no congestion. T, is the extra 
travel time caused by congestion, which the traveler is sure to 
encounter; it is a function of t1,, the home departure time. T, is the 
extra travel time caused by nonrecurrent congestion and is modeled 
formally as a random variable. Following the standard classification 
of congestion delays into recurrent and incident-related delays 
(31,32), T_, is "recurrent delay" and T, is "incident delay." 

For simplicity it is assumed that the probability distribution of T, 
is independent of recurrent congestion and of the time of day of 
travel. This assumption has the advantage that it enables one to iso
late the impact of exogenous changes in travel time uncertainty. 
Although the assumption may appear unrealistic, there is a surpris
ing absence of clear-cut empirical evidence for alternative assump
tions. Satterthwaite (33), in a review, finds no reported relations 
between congested traffic and accidents (which are a primary cause 
of nonrecurrent congestion). Hendrickson et al. (34) analyzed data 
in Pittsburgh and concluded that variance of travel times is i.nde
pendent of departure times. Richardson and Taylor (35) posit a rela
tionship between congested traffic and increases in travel time vari
ability but do not derive an explicit relationship. 

To simplify the analysis, define the variable Te to be the amount 
one would arrive early if there were no incident-related delays: 

(4) 

As defined by Gaver (3), T,, is the "head start" time. Polak's (4) 
"safety margin" is equal to Te - E(T,), where E(T,) denotes the 
expected incident delay. Note that Te> 0 implies the possibility of 
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·early arrival (if recurrent congestion turns out to be nil), whereas 
Te< 0 implies certain late arrival. Schedule delay can now be writ
ten as SD = T, - Te and the lateness dummy, DL, is equal to 1 if 

T, > Te and 0 otherwise. 
These definitions enable the cost function to be written as follows: 

C(T,) = o{7[ + T .. + T,] + 13 (1 - DL) [Te - T,] 
+ "{ DL[T, - Te] + 8DL (Sf 

Two alternative probability distribution functions for T, are speci
fied. The first uses a uniform distribution, which assumes that the 
likelihood of a delay is equal for any level in the domain; the sec
ond is an exponential distribution, as in Gaver (3), which allows 
lower levels of delay to have a greater likelihood than longer levels 
of delay. Many authors, including Richardson and Taylor (35), have 
fit log normal curves to travel time variance data; Giuliano (36) has 
found specifically that nonrecurrent congestion follows a log nor
mal distribution. Unfortunately the log normal distribution is found 
to be intractable in this model, so it is not pursued here. 

Changes in Congestion Levels 

Before proceeding with the derivation of expected cost functions, it 
is convenient to describe how congestion levels change with the 
choice of departure time, t,,. First, it is possible to describe the com
muter's choice of departure time by head start time, Tn instead of 
departure time, t,,. To do this, one assumes that T." the travel time 
associated with congestion, is a differentiable function oft,,, T .. (t,,). 
Differentiating the implicit definition t,, = t"' - 1f - T_..(T,,) - Te, one 

finds that 

(6) 

or, solving 

-1 

(1 + T~) 
(7) 

where T; = dTJdt,,. The requirement T.; > - 1 is imposed to rule 
out "overtaking," in which a person can arrive earlier by leaving 
later (23,37). This condition guarantees that Equation 7 is well 
defined and negative. Using Equation 7, the functional relationship 
between T .. and Te, defined by T. .. [t,,(Te)], has total derivative 

d T.x = T'. . ( dt,, ) = -T', = _ ~ 
dTe ' dTe (1 + T',) 

(8) 

The quantity ~ is a measure of how steeply congestion increases if 
departure is delayed; more precisely,~ is the rate at which conges
tion increases as the "planned" arrival time, t,, + 1f + T, = t". - Te, 
is made later. It has the same sign as r;. If~> 0, conditions worsen 
as planned arrival time is delayed, thus favoring earlier schedules; 
whereas ~ < 0 favors later schedules. Note that the restriction 

r; > -1 implies~< 1. 
Henceforth T, is regarded as a function of Tn with well-defined 

derivative -~. As it turns out, making T .. a function of traffic 
volume at Te rather than that at t,, is necessary for consistency in an 
important equilibrium model of endogenous scheduling choice 
associated with Henderson (10,11); see work by Chu (37) for a 
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demonstration. If T, has a kink so that ~ is undefined, corner solu
tions in addition to those described below become possible. 

It is now possible to solve the model for two alternative proba
bility distributions for T" In each case the expected cost given 
scheduling choice Te is computed; then the choice of Te that mini
mizes the expected cost is computed and this chosen value is 
inserted into the expected cost equation. The resulting expected cost 
is then a function solely of those parameters that the commuter faces 
in choosing the schedule for a morning commute trip. 

Uniform Distribution 

A uniform probability distribution is defined for the domain [ 0, T,n]. 
The probability density function is defined asf(T,) = l/T,,, for 0::::; 
T, ::::; T,,,, and 0 otherwise. The mean of T, is 1/2 T,n, and its standard 
deviation is T,11 I ff2. The mean and standard deviation for the total 
travel time are T1 + T, + 1/2 T,11 and T1 + T .. + (T,,,I ff2 ), respec

tively. 
The expected cost for the morning commute is 

l JTm 
EC = - C(T,)dT, 

Tm o 
(9) 

Substituting Equation 5 into Equation 9, there are three possible 
cases: (a) 0 < T,, < T,11 ; (b) Te~ T,11 ; and (c) Te ::::; 0. For Case a, the 
chosen departure time can lead to either early or late arrival, depend
ing on the realization of the random variable T,; Equation 9 becomes 

( 
T,11 ) 1 JTe EC = a 1f + T .. + - + - 13 (T,, - T,. )d T, 
2 T,,, 0 

1 JT,n + - ["{ (T, - Te)+ 8] dT,. 
T.11 Te 

[ 
T,n] 1 fj =a 1f + T .. + - + - [ (T,11 - 7;,)] 
2 . T.11 

1 + - [13T; +"I (T,11 - Te)2
] 

2T111 

= aE(T) + 8PL + 13E(SDE) + "{E(SDL) 

(10) 

(1 la) 

(12) 

In Equation l la the first term is merely the expected travel time 
multiplied by its cost. The second term is the probability of arriving 
late, Pu multiplied by the lateness penalty, 8. The last two terms 
are the expected cost associated with the amounts of early and late 

schedule delays. 
The other cases result in simple modifications of Equations 10 

and 1 la. For Case b, where Te~ T,11 (implying the commuter is early 
with a probability of 1), the limit of integration Te is replaced by T,11 

in Equation 10; the result is 

EC= [T. + T. + T,
11

] + R[T - T,
11

] CXJ x 2 Pe 2 (1 lb) 

For Case c, where T,, ::::; 0 (implying the commuter is late with a 
probability of I), then T,, is replaced by 0 as a limit of integration in 

Equation 10 and the result is as follows: 

EC = [r. + T.. + T,
11 

] + 8 + [ T,
11 

- T] a f ·' 2 "I 2 e 
(1 lc) 

In Cases band c the per-minute scheduling cost is simply that asso
ciated with the expected arrival time because there is no uncertainty 
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about whether the commuter will arrive late. Equation 12 continues 
to apply, with appropriately modified expressions for the probabil
ity PL and for the expectations of SDE and SDL. As will be seen, 
Cases b and c can occur when the cost parameters and the rate of 
change in the level of congestion have specified ranges; for exam
ple, if 8 is very large or if congestion is increasing rapidly in depar
ture time, one may choose to always arrive early (Case b). 

The value of Te that minimizes the expected cost can now be cal
culated. For Case a, the derivative of Equation l la is set to 0, while 
regarding T .. as a function of Te as in Equation 8. Solving for Te gives 
the following result: 

T;= (J3 ! -y) (8 + 'Y T,11 + a D.*T,11) (13) 

where D. * = - dT,./dTe evaluated at T;. The second-order condition 
requires that dD.ldTe < (J3 + -y)/(a T,11), which may be interpreted as 
requiring that congestion be convex, or at least not too strongly con
cave, in planned arrival time (t11• - T,,). If T .. is a concave function of 
Uw - Te), then d2TJdT} < 0, that is, D. = - dTJdTe is increasing 
in Te. This solution is valid only if it is consistent with Case a as an 
interior solution, which requires that 0 < T; < T,,,, that is, - 'Y T,11 
< (8 + Q' D,. *T,n) < J3 T,,,. 

To evaluate the expected cost when Te is chosen optimally, Equa
tion 13 is substituted into Equation 11 a, yielding the following: 

EC*= Q' E(T*) + 8 Pi+ ct 

where 

T.n - Pe 
Pt=----

T.n (J3 + 'Y) 

C* = ..!_ 8 T. + (8 + a D. T,11)2 
s 2 Ill 2(J3 + -y)T,,, 

and 

J3'Y 8=---
(J3 + 'Y) 

(14) 

(15) 

(16) 

(17) 

(18) 

When 8 = D. = 0, Equations 14 through 17 are especially easy to 
interpret. The probability of being late is then chosen independently 
of travel time variance and is decreasing in -y/J3. In addition, the 
uncertainty of travel time creates a cost Ct= Yi 8 T,11 which is pro
portional to the standard deviation (T,,/VU) of travel time and also 
to the coefficient 8, which is a kind of geometric average of the two 
schedule delay cost parameters; this cost arises because the com
muter is unable to eliminate the likelihood of some schedule delay, 
either early or late. When 8 = D. = 0, the probability of being early 
is 1 - Pt = 'YI (J3 + -y) in agreement with Gaver (3) Equation 2.3; 
Polak (4) Equation 3.8 (with notation cE = J3 and cL = -y); and Bates 
(6) Equation 17 (with notation l = 'Y and e - h = J3). 

The last term in ct may be regarded as the scheduling-cost 
consequences of shifts in Te that are made to reduce congestion (if 
D. i= 0) or to reduce the likelihood of a discrete lateness penalty (if 
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8 > 0). For example, when D. i= 0, indicating that some congestion 
can be avoided by changing the head start, the commuter does so; 
expected travel time is thereby reduced and Ct increased. When 
8 > 0, indicating an extra penalty for being late by any amount, Tf 
is increased so as to reduce Pt; ct will go up unless a negative D. 
was already causing a tendency toward lateness. 

Consider now Case b of an individual who arrives early with a 
probability of 1; this occurs if, in Equation 13, T; > T,,,, that is, if 

8 
aD.* :::: J3 - -

T,,, 
(19) 

This case can occur when 8 is high or when congestion is increas
ing at a rapid rate. In this case, the commuter seeking to minimize 
cost will choose Te to minimize Equation 11 b. An interior solution 
occurs when 

(20) 

which requires D. > O; the second-order condition requires that 
dD.ldTe < 0. Hence the congestion function must have a region 
where it is a rising convex function of planned arrival time t"' - Te. 
At Solution 20 the consumer trades off the extra schedule-delay 
costs of still-earlier arrival (J3dTe) against the saving in travel time 
cost caused by less congestion ( aD.dTe); this is the same tradeoff that 
forms the basis for determination of early-side arrival times in the 
models of Vickrey (12), Cosslett (1), Fargier (13), Hendrickson and 
Kocur (14), Amott et al. (15), and others. Alternatively, Case b may 
lead to the comer solution Te = T,11 . This will occur if Equation 19 
is satisfied but Equation 20 cannot be, as could easily happen if 
8/ T,11 is large. The interpretation here is that the discrete lateness 
penalty is large enough for the commuter to eliminate entirely the 
possibility of late arrival, but variation in congestion, D., is not large 
enough to cause a desire for still earlier planned arrivals. 

Consider finally Case c of an individual who decides to arrive late 
with a probability of 1, that is, someone who chooses Te ~ 0. This 
occurs if T; ~ 0 in Equation 13, if 

(21) 

This requires that D. * be negative, that is, congestion is decreasing 
and also that neither 'Y nor 8 be too large. In such a situation, the 
commuter chooses to incur the relatively mild lateness penalties to 
take advantage of lessening congestion. Expected cost (Equa
tion l lc) has a local minimum where 

aD.=--y (22) 

provided again that dD.ldTe < 0 (convex congestion function). 
Again, there could also be a comer solution Te = 0. Note that Equa
tions 21and22 are compatible only if D. changes considerably over 
the range of possible values of Te. This could happen if, for exam
ple, the interval [t"' - T,,,, t11.] occurs near the end of the rush hour, 
so that D.* is strongly negative (representing rapidly falling conges
tion at T;); the commuter may then choose a later time than Tf 
when both congestion T. .. and its rate of change, D., are smaller in 
magnitude, making Equation 22 possible. In fact, if D. * is strongly 
negative there must be a later region where ID.I is smaller because T. .. 
cannot fall below 0. 
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A practical difficulty is to find a reasonable congestion profile 
that allows one to solve these equations for the optimal head start. 
A linear congestion profile will work for Equation 13 but not for 
Equations 20 and 22. Conversely, other functional forms work for 
Equations 20 and 22 but will not give analytic solutions for Equa
tion 13. An explicit congestion profile is not defined; additional 
research is examining simulations that endogenously generate 
congestion profiles (38). 

Exponential Distribution 

The exponential distribution for Tr is defined by the probability 
density function, 

j(Tr) = t e(-Trlb) (23) 

which applies for 0 :::::: Tr. The parameter b is the mean and the stan
dard deviation of the distribution (this differs from the uniform dis
tribution in which the mean is v3 times larger than the standard 
deviation). The exponential distribution more accurately reflects the 
actual probability of the occurrence of an incident by allowing short 
delays to have a higher probability of occurrence than longer delays. 

Following the same procedures as those described earlier yields 
an expected cost for the exponential distribution. Assuming that 
Te > 0, to guarantee an interior solution, 

l Joo EC = b a (If+ T, + T,.)e-Trlb dTr 
0 

1 Te 

+ b J 13 (Te - Tr) e-Trlb dTr 
0 

+ t r ["{(Tr - Te) + 8] e-Trlb dTr 
Te 

(24) 

Note that it is now possible to specify an infinite range for the 
distribution function. Integration yields the following result: 

EC = a(Tr + T, + b) + 13 (Te - b) + e-Telb (8 + bl3 + b-y) (25) 

which can be rewritten as 

(26) 

where PL = e-Telb is defined as the probability of arriving late, and 
PE= 1 - PL is the probability of arriving early, given Te> 0. This 
can again be put in the form of Equation 12, where in this case E(T) 
= If+ T_, + b, E(SDE) = Te - P£b, and E(SDL) = bPL. These 
expectations can be verified by direct calculations from Equations 
2 through 4. 

The value of Te that minimizes expected cost can now be cal
culated. Taking the derivative of Equation 25 with respect to T,, 
setting it equal to 0, and solving for n gives the following result: 

[
8 + b(l3 + "'{)] 

T* = b·ln ------'---~ 
e b(l3 - <X~) 

(27) 

where ln denotes the natural logarithm. When 8 and ~ = 0, imply
ing no late penalty and no change in congestion levels, this formula 
corresponds to that of Gaver (3), Equation 2.5. The second-order 
condition requires that d~ldTe < - llab2

• exp(-Telb)· [8 + b(l3 + 
-y)], which can simplify to dMdTe < (a~ - 13)/ab. The probability 
of being late, Pi = e-'l1ib, can be rewritten as 
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p* _ b(l3 - a~) 
L - (8 + bl3 + b"'{) 

(28) 

Lateness is favored by small values of 0 and "Y and by a large nega
tive slope to the congestion function. Equation 27 will have no solu
tion where a~ :::::: 13, but this is not a problem because if~ is large 
enough for this to occur at some head start, then the commuter will 
seek larger head starts and must eventually find a region where ~ is 
small. Such a region must exist because T, cannot be negative. 

The interior solution of Equation 27 is valid only when it is com
patible with Te :::::: 0, the range under which it was derived. That con
dition is violated if the term in square brackets is ::; 1, i.e., if 

(29) 

This condition is the same as that in Equation 21, except that T,,, is 
replaced by b (recall that the standard deviation in the uniform dis
tribution is T,,,l'/fi., whereas for the exponential distribution it is 
equal to b). If it holds, the commuter chooses to always be late; 
expected cost is found by replacing Te by 0 in the limits of integra
tion in Equation 24, resulting in the following 

EC = a(Tr + T, + b) + 8 + -y(b - Te) (30) 

which is equivalent to Equation l lc for the uniform distribution. 
Head start, Te, would be chosen either at the corner solution, Te = 0, 
or at a point where a~ = --y, just as in Equation 22. This is analo
gous to Case c of the uniform distribution; there is nothing analo
gous to Case b because the exponential distribution has no upper 
limit and therefore there is no way to set Te so that one always 
arrives early. 

Returning to the interior solution (Equation 27), the optimized 
value of expected cost can be calculated by substituting Equa
tion 27 into Equation 25: 

[
8 + b(l3 + "'{)] 

EC* = a(IJ + T, + b) - ba~ + bl3·ln b(l3 _a~) (31) 

The first term is the expected cost of travel time. This can be rewrit
ten to compare with Equation 14: 

EC*= a(IJ+ T, + b) + 8?! + C;' (32) 

where Pi is given by Equation 28 and 

C* = b{ ·ln[8 + b(l3 + -y)]- 8(13 - a~) - a~} 
·' 13 b(l3 - a~) 8 + b(l3 + "'{) 

(33) 

The equations derived above describe the expected cost functions 
associated with uncertainty in travel times. These can be used to 
evaluate the relative proportion of expected cost associated with 
travel time uncertainty. The analyses in the next section provide 
some useful examples showing the relative importance of travel 
time variance for the cost of commuting. 

NUMERICAL EXAMPLES 

To analyze the head start times and expected costs associated with 
travel variance, estimates of the cost coefficients in the models are 
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TABLE 1 Head Start Times by Standard Deviation and Change in Congestion 

Unifonn Distribution: Te (in minutes) 

Tm I Jfi. = Std. Dev. A= -0.1 A=O A=0.1 

5 15.03 15.61 16.19 
10 28.23 29.39 30.55 
15 41.44 43.18 44.92 
20 54.64 56.96 59.28 
30 81.05 84.54 88.02 

Exponential Distribution: Te (in minutes) 

b =Std. Dev. A= -0.l 

5 
10 
15 
20 
30 

needed. Empirical estimates by Small (2) of the ratios ~lo'. and -ylex 
are used in combination with a value oftime of $6.40/hr. These val
ues are also used by Arnott et al. (15). The result, using ex = 6.40/hr, 
is~ = 3.90/hr and -y = 15.21/hr (rescaled to minutes for these cal
culations). The authors also use 8 = 0.58 from Small (2). 

Table 1 shows the values of Tl' for standard deviations of travel 
time between 5 and 30 min and for the congestion slopes, Ll, 
between -0.1and0.1. The optimal head start time is always larger 
with the uniform distribution than with the exponential distribution; 
this is because of its higher probability weighting for large delays. 
The head start is larger (earlier departure) when the standard devi
ation is larger and when congestion is increasing. Table 2 shows 
the corresponding optimal values of P[, the probability of arriving 
late, which is smaller when congestion is increasing. 

If a hypothetical commuter has scheduling flexibility, then it is 
possible to assume that ~ = -y, that is, the commuter is indifferent 
between schedule delay early and schedule delay late. In addition, 
this hypothetical commuter would have no b;1teness penalty, 8. This 
can be considered a form of flextime. A commuter with flextime may 
still have some preferred arrival time, perhaps determined by con
straints on the work departure time or personal preferences, such that 

8.74 
16.05 
23.28 
30.49 
44.89 

A=O A=0.1 

9.50 10.40 
17.57 19.36 
25.56 28.25 
33.53 37.11 
49.44 54.82 

~ and -y are not 0. Table 3 indicates the head start times chosen by 
such a commuter (with~ = "I = 3.90). In all cases the commuter still 
desires a head start time to avoid congestion, although these values 
are significantly less than those in Table 1. Note that the head start 
times increase linearly with respect to the standard deviation because 
8 = 0. In the case with no change in congestion levels, Te = 

V3 · b with the uniform distribution, and Te = b · ln(2) with the 
exponential distribution. 

Our analytical derivations have separated the costs associated 
with travel time, E(T*), from those associated with the uncertainty 
of travel time, c.r + 8 Pi. How important are the relative contri
butions made by these terms toward the total expected cost of travel, 
EC*? Table 4 provides a breakdown for each distribution for 
different levels of travel time uncertainty and Table 5 provides a 
breakdown for different levels of Ll, excluding the cost of certain 
travel time, ex (T_r + TJ. The total EC* does not differ much between 
the two distributions, the largest difference being about $0. 73 (when 
SD = 30). However, C.r, the expected cost of schedule delay, is 
much larger under the exponential distribution than the uniform dis
tribution. For large standard deviations of travel time, c.r from the 
uniform distribution becomes virtually insignificant regardless of 

TABLE 2 Optimal Probability of Being Late by Standard Deviation and Change 
in Congestion 

Unifonn Distribution: pL• 

Tm I Jfi. = Std. Dev. A= -0.1 A=O A=0.1 

5 13.24% 9.89% 6.55% 
10 18.50% 15.15% 11.80% 
15 20.25% 16.90% 13.55% 
20 21.13% 17.78% 14.43% 
30 22.00% 18.66% 15.31% 

Exponential Distribution: pL• 

b =Std. Dev. A= -0.l A=O A=0.1 

5 17.41% 14.96% 12.50% 
10 20.10% 17.26% 14.43% 
15 21.19% 18.20% 15.21% 
20 21.77% 18.71% 15.64% 
30 22.40% 19.24% 16.08% 
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TABLE 3 Head Start Times by Standard Deviation and Change in Congestion 
with Flex Time 

Uniform Distribution: Te• (in minutes) 

Tm I JU = Std. Dev. A= -0.1 A=O A=0.1 

5 7.239 8.660 10.081 
IO 14.478 17.321 20.163 
15 21.717 25.981 30.244 
20 28.956 34.641 40.326 
30 43.435 51.962 60.489 

Exponential Distribution: Te• (in minutes) 

b =Std. Dev. A= -0.1 

5 2.706 
10 5.412 
15 8.118 
20 10.824 
30 16.236 

the level or direction of changes in congestion. However, under the 
exponential distribution, the proportion of expected costs attribut
able to c; remains relatively stable at about 46 to 48 percent of the 
total expected costs for each level of standard deviation. This is 
about the same contribution made by the expected value of uncer
tain travel time, O'. b or 1/2 O'. T,,,, which in the case of the uniform dis
tribution accounts for virtually all of the expected costs of 
commuting. In both distributions the proportion of expected cost 
associated with the probability of arriving late, 8Pi, decreases as 
the standard deviation increases; apparently the shifts in head start 
time shown in Table l more than compensate for the increases in 
standard deviation. 

CONCLUSIONS 

This research has analyzed the costs associated with uncertain travel 
times. The work of Gaver (3) and Polak (4) has been followed but 

A=O A=O.l 

3.466 4.362 
6.931 8.724 

I0.397 13.086 
13.863 17.448 
20.794 26.172 

with some new contributions, focusing primarily on scheduling 
considerations. The effects of congestion that the commuter 
encounters every day have been explicitly separated from the non
recurrent congestion that accounts for day-to-day variability in 
travel times. In addition, a discrete lateness penalty, which was orig
inally detected empirically by Small (2) has also been introduced. 

Using one set of empirically estimated parameters, the expected 
cost of schedule delay is found to be a relatively minor component 
of costs when the uniform distribution is used but quite large when 
the exponential distribution is assumed. In both cases the residual 
probability of being late is set by the commuter at a small enough 
value that the expected discrete lateness penalty is only a small 
fraction of the total costs. 

The model described in this paper enables the analyst to predict 
the expected cost of schedule delay, including penalties for lateness, 
taking into account how the traveler adjusts the trip schedule in 
response to the travel environment. Our numerical example 
suggests costs of several dollars per trip, arising from standard devi-

TABLE 4 Expected Costs of Scheduling and Incident Delay with Uncertain Travel 
Time (4 = 0) 

Uniform Distribution 

Tm I JU. = Std. Dev. EC* cs· % 0PL• % 

5 1.0375 0.0564 5.43% 0.0574 5.53% 
10 1.9765 0.0411 2.08% 0.0879 4.45% 
15 2.9054 0.0360 1.24% 0.0980 3.37% 
20 3.8317 0.0335 0.87% 0.1031 2.69% 
30 5.6817 0.0309 0.54% 0.1082 1.90% 

Exponential Distribution 

b =Std. Dev. EC* c· s % 0PL"' % 

5 1.1508 0.5307 46.11% 0.0868 7.54% 
IO 2.2084 1.0416 47.17% O.IOOl 4.53% 
15 3.2612 1.5557 47.70% 0.1056 3.24% 
20 4.3126 2.0708 48.02% 0.1085 2.52% 
30 6.4139 3.1023 48.37% 0.1116 1.74% 

Note: Costs in dollars per morning commute. 
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TABLE 5 Expected Costs of Scheduling and Incident Delay with Uncertain 
Travel Time (SD = 10) 

Uniform Distribution 

.1 EC* c. 
s % 9pL• % 

-0.1 1.9827 0.0279 1.41% 0.1073 5.41% 
0 1.9765 0.0411 2.08% 0.0879 4.45% 

0.1 1.9827 0.0667 3.37% 0.0685 3.45% 

Exponential Distribution 

.1 EC* cs· % 0P, • % 
-0.1 2.2163 1.0331 46.61% 0.1166 5.26% 

0 2.2084 1.0416 47.17% 0.1001 4.53% 
0.1 2.2183 1.0679 48.14% 0.0837 3.77% 

Note: Costs in dollars per morning commute. 

ations of travel time varying from 10 to 30 min. Furthermore, if the 
exponential distribution applies, about half this cost is due purely to 
the variance of travel times (the other half being the expected value 
of the incident delay). 

If the expected cost of schedule delay is indeed a major cost of 
unreliable commute trips, as this suggests, then policies that reduce 
travel time variance may be preferable in many cases to policies that 
reduce travel times, especially when the latter are costly. Policies 
that decrease the response time needed to clear incidents, for exam
ple, may be much cheaper than and provide cost savings compara
ble to capacity expansion. 

The information the commuter has about congestion will influ
ence the departure time decision and ultimately the expected cost of 
commuting. Future work will analyze the impact of providing 
commuters with accurate information about changes in congestion 
levels and travel time variance. For example, how will changing 
information affect head start times when combined with a supply
side congestion model? What are the impacts on congestion when 
commuters have varying degrees of information about both 
congestion and reliability? The model presented here offers a start
ing point for addressing such questions, which are central to the 
evaluation of intelligent transportation systems. 
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New Approach to Route Choice Data 
Collection: Multiphase, Computer-Aided 
Telephone Interview Panel Surveys Using 
Geographic Information Systems Data Base 

MOHAMED A. ABDEL-ATY, RYUICHI KITAMURA, PAUL P. JOVANIS, 

PRASUNA REDDY, AND KENNETH M. VAUGHN 

The survey approach is often used in studying drivers' route choice 
behavior. Surveys enable the researcher to analyze route choice behav
ior and the effects of traffic information directly from reported behav
ior and pe~ceptions of the respondent. A sample that represents well the 
population in the study area could facilitate better understanding of 
actual drivers' behavior and decision processes: Three route choice sur
veys targeting a random sample of commuters in the Los Angeles area 
are presented. The first two surveys were 1 year apart, and the third 
survey was a follow-up mail questionnaire. The surveys involved two 
innovative techniques that achieve the data collection required for 
the analyses of route choice, traffic information acquisition, and 
commuters' potential use of advanced traveler information systems. 
The first technique is using computer-aided telephone interviews, and 
the second utilizes geographic information systems capabilities. 

The problem of route choice faced by an automobile driver is com
plex because of the large number of possible alternative routes 
through the road networks and the complex patterns of overlap 
between the various route alternatives. There have been several 
empirical studies of the factors affecting drivers' route choice. In 
the urban context the situation is not clear; some researchers have 
concluded that time minimization is the dominant criterion, 
whereas others have noted the importance of aspects such as road 
type (1,2), avoidance of congestion (1), and avoidance of stops and 
traffic signals (3). 

The objective of an ongoing Partners for Advanced Transit and 
Highways project at the University of California is to understand the 
factors that influence drivers' route choice and route diversion. It is 
also to investigate the effect of travel time uncertainty and traffic 
information on route choice and the potential interplay between 
travel time reliability, advanced traveler information systems 
(A TIS), and route choice. 

To gather the information needed to achieve these objectives, 
including capturing each respondent's exact commute route(s) by 
segment, three route choice surveys were designed and conducted. 
The first two waves utilized computer-aided telephone interviewing 
(CA Tl) techniques to capture all the branchings necessary for the 
surveys' design, and to be able to collect the high level of detailed 

M. A. Abdel-Aty, Department of Civil and Environmental Engineering, 
University of Central Florida, P.O. Box 162450, Orlando, Fla. 32816. R. 
Kitamura, P. P. Jovanis, P. Reddy, and K.M. Vaughn, Institute of Trans
portation Studies, 2028 Academic Surge, University of California, Davis, 
Calif. 95616. 

information, which varies from one respondent to another, in an 
efficient manner (the first and second CA TI surveys were conducted 
in May and June 1992 and May 1993, respectively). The third 
survey was a follow-up questionnaire to the second CA TI and con
sisted of a mail questionnaire (conducted in October 1993), which 
involved a high level of customization and used information col
lected in the preceding two surveys, such as the exact commute 
route by segment, travel time, and an optimal route generated 
according to each respondent's origin/destination using a geo
graphic information system (GIS) and network data bases of the 
study area. These survey techniques enabled gathering the data 
needed to perform the required analyses to the network level in an 
efficient and unprecedented manner. 

This paper presents the design and administration of the three 
surveys, together with a discussion of each survey's objectives and 
data collected. 

LITERATURE REVIEW 

Surveys have been used in several studies with the aim of deter
mining respondents' route choice behavior (and traffic information 
use). A large-scale survey could achieve a sample size that 
adequately supports quantitative modeling and forecasting and con
stitutes a data base for a better understanding of drivers' behavior 
and decision processes. 

Haselkorn et al. (4,5) used a large-scale, on-road, mail-back sur
vey that targeted a specific freeway corridor (I-5) in the state of 
Washington. Mannering et al. (6) used the same data set to investi
gate commuters' route, mode, and departure time flexibility and the 
influence of traffic information. Khattak et al. (7) used mail-back 
questionnaires to evaluate the effect of traffic reports on com
muters' route and departure time changes. The questionnaires were 
distributed at downtown parking facilities. In a study by Hatcher 
and Mahmassani (8) to observe route and trip scheduling decisions 
for evening commuters, a mail survey was conducted in two stages. 
An initial short screening survey and a second stage survey sent to 
331 selected first-phase respondents consisted of detailed diaries of 
actual departure times, route description, and intermediate stops 
(trip-chaining) information. 

To investigate commuters' flexibility in changing routes and 
departure times Mannering (9) surveyed 117 commuters by tele
phone. Ullman et al. (10) also surveyed 44 subjects by telephone to 
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study the effect of a freeway corridor's attributes on motorist diver
sion responses to travel time information. 

Polydoropoulou et al. (J 1) used a mail survey and trip diaries to 
collect data from MIT commuters to model the influence of traffic 
information on drivers' route choice behavior. Khattak et al. (12) 
used a stated preference approach to evaluate the effects of real-time 
traffic information along with driver, roadway, and incident char
acteristics on drivers' willingness to divert. Khattak et al. (J 3) stud
ied stated and reported route diversion behavior and its implications 
on the benefits of A TIS. Questionnaires were distributed to peak
period commuters crossing the Golden Gate Bridge (San Francisco) 
during both morning and afternoon rush hours. 

All but two of the studies cited used the mail survey design in one 
way or another. Mail surveys, in general, yield low response rates 
and do not provide interaction between the interviewer and the 
respondent. Possibly because of the limitation of mail surveys, none 
of these surveys has examined the exact routes taken by the drivers. 
Mannering (9) and Ullman et al. (J 0) surveyed the respondents by 
telephone. However, the administration did not involve any com
puter-aided structure that enables the survey's design to include 
branchings to account for differences between commuters in an effi
cient and timely manner and keeps the survey time to a minimal 
while gathering all the desired information. Also the computer soft
ware checks for errors and inconsistent responses and enables the 
interviewer to correct them. The random dialing performed in this 
study achieved a sample that well represents the population in the 
study area, which is missing from most of the studies cited above, 
for example, Haselkorn et al. ( 4,5), Khattak et al. (7, 12, 13), Ullman 
et al. (JO), Polydoropoulou et al. (J 1), Huchingson et al. (3), which 
targeted either a specific corridor, central business district, or 
employees of a specific agency. Although Khattak (12,13) used 
stated preference approaches to investigate route switching and 
information use, neither of his studies accomplished the high level 
of customization, which was used in both the revealed and stated 
preference sections of the third survey. Finally, the third and last 
survey proposes a new application of GIS and data bases in sur
veying route choice behavior including a high level of customiza
tion. This approach was never used in any survey design to study 
route choice behavior. 

RESEARCH DESIGN 

The three surveys presented in this paper are designed to collect 
detailed data on commuters' route choice, information acquisition, 
and the interplay between route choice and traffic information 
including the potential effect of A TIS on route choice. The exact 
commute routes by segment and possible alternative routes were also 
sought to perform route choice analysis to the network level. The 
amount and complexity of the data required made it impossible to 
collect the data in one survey. In addition, there was a need to notice 
any changes in the routes used during a period of 1 year to investi
gate the reasons for these changes. Therefore there was a need to 
conduct a second CA TI 1 year after the first one to investigate route 
changes as well as to gather more detailed data about commuters' 
attitudes and perceptions. The third survey was a follow-up to the 
second CA TI. The survey design required introducing to the respon
dents alternative routes generated by a GIS and network data bases 
of the study area and stated preference customized scenarios that 
could be achieved only using mail-back questionnaires. 
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CA TI ROUTE CHOICE SURVEY: PHASE 1 

A route choice survey was developed targeting Los Angeles-area 
morning commuters. A mail-out/mail-back survey instrument was 
initially designed to gather detailed information on commuters' 
main and alternate routes, to determine the level of information 
commuters have about these routes, to measure commuters' atti
tudes toward, and perceptions of, these routes, and to determine 
how existing traffic information affects their route choice behavior. 
The mail survey instrument required several branchings, increasing 
its level of complexity, potentially jeopardizing the response rate 
and response accuracy. Therefore, it was decided to perform a CA TI 
survey. A CA TI survey allows interviewer/respondent interaction 
and automatically handles branchings with complete reliability and 
lower interviewer error. 

Sampling Procedure 

The survey targeted a random sample of households located in the 
area covered by the South Coast Air Quality Management District, 
which includes most of the contiguously populated areas of Los 
Angeles, Orange, San. Bernardino, and Riverside counties. The 
sampling, based on a Mitofsky-Waksberg cluster sampling design 
(J 4), covered both listed and unlisted numbers. The Mitofsky
Waksberg sampling reduces the number of unproductive dialings 
and improves efficiency. It was estimated that the Mitofsky
Waksberg design showed an increase of 8 percent efficiency when 
compared with simple random digit dialing (15). 

Respondents were limited to adults over 17 years of age who had 
worked at a fixed location outside their homes at least 1 day in the 
previous week. For households with more than one qualifying 
member, the targeted respondent was either the full-time worker 
(> 20 hrs/week) who answers the phone or who was present at 
home at that time (this could introduce bias if there is more than one 
full-time worker but is not considered crucial for this study); a 
randomly selected part-time worker if there are no full-time work
ers in the household; or the lone part-time worker. Interviews were 
performed during weekday evenings and on weekend days. Two 
callbacks were attempted before a sample telephone number was 
abandoned. Increasing the number of callbacks is desirable to elim
inate nonresponse bias. However past experience has indicated that 
the effectjveness of additional callbacks diminishes, and the 
marginal cost per completed interview rapidly increases after two 
callbacks. Considering available budgets, it was determined to limit 
callbacks to two. 

Survey Content 

The survey yielded 944 completed interviews contacted between 
mid-May and early June 1992. The following information was 
obtained from each respondent: 

• Identification of specific primary commute route by segment 
(each different road/freeway in sequence for the whole commute 
route); 

• Availability of alternate commute routes and identification of 
secondary route by segment; 

• Detailed information on both primary and secondary routes, 
including perceived traffic conditions; 
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• Individual's perception of the severity of different types of 
delays and other problems; 

• Information that respondents receive before and during the 
commute and its effect on their behavior and awareness of the high
way/street network; and 

• Demographic and socioeconomic data, including household 
income, gender, employment status, and education level. 

As mentioned earlier, one of the main objectives of this survey 
was to collect the exact commute route(s) of the respondents (i.e., 
collect each segment of the route), and to capture the respondents' 
perceptions and knowledge about these routes. The design of the 
survey needed to be flexible enough to allow respondents to 
describe the number of routes they used, the number of segments on 
each route and the name or number of the street or freeway, and the 
traffic conditions on each segment, requiring several branchings 
and interviewer/respondent interaction, which could be achieved 
only by computer. Figure 1 illustrates a flow chart of the survey, 
which shows the branchings performed to collect the required data. 

Description of Sample 

Summary statistics for the sample are presented in Table 1. To test 
the representativeness of the sample, several socioeconomic and 
commute characteristics were compared with, and statistically 
tested against, the 1990 Census (J 6), the 1991 California Statewide 
Travel Survey results (17), and the 1990 California Statistical 
Abstract (18). In most cases the null hypothesis that the values from 
the route choice survey are not different from the corresponding sta
tistical sources was not rejected at the 0.05 level of significance, 
implying that the sample well represents the population in the study 
area. A research report (J 9) illustrates the tests performed with the 
three cited data bases (among the variables tested with these three 
data bases are income, mode split, home ownership, and gender) 
across the four counties. Table 2 shows examples of the compar
isons performed for income and mode split. 

CATI ROUTE CHOICE SURVEY: PHASE 2 

The second route choice survey was developed and targeted the 
same individuals of 1992, which consisted of the Los Angeles-area 
morning commuters. Because the survey design also required many 
branchings, it was decided to also perform a CATI. 

Survey Content 

The survey was designed to 

• Measure any changes within the last year, including home and 
work locations and primary and secondary routes [in the case of any 
changes the exact primary route (and secondary route if the respon
dents use one) is identified by segment]; 

• Gain an in-depth understanding of commuters' perceptions 
and decisions of various commute characteristics and problems; and 

• Study the effect of travel time uncertainty on route choice 
using a simple stated preference choice set. 
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This survey design did not only require capturing the exact 
commute route and its segments as the CA TI I survey, but it 
required capturing any changes, which complicated the design to a 
large extent. For example, some commuters changed their origin, 
destination, primary commute route, secondary commute route, or 
mode of travel, or a combination of these cases. The survey design 
had to follow each path of questions according to each commuter's 
circumstances. Again the CA TI design would be the only method 
to achieve this objective efficiently and promptly. Figure 2 illus
trates a flow chart of the survey, which shows the branchings 
performed to collect the required data. 

Description of Sample 

A maximum of 10 callbacks was attempted before abandoning a 
respondent's number, which yielded 564 interviews completed 
(about 60 percent response rate) in May 1993 (1 year after the first 
survey of May/early June 1992). Table 3 shows the breakout of 
the contacted and noncontacted first year's respondents. About 
26.5 percent of the respondents either had a disconnected telephone 
or moved, or had the telephone for less than 1 year, which shows 
the very high degree of mobility that people in southern California 
have. The other reasons for not participating in the second survey 
wave (e.g., refused to participate, had a Fax machine) account for 
only 13 percent of the respondents. This indicates that increasing 
the number of call backs would not have increased the response rate 
(IO callbacks are already very extensive). 

Attrition Model 

To identify the factors that lead a commuter to participate in the sec
ond wave of the survey, a binomial probit model was developed, An 
attrition model also can be used to develop weights to adjust the 
sample for further analysis. 

The model shown in Table 4 illustrates several socioeconomic fac
tors that increase the probability of the household participation in the 
second survey. High-income households (income of at least $75,000) 
and highly educated respondents (college graduates) were more 
likely to participate. The number of years living at the present address 
and home ownership affected positively the likelihood of participa
tion. Also whether the respondent in the previous survey was a 
woman increased the probability of participation in the second year. 

Use of the likelihood ratio to test the null hypothesis that all the 
coefficients are 0 except the alternative specific constant was 
rejected { - 2[L(C) - L(O)] = 25.9, df = 5-numberof constrained 
coefficients, which shows that the model is significant, although the 
likelihood ratio index is considerably lower. However, this is a good 
sign because this probably means that attrition is largely random. 

Changes in Route Choice 

One of the main objectives of the 1993 survey was to measure any 
changes in the commute routes and to understand the reasons for 
this change. The survey showed that 195 respondents changed their 
primary commute routes. Of these, 50 changed their home location 
and 89 changed their job location. The rest (56 respondents) 
changed their primary route as a result of factors related to the route 
itself, and this could be classified as follows: 

• Changed route to avoid congestion: I 0 respondents; 
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TABLE 1 Sample Summary Statistics (Averages Unless Noted) 

Statistic 

Commute distance on usual route (miles) 

Travel time on usual route (minutes) 

Trip duration (including stops) 

Percent of respondents commuting in single-<>eeupant autos/carpool/public transit 

Percent receiving pre-trip traffic reports 

Percent receiving en route traffic reports 

Percent of respondents with flexible/ somewhat flexible I fixed work starting time 

Percent male/female 

No. of household cars 

No. of years at present address 

No. of years at present job location 

Percent own/rent their homes 

Household income 

Percent of college graduates 

Think traffic congestion is a problem or major problem (percent) 

Think trip time uncertainty is a problem or major problem (percent) 

Value 

12.75 

28.14 

31.9 

78.8/14.6/4.9 

36.5 

51.25 

24.4/30.4/45.2 

51.3/48.7 

2.31 

7.24 

5.52 

59/41 

38,750 

43.8 

61.3 

31.9 

TABLE 2 Comparison oflncome and Mode Share for the Sample, California Statewide Travel Survey, California Statistical Abstract, 
and 1990 Census 

County Average Household Income Median Income 

Survey CA Statewide Travel Survey 1991 CA Statistical Census (1990) 
using onlv studv area residents Abstract (1990) 

Los Angeles 32,500 32,750 38, 138 34,965 
Orange 43,250 40,655 36, 151 45,922 
San 
Bernardino/ 33,500 28,805 35,004 33,081 
Riverside 

overall Sa111>le 38, 750 

County Percent of Drive alone, Carpool and Public Transit Users 

Survey Census 1990 
Drive Alone Caroool Public Transit Drive Alone Carpool Public Transit 

Los Angeles 79.1 15.2 5.7 85.6 15.5 6.5 
Orange 83.2 14.9 1.8 90.4 13.7 2.5 
San Bernardino/ 82.2 15.6 2.2 91.8 17.3 0.8 
Riverside 

Note: Totals add up to more than 100% in the 1990 Census because it accounts for rr&.1ltiple mode users. 
Statistically testing if the percent of carpoolers is not different from expected values from the 1990 census, 
is not rejected. · 

• Found a faster route: 7 respondents; • Change route to drive more on freeways: I respondent; 
• Change to be able to use freeway: 1 respondent; 
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• Work-related reasons (final destination is the same but inter
mediate stops change, for example, construction worker in different 
sites): 16 respondents; 

• Opening a new on-ramp enabled freeway use: I respondent; 

• Change mode (e.g., change from drive alone to carpooling): 
8 respondents; 

• Road construction: 4 respondents; 

• A void traffic signals: I respondent; 
• A void a particular roadway segment with bad pavement 

condition: I respondent; and 
• No specific reason (e.g., mood): 6 respondents. 
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TABLE 3 Breakout of Frequency of Each Category of Noncontacted Respondents 

Case Number of first year's 
respondents 

- Complete 564 (59.75%) 

- Incomplete 

• Disconnected telephone no. 82 (8.70%) 

• No one by the required name 59 (6.25%) 

• Had the phone for less than 1 year 58 (6.14%) 

• Moved from this address 51 (5.40%) 

• Answering machine 41 (4.30%) 

• No answer and reached maximum no. of call backs 30 (3.20%) 

• Refused to participate 28 (3.00%) 

• Reached maximum no. of call backs without being 
able to interview the respondent (e.g someone else 

answers the phone) 

22 (2.30%) 

• Fax machine 9 (l.00%) 

Total 944 (100%) 

TABLE 4 Binomial Probit Model Estimating Whether Respondents Continue To Participate in Second 
Wave of Survey 

Coef. t-stat. 

Constant 

X1 Income dummy (1 if income ~ $75,000, 0 otheiwise) 

X2 Level of education dummy ( 1 if respondent is a college grad., 

-0.0682 

0.2978 

0.1354 

-0.737 

2.309 

1.378 
0 othetwise) 

X3 Female dummy (1 if female, 0 otherwise) 

X4 No. of years living at present address 

X5 Home ownership dummy (1 if respondent owns his home, 0 otheiwise) 

0.2129 

0.0105 

0.1380 

2.265 

1.538 

1.293 

Summary Statistics 

L(O) = -529.564 

L(C) = -508-160 

L(tj) = -495.232 

Number of observations= 764 

Note: Variables' coefficients are defined for participating in the second survey 

These responses show that the main reasons for changing the 
commute routes since the first wave of the survey were changing 
home or work location, avoiding congestion, and discovering a 
faster route. 

Investigating Effect of Travel Time Variation 
on Route Choice 

To investigate the effect of travel time variation on route choice, it 
was decided to include repeated hypothetical choice sets in the 
CATI survey. A major concern was that the design of the stated 
preference (SP) choices could be complicated to achieve the trade
offs between reliable and the unreliable routes, while trying to make 

the design of the choice sets as easy as possible to be understood on 
the telephone. The degree of travel time variation needed also to be 
as realistic as possible, which rules out a design that includes choice 
set with a large variation on one of the routes. If the hypothetical 
commutes were posed in a form that cannot be thought of as an 
actual commute, then one would have a reason to suspect whether 
the respondent's hypothetical choices would relate to actual ones. 

Therefore, the SP choices were designed to be as simple as pos
sible, so that respondents could comprehend and answer the choice 
sets on the telephone. Five SP choices are included in the survey. In 
each choice the respondent is asked to choose between two hypo
thetical routes. The first route has always fixed travel time every day 
(5 days a week), whereas the second route has a possibility that the 
travel time increases on some day(s): for example, Route I-travel 
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time 30 min everyday; Route 2-travel time 20 min 4 days per week 
and 40 min 1 day per week. In this case the respondent is informed 
that a choice of Route 1 will ensure that travel time will be 30 min 
every day, but a choice of Route 2 means the possibility that on any 
1 day of the week travel time could be 40 min and on the other 
4 days it could be 20 min. 

The choices are designed such that the travel time on the first 
route is longer and certain, whereas that of the second route is 
shorter but uncertain. Each respondent is presented with five 
choices, in which Route 1 is certain and longer, whereas Route 2 is 
shorter and has different levels of variation. The mean travel time 
on the Route 2 changes and reaches in some choices the mean of 
Route 1. The average travel time on Route 2 ranged between 24 and 
30 min (which is equal to the mean of Route 1 ). The standard devi
ation ranged between about 5 min and about 33 min. The sequence 
of the choices are randomized (different from one respondent to 
anoth~r) to avoid any ordering bias. The objective of this part of the 
survey is to measure and investigate whether commuters choose 
longer certain routes or shorter uncertain routes, and if so, to what 
extent the uncertainty is that will cause them to choose the route 
with the fixed travel time. A companion paper presents in detail the 
design of these SP choice sets together with the model estimated 
using these data (binary logit model with normal mixing distribu
tion to account for the correlation of disturbances resulting from 
using multiple observations) (See another paper by Abdel-Aty et al. 
in this Record). 

Turning to the frequency of choices for each case, it is clear that 
in Cases 2, 4, and 5 the majority of the respondents had chosen 
Route 1. These cases have the largest standard deviations on Route 
2 (> 10 min), and also the mean travel time on Route 2 is either 28 
or 30 min (the mean on Route 1 is always 30 min). In Case 1 both 
routes were chosen almost equally; the mean and standard deviation 
on Route 2 are 24 and about 9 min, respectively. In Case 3, where 
the standard deviation is the least and the mean is 24 min, Route 2 
was chosen by the majority of the respondents. This means that the 
respondents correctly recognized the time savings and degree of 
variation and were willing to tolerate travel time variation to a cer
tain limit; after that limit they were more likely to use the certain 
(although slightly longer) route. Analysis of these data underscored 
the significant effect of travel time variation on route choice. The 
results showed that the disutility of 1 min standard deviation on a 
route is exactly equivalent to a savings of 1 min of travel time 
(Abdel-Aty et al. in another paper in this Record). 

CATI ROUTE CHOICE SURVEY: PHASE 3 

A route choice survey was developed targeting a subsample of the 
respondents interviewed in the second CA TI survey. 

Survey Objectives 

The survey was designed to obtain the following information: 

• Which route attributes are considered important by the indi
vidual in the decision process that leads to the choice of a route; 

• Commuters' willingness to use ATIS; and 
• The effect of advanced traffic information on route choice. 
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Response Rate 

The number of targeted respondents was restricted by the availabil
ity of their addresses and the success in geocoding their origins and 
destinations using the GIS. Therefore, 263 respondents' origins and 
destinations (0-D) were successfully geocoded and their addresses 
were available (they agreed to provide the address during the second 
CA TI survey). The 263 questionnaires were customized according 
to each respondent's origin, destination, primary route, and travel 
time. The questionnaire included each respondent's primary route 
(from the CA TI surveys), an optimal route generated using 0-D 
information and customized SP choice scenarios using primary 
route and actual travel time data. The questionnaires were sent to 
the respondents along with a postage-paid return envelope and an 
incentive of $2.00. A total of 143 respondents completed and 
returned the questionnaires (54.4 percent response rate), which is 
considered a very good response rate for a mail-back survey. 

Survey Design 

As mentioned, the questionnaires were customized for each respon
dent. Each questionnaire consisted of two main parts. The first is a re
vealed preference (RP) section, whereas the second is an SP section. 

Revealed Preference Section 

The main objective of the RP section is to understand why com
muters choose a particular route (in this case their primary route); 
why they do not necessarily use the optimal route; how they 
perceive both primary and optimal routes; how familiar they are 
with their streets/highways network; and how willing they are to use 
and accept the advice of A TIS. 

The primary route for each respondent is identified from the pre
vious CA TI surveys. If respondents stated in the second CA TI that 
they did not change their primary route then this route is captured 
from the first CATI; if they stated that they did change their primary 
route, then this route is captured from the second CA TI. Each 
segment of the primary route is presented to the respondent in a 
table; then the respondent is asked to rate a series of subjectively 
measured route attributes related to his primary route. 

Given each respondent's origin (home) and destination (work), 
and using GIS capabilities, the commercial navigation data bases 
are used to generate minimum path routes. These data bases have 
details that include all the highways/streets network in the study 
area. The experience of a large number of drivers that are 
acquainted with the area indicates that according to their chosen 
routes each route is assigned with a weight that also enters into the 
algorithm calculating the optimal (fastest) route. Figure 3 shows the 
fastest route by segment as presented in the questionnaire. The 
fastest route is followed by several questions that measure the 
respondent's familiarity with this route, the willingness to use an 
A TIS system, and the rating of a series of route attributes related to 
the route. 

The RP data will support developing a route choice model 
(the choice set is binary: the primary and GIS-based routes) using 
both subjectively and objectively measured variables. This model 
also can be combined either sequentially or simultaneously with 
a route choice model based on the SP data, including the effect of 
traffic information. 
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The follow 111g route was generated by the computer as an alternative route from your home to work. The 

questions hl'low are about this alternate route. 

POSSIBLE ALTERNATE ROUTE 

Seg # Road Segment 

1 S WESTGATE A VE 

2 ·WILSHIRE BLVD 

3 1-405 SAN DIEGO FWY S 

4 SANTA MONICA BLVD/CA-2 HWY 

5 A VENUE OF TIIE STARS 

Distance (miles) 

0.1 

0.8 

0.7 

2.0 

0.4 

10. Assuming that you use this route from your home to your work in typical traffic conditions, 

what would be your estimation of the travel time? ___ (minutes) 

11. To what extent do you consider yourself familiar with this route'! 

D 1 Extremely familiar 

D J Very familiar 

D, Somewhat familiar 

0 , Not very familiar 

D i Not at all familiar 

12. Have you ever used this alternate route shown on page 3? 

D1 Yes 0 1 No 

D 2 Used a part (or parts) of the route 

FIGURE 3 Example of optimal route. 

SP Section 

The main objective of this section is to investigate the effect of 
A TIS together with road type, travel time, and familiarity with a 
particular route, on the route choice. SP methods become an attrac
tive option in transportation research when RP methods cannot be 
used in a direct way to evaluate the effect or demand for nonexist
ing services (e.g., A TIS). SP methods are easier to control, more 
flexible, and cheaper to apply (as each respondent provides multi
ple observations for variations in the explanatory variables). 

In this survey, respondents are provided with three scenarios; in 
each, they have to choose between two routes and indicate their 
departure times (Figure 4 shows an example of one of the scenar-

ios). The choices are binary: Route I is customized for each respon
dent so that the SP design would be as realistic as possible, whereas 
Route 2 is hypothetical. For Route I it is stated: "Your primary 
route using ... "and then a segment of the respondent's actual route 
is written. The travel time of Route 1 is the respondent's actual com
mute time as stated in the CA TI surveys, and the road type is the 
actual route type of his or her primary route (mainly freeway, 
mainly surface streets, or freeway/surface streets). The objective 
here is to use the route that the respondent is familiar with, and make 
the SP design realistic. The road type of Route 2 is either mainly 
freeway, mainly surface streets, or freeway/surface streets. 

For the travel time on the alternative route to be as realistic as pos
sible, and because both routes have the same origin and destination, 
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PART II 
On the following 2 pages, we are asking you to choose from among two routes, the first is similar to 

your primary route, while the second is a hypothetical route. 

Suppose one day you are choosing between 
the following two routes from your home to work 

Route 1 Route 2 
Your primary route using 

OJilOST 

1. Road type Surface streets Mainly Freeway 

2. Normal Travel Time 15 minutes 13 minutes 

3. T!Jfficlnfo[Il)atioo 

• ~mated travel time on this day Not available 13 minutes 

• Information on the cause of the delay -- --

24. Given these choices, which route would you choose on this particular day? 

0, Route 1 D1 Route 2 

25. When would you leave home on that day? ____ AM 

FIGURE 4 Example of route choice question. 

the travel time on both routes is likely to be close to a great extent. 
Therefore, normal travel time on Route 2 is one of the following: 

0.9 *(Normal travel time on Route 1) 

1.0 * (Normal travel time on Route 1) 

1.1 * (Normal travel time on Route 1) 

Traffic information is available on either Route 1 or Route 2, but not 
both. If traffic information is available then it gives an estimation of 
the travel time on that day, which is one of the following values: 

0.9 * (normal travel time on the same route) 

1.0 *(normal travel time on the same route) 

1.1 * (normal travel time on the same route) 

1.2 * (normal travel time on the same route) 

1.4 * (normal travel time on the same route) 

These values are chosen to be as realistic as possible to represent 
light and usual traffic conditions (Factors of0.9 to 1.1), mild traffic 
conditions (factor of 1.2), and heavy traffic conditions that might be 
caused because of an accident (factor of 1.4 ), for example. 

If the information system estimates a travel time above normal, 
the cause of the delay is given to the respondent. The cause of the 
delay is either accident, maintenance, stalled vehicle, or regular 
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congestion. An A TIS was defined to the respondents as a system 
that can offer personalized information about a trip and offer advice 
about other routes while considering current traffic conditions. 

All possible combinations of the previous cases are considered, 
after excluding the obvious choices (e.g., if Route 1 is faster and has 
information that predicts no delays). In all, 68 different combina
tions were used, 3 for each respondent randomly. 

CONCLUSIONS 

In this paper two innovative techniques in developing route choice 
surveys are introduced. The paper addresses the use of computer 
software, GIS applications, and network data bases in designing and 
undertaking route choice surveys, which yield data for modeling 
route choice decision making and for network analysis. The work 
introduces a new application of computers and GIS in transporta
tion engineering. Also the SP techniques presented enabled the 
collection of data for analyzing the effect of travel time variations 
on commuters' route choice (which would be difficult to observe 
because it is time consuming to collect data that support the analy
sis), and the evaluation of the effect of a nonexisting service (A TIS) 
on route choice. The potential of these methods in collecting 
detailed information on commuters' routes are discussed. Analyses 
of the data collected from the three surveys proved the viability of 
these methods [see, for example, work by Abdel-Aty et al. (19-22) 
and in a paper in this Record]. In general, these suggested tech
niques in surveying commuters' route choice behavior could be 
extended to study different aspects of drivers' behavior and trans
portation planning. 
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Household Travel Survey Nonresponse 
Estimates: The Chicago Experience 

ASHISH SEN, SUM SOOT, LIDAN YANG, AND ED CHRISTOPHER 

Because response rates vary by household type and by neighborhood, 
certain groups can be underrepresented. Factoring can rectify this situ
ation somewhat for data used for descriptive purposes, but assumptions 
underlying many model estimation procedures are violated if factored 
data are used. Perhaps the only practical solution is to increase the 
sampling rate of underreporting groups. Because sampling rates s?ould 
be proportional to reciprocals of response rates, a model to es~1mate 
response rates is presented. Such a model could be of value for 1mp~e
menting future surveys. A logit regression model was constructed with 
the demographic data as independent variables. Observations on the 
dependent variable, response rate, were obtained from a large-scale 
household travel survey conducted in the Chicago metropolitan area by 
the Chicago Area Transportation Study. 

Understanding traveler behavior is critical to urban transportation 
planning and modeling. For this reason, travel surveys are 
conducted periodically, but their response rates are usually fairly 
low. Written surveys tend to be cost effective but usually produce 
low response rates (J). Even for oral surveys (including telephone 
surveys or home interview surveys) where these rates are frequently 
higher, if one considers people without phones and various 
prescreening processes, response rates are rarely high (2). 

A low response rate by itself is not much of a problem. The key 
difficulty is that these rates vary over different groups. Although in 
descriptive use of data obtained from such surveys, corrections can 
be made by means of factoring (3,4) this avenue is not always avail
able for modeling uses of these data. For example, consider logit 
modal split models estimated by maximum likelihood methods. The 
application of maximum likelihood requires assumptions about the 
distributions of the number of travelers by mode, and this distribu
tion is usually taken to be multinomial. If one scales up the number 
of travelers taking each mode by some factor, the resultant products 
will not have a multinomial distribution. Thus, the use of factored 
data violates an underlying assumption of the procedure used in 
estimating the model. 

Another example is the usual procedure used for estimating 
gravity-type trip distribution models, which consists of equating 
estimated and observed origin trip totals, destination trip totals, and 
frequencies of trip travel times. This procedure is also a maximum 
likelihood procedure, and the same comments apply to it as for 
modal split models. Even for trip generation models, the situa
tion is similar ( 4). Whether one applies a categorical method or 
a "regression" approach, one is using a linear model, and the 

A. Sen and S. Soot, Urban Transportation Center, University of Illinois at 
Chicago, MIC 357, 1033 West Van Buren Street, Suite 700 South, Chicago, 
Ill. 60607. L. Yang, Metra, 547 West Jackson Boulevard, Chicago, Ill. 
60661. E. Christopher, Chicago Area Transportation Study, 300 West 
Adams Street, Chicago, Ill. 60606. 

assumptions used in estimating it are violated if factored data 
are used. 

Thus, in general, factored data cannot be used for model building 
and they do not need to be, because assumptions underlying the pro
cedures used to estimate the models do not require the data to have 
been gathered through random sampling. However, the fact still 
remains that the travel behavior of groups who are underrepresented 
in the sample remain ill represented in the final model. 

One partial solution to this problem is to increase the sampling 
rate for such groups-that is, to sample a larger number of house
holds from such groups so that, even if they respond at a lower rate, 
the group is better represented in the survey. In fact, this is seen as 
the only solution. Fortunately, because the estimation procedures 
for the models do not require complete randomness, the level of 
oversampling can be somewhat rough. 

To appropriately oversample from underrepresented groups, one 
needs to identify groups that have low response rates and to estimate 
response rates for these groups. Because this information is needed 
before the survey is conducted it must be obtained from previous 
surveys. However, because previous surveys would have occurred 
over a different period and perhaps even a different geographical 
area, it is likely that the estimates would not be precise. Thus, it is 
not suggested that an improved sampling scheme would render fac
toring unnecessary for descriptive (as opposed to model building) 
uses of travel data. However, selective over- and undersampling 
will improve the quality of the ultimate data set. 

More precise knowledge of nonresponse effects can also lead 
to other benefits. Special efforts could be made to elicit a higher level 
of response from underresponding groups. In this latter context, 
this paper describes in passing one such effort with the Hispanic 
community and how it paid response dividends. But the key reason 
for estimating response levels for different groups is for model 
estimation. 

In this study, response rates observed in a large-scale mail 
survey-the Chicago Area Transportation Study (CA TS) House
hold Travel Survey (HHTS)-were used to estimate a regression 
model that identifies response rates of key population subgroups. 
The model is described in the next section. The sections that follow 
it will be devoted to describing the data on which the model is based 
and the steps used in constructing the model. 

The model was based on Chicago data and no claim is made 
here about the universality of the findings. Given the importance 
of the use of judicious over- and undersampling, it is hoped that 
similar models would be constructed elsewhere. Nevertheless, it is 
guessed that, in most major U. S. cities, adjustment of sampling 
rates using the results of this model would be better than no 
adjustment at all. 
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RESPONSE RATE MODEL 

Model Estimates 

The final response rate model is a logit-type model with 12 inde
pendent variables. It is of the form 

exp(Z) 
RATE·= I 

' 1 + exp(Z;) 
(1) 

Z; = 0.38 - 2.89PMACH; - l.70PLBR; - 1.14PTECH; 

- l .40PH 1; - 0.53 PH4; 

+ 0.79PW3; 

- 0.30Sl; - 0.26S3; 

+ 2.83PCO; - 1.16 PC02; 

· - 1.09 PAFRO; - 0.58POTHER; 
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(2) 

where RA TE; represents the response rate of zone i, and Z; is esti
mated by 

The independent variables in the model were obtained from the 
Census Transportation Planning Package (CTPP) and are repre
sented by boldfacing in Table 1. The table also presents all variables 

TABLE 1 Description of Variables in Initial Model 

I Variable I Description 

PEXEC Proportion of the labor force with executive, administrative 
and managerial occupations 

PPROF * Proportion with professional occupations 
PMACH Proportion with machine operator occupations 
PLBR Proportion with transportation and material moving, 

machine handlers, helpers and labors, household service, 
and service occupations 

PTECH Proportion with technicians, administrative clerical 
occupations 

POTHOCC Proportion with other occupations, like arm force or 
farmers 

PHl Proportion of households with 1 member 
PH2 Proportion of households with 2 members 
PH3 * Proportion of households with 3 members 
PH4 Proportion of households with 4 or more members 
PWO Proportion of households with no worker 
PWl Proportion of households with 1 worker 
PW2 * Proportion of households with 2 workers 
PW3 Proportion of households with 3 or more workers 
Sl Sl = 1 if mean household income is less than $30,000, 

Sl = 0 otherwise 
so* SO = 1 if mean household income is between $30,000 and 

$60,000, SO = 0 otherwise 
S2 S2 = 1 if mean household income is between $60,000 and 

$100,000, S2 = 0 otherwise 
S3 S3 = 1 if mean household income is over $100,000 for this 

section, S3 = 0 otherwise 
PCO Proportion of households with no vehicle 
PC02 Square of PCO 
PCl Proportion of households with 1 vehicle 
PC2 * Proportion of households with 2 vehicles 
PC3 Proportion of households with 3 or more vehicles 
PWHITE * Proportion white 
PAFRO Proportion African American 
POTHER Proportion other races 
PEMPLY * Proportion of the employed to the total labor force 
PUNEMP Proportion of the unemployed to the total labor force 
PHISPN* Proportion Hispanic origin 
PNHISP Proportion non-Hispanic origin 

1 ). All observations are based on square mile micro-zones. 

2). The boldfaced variables were those included in the final model. See Equation(2). 

3). Other variables are base group variables; those variables with * are initially 

considered to describe the base group. 
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initially considered in this study. Those variables were chosen on 
the basis of previous studies, which revealed that nonresponse usu
ally results in underrepresentation of households with low incomes 
and low education levels (3). Therefore, such variables as occupa
tion, household size, number of workers in the household, house
hold income, vehicle ownership, and race were considered. How
ever, data availability restrained the choice of variables. For 
example, the CTPP data do not report educational attainment. But 
because these data often reflect the degree of literacy and civic con
sciousness, they may have an influence on the response rates. There
fore occupation was considered as a surrogate for education. 

Logit Transformation 

In the final model, the variables in each class (e.g., occupation) sum 
to 1. For example, the sum of PEXEC, PPROF, PMACH, PLBR, 
PTECH, and POTHOCC is 1. If all these variables were left in the 
model, an overspecified model with consequent acute .multi
collinearity or singularity would result because the independent 
variables including the intercept would then be linearly dependent. 
The remedy used was to exclude one variable from each variable 
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are used (as described later). Indeed, LS methods were used in the 
earliest applications of the logit models (5). The main advantage of 
linear LS is the wide availability of diagnostics; moreover, the eco
nomical usage of computer time makes it possible to experiment 
with various variable combinations to find the best model fit. 

From Equation 1, the following is obtained: 

log {E(RATE;l[l - £(RATE;)]}= Z; (3) 

where RA TE; = m;ln;, is the ratio of completed surveys to the total 
number mailed out to zone i. When n; is a fixed number, and the val
ues of both m; and (n; and (n,. - m;) are large enough, the following 
transformation ( 6, p. 188) is used: 

log(m; + 0.5) - log(n; - m; + 0.5) = Z; + E; (4) 

This transformed function can then be estimated by linear LS. 
Because the variance of the function on the left side is approxi
mately equal to {n; £(RATE;) [l - £(RATE;)]} -i, its reciprocal 

w; = n; £(RATE;)[ 1 - £(RATE,.)] (5) 

class. Those variables are indicated by an asterisk in the table and would be the weights for the linear LS. Because the expected value 
constitute what is called a base group. of response rate, £(RATE;), is included in the weight and is 

When every independent variable is zero valued, all households in unknown, an iteratively reweighted LS estimate is needed. Such a 
the zone have the characteristics of the base group (given in Table 1 procedure is often carried out using a nonlinear LS program (6, 
without boldfacing). The base household group is white, has two or pp. 298-318). In this work the SAS nonlinear LS program, PROC 
three members, and owns at least one vehicle. It has one or two peo- NUN was used. Once they were computed, weights were inserted 
ple working in a professional, managerial, executive or administrative into a weighted linear LS procedure to take advantage of the diag-
occupation; the annual household income is in the range of $30,000 to nostic methods. 
$100,000. In this case, because all independent variables are zeros,~ Standard errors and t-values of parameter estimates are given in 
Z; equals the intercept 130 = 0.38 (Equation 2) and the response rate Table 2. Although the resulting R2 of 0.38 appears to be low, the fit 
RATE,. could be estimated to be 0.59 [from Equation (l)]. is good as seen from the following observation. The value of 

In the process of variable selection, it was found that many co
efficient estimates were close to 0, implying that response rates of 
population subgroups with correspondent characteristics are close to 
that of the base group. For instance, people with executive, admin
istrative, and managerial occupations had response rates similar to 
those of the base population, which is professional. The variables 
corresponding to these coefficients were excluded from the analysis 
for the sake of parsimony. In the same way variables with like coef
ficients were candidates for consolidation. The variable selection 
process and diagnostics will be further discussed later. 

The independent variables used in the model were obtained from 
the CTPP. Therefore, instead of focusing on individuals or house
holds the focus was on areas of residence. This focus would have 
been problematic if there had been large demographic variations 
within zones. It was not a problem in this study (3), and since a very 
good fit was obtained (subject to the caveats mentioned later), the 
results appear useful. 

When the variable being predicted is a proportion-response rate 
in this case-the logit model is frequently used. Apart from the fact 
that it makes no predictions that are larger than l or less than 0, 
which is clearly most appropriate in this context, other reasons have 
been cited about the value of the model for proportions (5). Further 
discussion of the interpretation of the model appears elsewhere in 
this paper. 

Although in the transportation literature maximum likelihood 
methods typically are used for estimating logit models, linear least
squares (LS) methods can be used under certain circumstances, 
after the dependent variable is transformed and appropriate weights 

s = Yf e,.2/(n-k- 1) (6) 
i=I 

called root mean squares error in SAS is 1.2. Then is the number of 
observations, k is the number of independent variables, and e;' s are 
residuals. The s2 is an estimate of the variance of the appropriately 

TABLE 2 Results of LS Estimates on Travel 
Survey Response Rate 

I Variable 

INTERCEP 0.38 0.1465 2.623 
PMACH -2.89 0.3978 -7.272 
PLBR -1. 70 0.2335 -7.290 
PTECH -1.14 0.2069 -5.520 
PHl -1.40 0.2304 -6.076 
PH4 -0.53 0.2074 -2.571 
PW3 0.79 0.2794 2.820 
Sl -0.30 0.0595 -5.063 
S3 -0.26 0.0793 -3.273 
PCO 2.83 0.3402 8.321 
PC02 -1.16 0.5329 -2.180 
PAFRO -1.09 0.0720 -15.097 
POTHER -0.58 0.1879 -3.081 

(R2 = 0.38, Radj. 2 = 0.37, s = 1.20) 



Sen et al. 

weighted residuals. Because the weight is approximately the recip
rocal of the standard deviation of Equation 3 as seen earlier, s2 ~ 1 
when the model is well specified. For a variety of reasons, the the
oretical minimum of 1 is difficult to achieve. Thus, the fit obtained 
here has to be regarded as excellent. 

Model Application 

The estimated coefficients of the variables indicate that the inde
pendent variables shown in Table 2 have significantly different 
effects on response rates compared with the base group. As a class 
of variables, occupation seems to have the greatest effect on 
response rates. Also household size and vehicle ownership are key 
variables. However, the coefficients of the variables representing 
unemployment and households of Hispanic origin are not statisti
cally significant, implying similarity with the base group. 

The following example illustrates the use of this model, suppos
ing that there is a diversified midincome zone i, in which 

• 40 percent of the labor force is employed as professionals and 
managers and 21 percent is employed as machine operators; 5 per
cent have transportation, material moving, machine handling, or 
service occupations; and the remaining 34 percent are technicians 
or clerks (PMACH; = 0.21, PLBR; = 0.05, PTECH; = 0.34); 

• 64 percent of the households have four or more members; 
another 27 percent of the households have two to three members; 
and the remaining 9 percent are single-member households (PHI;= 
0.09, PH4; = 0.64); 

• All of the households have one or two workers (PW3; = 0); 
• The mean household income of the zone is $58,000 (SI = 0, 

S2 = O); 

• 95 percent of the households have at least one vehicle (PCO; = 
0.05, PC02; = 0.0025); and 

• 12 percent of the households are African-Americans; 10 per
cent of the households belong to other minority groups; and the rest 
of them are nonminority whites (PAFRO; = O.I2, POTHER; = 
O.IO); 

To estimate the response rate of this zone i, Equation 2 may be used 
obtaining Z; = -1.21. The response rate RATE,.;,; can then be 
obtained by Equation 1, and its estimate would be 0.23. This i_nfor
mation would be helpful in deriving the sampling rate. If the target 
number of respondents of this zone is 100, then the sample drawn 
from this zone should be 100/0.23 = 435. More precise knowledge 
of the nonresponse leads to more effective targeting of the survey 
distribution and thus helps in obtaining better survey results. 

Discussion of Results 

This model suggests that individuals with managerial and profes
sional occupations have higher response rates than blue collar work
ers. Because occupation reflects education, this is not a surprising 
finding. 

Household size is another class of key variables. It is widely 
believed that larger households are less likely to respond to travel sur
veys. Because the CA TS survey requested that each household mem
ber over 14 report all of his or her trips made during a given week
day, large households were candidates for nonresponse. This study 
suggests that households with four or more members have lower 
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response rates. This low response rate can be partly offset when there 
are three or more workers in the household. However, it also appears 
that single-member households have much lower response rates, 
which may reflect their lifestyle or attitude toward surveying. 

Perhaps because of the existence of multicollinearity, household 
income plays a minor role in this model. The highest response rates 
come from the middle-income households, namely, $30,000 to 
$100,000, which is specified as the base group. The low response 
rates for households with lower income might be because those 
groups are not comfortable with written surveys: lower income 
usually is associated with lower education. Household members 
with high incomes might just be too busy to respond. 

In contrast to some previous studies (7), this model suggests that 
households without vehicles are more likely to respond. One reason 
is that the nonresponse effect is represented by the coefficients of 
occupation, household size, and income. Second, this is not too 
relevant for suburban households, where vehicle ownership rates 
reach I 00 percent. Still, the higher response rates partly suggest that 
people without vehicles have a stronger tendency to respond to the 
survey. Because of their mobility dependence on public transporta
tion, they could be more sensitive to transportation issues. 

Chicago is a socially diverse metropolitan area with large minor
ity neighborhoods. It was anticipated that response rates from some 
communities would be low. Accordingly, CATS made an effort to 
approach the Hispanic population to improve their response rates. 
From the beginning of the survey design, special attention was 
given to neighborhoods with large Hispanic percentages. Survey 
subjects with Hispanic surnames received a Spanish-language 
insert, which explained the importance of completing the survey 
form and provided a toll-free telephone number for assistance. 
Almost 100 calls were received, and most were given specific 
instructions on how to complete the survey. These efforts resulted 
in an improved response, which is also demonstrated by the model 
estimates. This effort was feasible because the agency could target 
Hispanic surnames, but was not practical with the African
American community-another area where lower response rates 
were anticipated. The model suggests that the response rates from 
African-American communities are lower than they are for the 
white population. For the "other" minority category, which includes 
Asian-Americans and Native Americans, the average response rates 
are also lower. 

DATA AND METHODS 

Data and Survey Methodology 

The CA TS HHTS is a travel diary-type survey conducted in a 
period from 1988 to 1991, using a mail-out/mail-back format (8). 
This survey format proved to be an effective means of collecting 
travel data. 

The survey area encompassed seven counties in the Chicago met
ropolitan area. A total of79,346 of the 2.8 million households in the 
region received the survey instruments. The 19,314 completed and 
usable questionnaires resulted in an average return rate of 24 per
cent. However, response rates varied by area. As indicated in Fig
ure 1, they ranged from 13 percent for the city of Chicago outside 
of the central business district (CBD) to 34 percent for Kendall 
County in the far southwest suburb. This corresponds to the wide
spread belief that nonresponse for mail surveys is greater for low
income and less-educated households, many of which reside in 
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FIGURE 1 CATS household travel survey response rates and sampling sizes. 

Chicago. Figure 2 further indicates a wide range of response rates 
by square-mile zones within the city of Chicago. Response rates 
were found to be high in the northwest and southwest corners and 
low west of the CBD; 

The sample households were drawn from the local electric com
pany, Commonwealth Edison, records. The number of surveys to be 
mailed per zone (square-mile area) corresponded to the number of 
electric meters adjusted by an educated guess of the number of 
potential respondents. This is the area in which the return rate 
estimates developed in this paper would have been useful. 

Demographic data obtained through the CTPP were used to esti
mate response rates for population subgroups. These 1990 data 
were aggregated to a square-mile zone level, defined by the town
ship and range system, to obtain a uniform geographic system with 
the HHTS. The advantage of the township and range system is that 
the zones are, for the most part, defined by major arterials resulting 
in largely homogeneous zones (9). 

Model Estimate Diagnosis: Outliers 
and Influential Points 

In regression model estimation, it is usual that some observations 
have large residuals. Sometimes, they occur when some observa
tions reflect conditions or situations different from those under 

which other observations were obtained. When a few observations 
with high absolute values of studentized residuals Cle*I 2: 3) were 
flagged for scrutiny, over half of the zones appeared to belong to 
Kendall County. This is a suburban county located southwest of 
Chicago. A rural area recently added to metropolitan Chicago, it 
consists of two subareas: large residential properties and farms. 
With a county population of only 38,000, it is vastly different from 
the neighborhoods throughout the rest of the study area. Therefore, 
the zones in Kendall County were all excluded. 

Two other observations ultimately were deleted. One was a zone 
in southwest suburban Du Page County. Its response rate (88 percent) 
was considerably higher than was estimated in the model. A closer 
study of the zone revealed that this was an area near an employment 
center. Many residents were professional or skilled workers, either 
singles or working couples with no children. This group of people 
was likely to be different from typical urban young professionals, 
which contributed to a difference in the survey response rate. It was 
not possible to set a special variable that indicated the difference 
between urban or suburban young professionals. Besides, the large 
number of mailed-out surveys resulted in a large weight, which made 
the point influential. Therefore this data point was excluded from the 
model estimate. The second case was a zone near downtown Chicago 
in which there were many large minority households with extremely 
low incomes. There were also many zero-worker households imply
ing high unemployment rates, which was not revealed in the census 
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unemployment variable. The large mail-out size gave it a large 
weight and made it an influential point. 

Ideally le* I 2: 2 occurs for about 5 percent of the observations. In 
the final model (after discarding Kendall County and the other two 
observations), there are 77 such data points whose e* exceeds the 
critical level of le*I 2: 2. They are approximately 5.3 percent of the 
total 1,450 observations, further strengthening the earlier conclu
sion about a good fit of the model. 

unequal variances and the need for transformations. Figure 3 
displays a residual plot. Because in this and other plots no obvious 
patterns were found, the model appeared acceptable. 

Plots of residuals against predicted values and each independent 
value were also carefully examined to check for the existence of 

Variable Selection and Multicollinearity 

Variable selection is a critical process in model building. Given the 
large number of variables used, multicollinearity is likely present. 
For instance, low income is usually associated with minority and 
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FIGURE 3 Residual versus predicted plot for response rate model. 

blue collar occupations; therefore collinearity probably exists 
among race, income, occupation, and vehicle ownership. In addi
tion, from the collinearity diagnostics, multicollinearity was also 
found among PH 1, PH2, and PH4 (the household-size variables; see 
Table 1 for definitions). Because the model being constructed is for 
predictive purposes, multicollinearity is not as much of a problem 
as for studies in which the significance of variables is the key 
object-as long as one can reasonably conjecture that the structure 
of the multicollinearity will be similar for the place and time when 
the model is applied. 

However, parsimonious models are easier to work with and 
inspire greater confidence because they are easier to interpret. 
Hence an all-possible-subset-search variable selection procedure 
was conducted using SAS-weighted PROC RSQUARE. Assuming 
that the initial model with all variables included is not biased, usu
ally dropping some independent variables will cause bias in the 
parameter estimates left in the model, except when the values of the 
deleted variables are orthogonal to those of the remaining variables. 
To examine the variables, the value of Cr is a good indicator of the 
presence of noticeable bias. When C" = p (p is the number of inde
pendent variables plus one), the bias in the predicteds introduced by 
dropping variables is usually negligible (6, pp. 234-235). Also 
available are other indicators, such as s2 and R2

, which estimate the 
goodness. of fit. The combination of those indicators helps in the 
selection of a concise model with a reasonable level of goodness of 
fit and low bias. In the all-possible-subsets search, the C" value 
began to approach p for (p - 1) 2: 12. This indicated that little bias 
would occur with those sets of suggested 12 independent variables. 
Their corresponding R2's were around 0.38. The difference with the 
highest R2 occurred only at the third decimal point, which was 
encouraging. 

When variables in one class are similar and their bj coefficients 
are alike then consolidation is appropriate. For instance, those occu
pations requiring analogous skills that also have similar coeffi
cients, such as transportation and material movers, machine han
dlers, helpers, laborers, and household service and service workers, 
were combined into one summary variable: PLBR. Also it was seen 
that response rate estimates for households with one vehicle and 
households with several vehicles were approximately the same, 

suggesting that only two variables could be used: households with 
and without vehicles. 

CONCLUSIONS 

In a mail-out/mail-back survey, the lower-income, less-educated 
households are usually underrepresented. Because those population 
subgroups are usually mobility disadvantaged, it is particularly 
important to properly estimate and address their needs in trans
portation planning and policy. However, in many modeling proce
dures, factoring is not appropriate. Thus, to achieve a desirable 
number of responses, a carefully designed sampling scheme is 
necessary in surveys to under- and oversample in subareas. 

In this study, such a survey response model was estimated. The 
model was estimated by linear LS with a logit transformation. 
Because of the linear LS approach, it was possible to apply a wide 
range of statistical diagnostic procedures. 

The model results do not reveal surprises about response rates. It 
does, however, provide a means of estimating response rates in 
urban areas in which considerable demographic variations exist. 
Although this may not be critical for survey data used for descrip
tive purposes, it is important if the data are used for modeling. 

ACKNOWLEDGMENTS 

The authors thank the Illinois Department of Transportation and the 
Chicago Area Transportation Study for the financial and moral 
support to undertake this study. In particular the authors express 
their gratitude to Ed Christopher for his cooperation and assistance 
in the preparation of this manuscript. 

REFERENCES 

1. Hassounah, M. I., L. S. Cheah, and G. N. Steuart. Underreporting of 
Trips in Telephone Interview Travel Surveys. In Transportation 
Research Record 1412, TRB, National Research Council, Washington, 
D.C., 1993,pp. 90-94. 



Sen et al. 

2. Cohen, B. A., A. P. Lobo, E. L. Fielding, and L. S. Yang. Analysis of 
Households Without Phones: Impact for the NPTS 1995. Office of High
way Information Management, FHW A, U.S. Department of Transporta
tion, 1993. 

3. Kim, H.J., J. Li, S. Roodman, A. Sen, and S. Soot. Factoring Household 
Travel Surveys. In Transportation Research Record 1412, TRB, 
National Research Council, Washington, D.C., 1993, pp. 17-22. 

4. Thakuriah, P., A. Sen, S. Soot, and E. Christopher. Non-response Bias 
and Trip Generation Models. In Transportation Research Record 1412, 
TRB, National Research Council, Washington, D. C., 1993, pp. 64-70. 

5. Ashton, W. D. The Logit Transformation with Special Reference to Its 
Uses in Bioassay. Hafner Publishing Company, New York, 1972. 

6. Sen, A. K., and M. Srivastava. Regression Analysis, Theory, Methods, 
and Applications. Springer-Verlag, New York, 1990. 

177 

7. Clark, A. C., and C. Goldstucker. Mail-Out/Mail-Back Travel Survey in 
Houston, Texas. In Transportation Research Record 1097, TRB, 
National Research Council, Washington, D.C., 1986, pp. 13-19. 

8. Ghislandi, A. C., A. R. Fijal, and E. J. Christopher. CATS 1990 House
hold Travel Survey: A Methodological Overview. Working Paper 94-05. 
Information Services Division, Chicago Area Transportation Study, Illi
nois, 1994. 

9. Christopher, E. J., J. J. Nam, and M. J. Ragus. CATS Traffic Analysis 
Zone Structure for the 1990 Census Transportation Planning Package. 
Working Paper 94-01. Information Services Division, Chicago Area 
Transportation Study, Illinois, 1994. 

Publication of this paper sponsored by Committee on Traveler Behavior and 
Values. 



178 TRANSPORTATION RESEARCH RECORD 1493 

Recursive Structure for Exact Line 
Probabilities and Expected Waiting Times in 
Multipath Transit Assignment 

R. JAYAKRISHNAN, MICHAEL G. MCNALLY, AND ARUN G. MARAR 

Exact analytical expressions for incorporation into transit network 
assignment frameworks are presented. These expressions apply to the 
case of random uniform passenger arrivals and fixed constant line 
headways. Previously, difficulty in specification has led to assumptions 
such as Poisson line arrivals; the reality, however, conforms more to 
fixed schedules than to Poisson line arrivals. The exact expressions that 
are derived define expected waiting times and line ridership probabili
ties. Recursive schemes are developed for computational implementa
tion of these expressions by which to facilitate their application in prac
tical transit assignment. The expressions were developed for multipath 
assignment schemes and can be used to enhance existing transit assign
ment algorithms in commonly used planning packages; applications can 
be either in the line enumeration phase or in the line ridership probabil
ity calculations. Numerical examples are provided to illustrate the appli
cation of the recursive schemes, and the predicted line probabilities are 
compared with simulated passenger and line arrivals. 

The motivation for this paper is to improve on certain assumptions 
and methods that are used in existing transit assignment models and 
applied in practice for transit planning and operations. The focus is 
on developing exact expressions for finding line selection probabil
ities and expected waiting times without making traditional 
assumptions such as Poisson line arrival probability distributions. 
Recursive procedures are developed to facilitate the practical imple
mentation of these expressions. The successful design and opera
tion of an efficient transit system rely heavily on the successful 
implementation of the assignment models utilized in systems plan
ning packages. The transit assignment algorithm developed by 
Spiess and Florian ( 1) is one of the most popular models and, hence, 
this algorithm is used as a benchmark to apply the exact expressions 
and calculation schemes developed. Although the proposed models 
are possibly most applicable to the Spiess-Florian algorithm, they 
can be used in other assignment schemes as well. 

The paper presents a brief discussion on the history of transit 
assignment through current multipath assignment models used in 
practice. It also highlights the relative merits of existing transit assign
ment models and the implications of passenger arrival distributions 
and waiting strategies. The proposed models are applied to candidate 
transit networks, including a simplified real-world network. 

OVERVIEW OF TRANSIT ASSIGNMENT 

An important component of transit planning is transit path assign
ment, the prediction of how transit passengers choose paths. Path 
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assignment involves determining the level of service on various 
paths serving an origin and destination (0-D) and assigning pas
senger demand to these paths. There are various ways by which 
traveler route choice may be formulated. One possible assumption 
would be that all used paths will have the same minimum expected 
travel time and any unused paths will have travel times that are at 
least as great as this minimum (a variation of Wardrop's first prin
ciple). This principle implies that transit passengers choose a path 
from a set of paths with the minimum expected travel time. 

Transit path assignment, however, rarely considers other impor
tant aspects of passenger behavior. Some of the conventional tran
sit assignment methods assume negative exponential headways for 
transit services. Although it does not necessarily reflect actual 
behavior, this assumption has been attractive to researchers in the 
past because of its simplicity. Most multipath assignment models 
have used approximate expressions for the expected waiting time at 
a stop and the resulting ridership probabilities. Multipath assign
ment models assign passengers to a set of paths on the basis of some 
optimal strategy that typically seeks to minimize the expected total 
travel time to the destination. 

Transit assignment is different from conventional traffic assign
ment because of the waiting aspect and line transfer requirements. 
Associated techniques can be broadly classified on the basis of the 
nature of the assignment as deterministic and probabilistic. Deter
ministic transit assignment models find a single shortest path 
between an 0-D pair by considering waiting time at a node and pos
sible transfers to other lines. The earliest model developed is Dial's 
transit pathfinder algorithm (2), which is an extension of Moore's 
shortest-path algorithm accommodating the peculiarities of transit 
minimum paths. Le Clercq (3) suggested a different shortest-path 
algorithm known as the once-through algorithm for transit assign
ment as an improvement over the pathfinder algorithm. 

Probabilistic models consider the possibility of choosing from a 
set of lines. Perhaps the earliest work that considers transit assign
ment on the basis of perceived travel time is by Chriqui and Robil
lard ( 4). The idea of choosing the first line among a set of lines has 
been adopted by recent transit researchers (1,5-7); the nature of the 
algorithms differs in the definition of the choice set of transit lines. 
Spiess and Florian (1) developed a mathematical model for enu
merating an optimal strategy set of transit lines that aims to mini
mize the expected total travel time from an origin to a destination. 
Horowitz (5) modified Dial's multipath assignment model to 
accommodate various level-of-service parameters (such as travel 
time, waiting time, and capacity), which are used to find the set of 
reasonable paths between an origin and destination; a logit model 
was employed to estimate the probability of choosing a particular 
transit line. 
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Passenger Arrivals and Waiting Strategies 

In most of the conventional transit assignment methods, the expected 
waiting time for each route is assumed to be one-half of the route 
headway (assuming that a passenger arrives randomly in a perfectly 
reliable system). The expected waiting time for any transfer is again 
equal to one-half the headway on the connecting route (regardless of 
transfer timing). Even recently proposed multipath assignment mod
els still assume random passenger arrivals and approximate waiting 
times as some fraction of the headway. The assumption of random 
uniform passenger arrivals at a node might hold true in the case of 
frequent transit service but may not necessarily be warranted for 
less-frequent bus service (for example, headways greater than 
10 min). For such cases, several researchers have suggested that 
alternate distributions of passenger arrivals be used (8-10). 

Route Choice 

The choice of a route depends on an optimal strategy (or a waiting 
strategy). A strategy is a set of rules that, when applied, allows a 
traveler to reach the desired destination. Early transit assignment 
models specify a single shortest path, whereas probabilistic assign
ment models specify a set of paths on the basis of an optimal strat
egy. Actual route choice is more complex because it is a function of 
a passenger's perception of different level-of-service parameters, 
such as waiting time, number of transfers, and line capacity. 

The validity of Wardrop's principles in transit path choice is 
questionable because riders often may not select one initial com
plete path but may show adaptive behavior. In a comprehensive 
study of the transit route choice problem, Hall (11) suggested that 
passengers are able to improve their travel time over the Wardrop 
optimum by adaptively selecting routes. The research focus was to 
determine the importance of real-time information to passengers in 
making route choice decisions. Passengers can improve their path 
choice after arriving at a node by using additional information avail
able at that node. The advantages of knowing how much time a pas
senger has waited at a node in determining route choice when there 
are overlapping bus routes also was investigated by Marguier and 
Ceder (12). 

MULTIPATH ASSIGNMENT MODELS 

The most common multipath transit assignment models used in 
practice are those developed by Spiess and Florian (1) and Horowitz 
(5). Spiess and Florian enumerate a set of paths on the basis of an 
optimal strategy that minimizes the total expected travel time; this 
model has been implemented in EMME/2. Horowitz applied Dial's 
stochastic multipath assignment to enumerate the set of reasonable 
paths from a node to a destination on the basis of the disutility of a 
transit trip; this transit assignment model is implemented in QRS II. 

The Spiess-Florian transit assignment model is an algorithm for 
solving the transit assignment problem with a fixed set of transit 
lines. The traveler chooses the strategy that allows a desired desti
nation to be reached at minimum expected cost. A strategy is a set 
of rules that, when applied, allows the traveler to reach that desti
nation. For the special case in which the waiting time at a stop 
depends only on the combined line frequency, the problem may be 
formulated as a linear program of a size that increases linearly with 
network size. The problem of transit assignment is solved by a 
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label-setting algorithm in polynomial time. In the algorithm's first 
pass (from the destination node to all origins), the optimal strategy 
is enumerated and the expected travel times from each node to the 
destination are computed. In the second pass (from all origins to the 
destination), the demand is assigned to the network according to the 
optimal strategy. 

The multipath transit assignment model developed by Horowitz 
(5) is a modification of the general stochastic multipath assignment 
approach of Dial (13). Although Dial's model is considered to be 
efficient, there are instances where travel behavior is inaccurately 
represented. However, in the case of transit assignment, it can be 
shown that the potential inaccuracies of Dial's model are of little 
consequence relative to the anomalies of Dial's algorithm that arise 
in its performance in automobile networks. Any multipath assign
ment is based on hypothesized behavior of users; therefore, it is 
important to understand the passenger's perception of the (dis)util
ity of the individual routes. The disutility of a transit trip may be 
represented as a weighted function of the components of travel 
time, including access and egress walking time, waiting time, and 
transfer time. 

DEVELOPMENT OF EXACT EXPRESSIONS 

The major focus of this paper is the development of exact expres
sions for the line probabilities and expected waiting time for pas
sengers randomly arriving (via a uniform distribution) at a node and 
choosing a transit line from a candidate set of lines. This candidate 
set could, for instance, be based on an optimal strategy that mini
mizes the expected total travel time (such as that proposed by Spiess 
and Florian). Of particular interest is the case of uniform random 
arrivals of passengers and constant interarrival times of vehicles, 
which have been considered difficult in the past and have led to 
assumptions of Poisson line arrivals. The Spiess-Florian algorithm, 
for instance, makes such an assumption for finding the line choice 
probabilities (based on line frequencies). 

The expressions developed for the expected waiting time under 
fixed uniform line arrivals and random uniform passenger arrivals 
are applicable to assignment algorithms that use calculated expected 
waiting times during the candidate transit line enumeration phase. 
The second set of expressions developed for the line selection 
probabilities for a random passenger is of use in any assignment 
algorithm, which may be identifying candidate lines using different 
variables other than travel times and expected waiting times. 

Link Probability Expressions 

Link selection probability calculations are required in an assign
ment algorithm that develops the candidate line set by adding links 
to the set rather than paths. A link here refers to a transit line 
between two nodes in the network. The link probabilities can be 
derived from line frequencies, such as in the original Spiess-Florian 
algorithm: 

fc, 
P"(Ai) = "'°' 

L fa' 
\;fa'EAj 

a EA; (1) 

The probability P11(Ai) of selecting link a at node i from a set of 
links At is the ratio of the frequency of transit service fc, for link a 
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to the sum of the frequencies of the transit services for all the links. 
This expression holds true only for negative exponential vehicle 
headways. This expression is only an approximation in the case of 
constant headways. Because transit services tend to follow a fixed 
schedule (with some variance around the schedule), the Poisson 
arrival assumption does cause significant errors in some cases, and 
this is examined in a later section. The developments in this paper 
are based on the belief that a constant interarrival time is a much 
more logical assumption. 

Consider a set of m transit lines at a node that the traveler may 
pick from to reach the desired destination. Let H 1, H2, • •• , H,,, be 
the headways for Lines 1, 2, ... , m, respectively. Let H1.; be the min
imum of all these headways (that is, the kth line has the smallest 
headway). Ties are not restricted and either of the tying lines can be 
selected. 

The assumption of constant headways and uniform passenger 
arrivals results in a waiting time probability density function for 
Line i given by l!H;, implying that the randomly arriving passenger 
will find the arrival of line i to be after any waiting time of up to H; 
with equal probability. The joint probability density function of all 
the m lines is simply the reciprocal of the product of the headways 
of all the transit lines. 

The expression "a line arriving" is equivalent to a vehicle from a 
particular line arriving. The probability P; of line i being selected 
from the set of m lines is the probability of that transit line arriving 
first among the set of lines. The bus headways H,, H2, ••• , H,,, may 
be in any order. This probability is given by the following m-space 
integral: 

1 [ Hk HI H2 Hm ] 

P; = n,,,- f dh; i. dh, J dh2 .......... J dh
111 Hj o h, h· hi 

j=l I 

(2) 

The motivation behind this expression is simple: if Line i is to be 
the first line selected, then it must arrive within a time interval equal 
to the minimum headway among the set of lines under considera
tion, and all the remaining lines must arrive at a later time. This 
exact probability expression is a polynomial integration of degree 
(m-1) and hence results in a polynomial of degree m. To find a gen
eral expression, consider the case for two and three lines. Without 
loss of generality, assume that the minimum headway among the set 
of lines is H,. Expanding that expression yields the probability of 
selecting line i from the two or three line choice set (the number of 
lines are indicated parenthetically): 

1 [ (- l)H2 ] p (2) = - 2- I + H, H1 
I IIHj 2 

j=I 

(3) 

(4) 

Defining Sj"(i) as the sum of the products of headways of all possi
ble combinations from the set of m lines, not including line i, leads 
to a general expression for the ridership probability. 
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From induction, the general result is as follows: 

__ l_ (- l )111-1 H.'.' (- l)'"-2Hk'-1 
Pi = 111 

[ ' + s;· (i) 
ITHj m m-1 
j=I 

+ .... +H1.;S;;;_, (i)] (5) 

The probability expression derived has lost the simplicity of the 
proportionality expression originally advocated by Spiess and 
Florian; however, the expression manifests the theoretical predic
tions without the use of approximations. This is a more precise 
approach than that of Jansson and Ridderstolpe (14), where the 
probability of selecting a line is found by converting the already 
selected set to an "equivalent" route. Once a new route is added with 
share Pu each of the shares in the "equivalent" set is scaled by the 
factor (1 - Pu). 

Expected Waiting Time Formulation 

Just as the probability of picking a link is a function of the line 
frequencies, waiting time is also a function of the headway distrib
ution of the transit services. Again, an example is the expression 
for the expected waiting time at a node as specified by Spiess and 
Florian: 

£[wait]= ex> 0 (6) 

Spiess and Florian state that 

The case a = l corresponds to an exponential distribution of interar
rival times of the vehicles with mean l/f,, and a uniform passenger 
arrival rate at the nodes. The case a = Yi is an approximation of a con
stant interarrival time llf0 for the vehicles on link a. This measure of 
waiting time is the most widely used approach in practice, in spite of 
the fact that it is based on a rough approximation. (1, p.91) 

Although this is a widely used expression, it significantly underes
timates the expected waiting time at a node for the special case of 
constant interarrival times of the transit lines. The actual expected 
waiting time is the expected value of min [t1, t2, ••• , t 111 ] where t; is 
the time a randomly arriving passenger has to wait until the arrival 
of a line i service. This is the expected waiting time at a node 
because the passenger waits for the first transit line that arrives from 
among the optimal strategy set. The theoretical expression for 
expected waiting time in the case of constant line headways and uni
form random passenger arrivals is 

(7) 

The probability density function (PDF) for Min [t;] (that is, the 
PDF for the line i to be picked first from the set of transit lines) is 
given by: 
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I 

PDF for min[t;] = IT H; [;=FI .. . m (h; - t)] 
i=l ii'} 

(8) 

The summation term over all the lines is to take into account the 
case for each line being the minimum one to be selected from the 
set of lines. The limits of integration are 0 and Hk because the max
imum waiting time is equal to the minimum h~adway among the set 
of transit lines. This seemingly cumbersome equation takes a simi
lar expression as that of the link probabilities, with the polynomial 
integration being of the order m resulting in a polynomial expres
sion of degree (m + 1). To find a general expression, consider, as 
before, the expected waiting times for the two and three-line cases 
(the number of lines are indicated parenthetically): 

-
1 

- [ ( - I )2Rf H? ] 
E[ wait](2) = ± H; 3 + -f (H1 + H2) (9) 

i=l 

-
1
- [3Hi (- 1)2Hi 

E[ wait](3) = TI H; - 4- + 3 (H1 + H2 + H3 ) 

i=l 

(10) 

Denote as Rf' the sum of the products of the headways of all possi
ble combinations of j lines taken from the set of m lines. Note that 
the joint probability density function of headways (or waiting time) 
for the m lines can be denoted as l!R,,,111

• The above cases result in 
the following: 

From induction, it is possible to find the general form of the Rj" 
expressions as 

. _l_ [ (- 1)'"- 1mH['+ 1 (-l)"'-2(m - l)H';; 
E[ wait] = /11 + R"{ ITH; m+l m 

i=l 

k Ill H2 J + .... 2R,,,-1 

RECURSIVE SOLUTION FOR MODIFIED 
ALGORITHM 

(11) 

Theoretical expressions for the expected waiting time at a node and 
for the corresponding link probabilities have been derived from 
basic probability fundamentals. However, these expressions 
increase the computational complexity when implementing the 
modified model in practice. Computational time is of significant 
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concern in assignment for large transit networks; thus, the expres
sions must be specified efficiently. 

The method proposed here is suitable for algorithms based on 
shortest-path finding (such as Spiess-Florian), where the process of 
enumeration of the optimal strategy set of transit lines at a node is 
started by selecting the link with the least expected travel time. 
Another link is then added to the optimal set if it improves the 
expected total travel time. If it does not improve the expected travel 
time, the link is discarded and never again considered in the enu
meration. Thus, links are added sequentially to define the optimal 
strategy. 

A major portion of the computational time is spent in the calcu
lation of the expressions for R and S at each stage of the algorithm. 
For example, when the fourth line is added, R~, Ri, Rf, and Rt must 
be calculated. It is possible, however, to compute these values at 
each stage of the algorithm in a more elegant way without a signif
icant increase in computational burden. The following steps will 
illustrate the manner in which the algorithm can incorporate the 
expected waiting time and link probability expressions while main
taining control of the computational expense. 

Consider an optimal strategy set consisting of m lines and assume 
that each line is added in the order 1, 2, ... , m (i.e., Line 1 is 
selected first, then Line 2, and so on, until Line m is selected last). 
The algorithm has as many stages as there are transit lines in the 
optimal strategy. Stage I is executed when the first line is added to 
the optimal strategy set at a node. Stage 2 is executed when the sec
ond line is added to the optimal strategy set and so on until Stage m, 
which is executed when the mth line is added to the optimal strat
egy set. The Rj" values at stage m can be obtained from the R/1

-
1 

values of the prior stage; the S-values for each stage are directly 
obtained from the R-values of that stage. The expected waiting 
times and ridership probabilities are calculated by using the fol
lowing recursive structure: 

• Stage 1: Number of lines = 1; Line 1 enters. 
RI =H1 
£[wait] = H/2 
P1 = 1.00 

• Stage 2: Number of lines = 2; Line 2 enters. 
R? =RI+ H2 
Ri =RI H1 
S? (1) = RT - H1 
Find min [Hi. H 2] 

Find E [wait] 
Find P;, i = 1,2 

• Stage 3: Number of lines = 3; Line 3 enters. 
Rr = R[ + H 3 

Ri = Ri + R1
2 H3 

Rj = R~ H3 

Sf (i) = Rf - H; for i= 1,2 
Si (i) = Ri - H; [Sr (i)] for i=l,2 
Find min [Hi. H 2, H 3] 

Find E [wait] 
Find P;, i=l,3 

• Stage m: Number of lines = m; Line m enters. 
R{" = Rj"- 1 + H,,, 
Rf'= Rr 1 + RJ.'.'..1 1 H,,, forj=2, (m-1) 
R,;;' = R:::~i H,,, 
Do i=l, (m-1) 
Si" (i) = Ri" - H; 
Sf' (i) = R/11 

- H;[Sj"- 1 (i)] for j=2, (m-1) 
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Continue 
Find min [Hi, H2, ••• ,Hm] 
Find E [wait] 
Find P;, i=l,m 

The recursive steps developed facilitate the computation of the val
ues of the R's and the S's at each stage on the basis of the values 
from the prior stage. 

ILLUSTRATED EXAMPLE 

A four-line case has been chosen to illustrate the recursive algo
rithm; let the headways of these four lines be 30, 20, 12, and 4 min. 
Assume that these lines form the optimal strategy set. Note that 
whether a link becomes a part of the optimal strategy is a function 
of link cost (which typically in the case of the transit assignment is 
the link travel time), whereas the expected total waiting time and 
link probabilities are functions of headways only. Therefore, it is 
not necessary to consider the link travel times for each transit line. 

• Stage 1: Line 1 enters the optimal strategy set. 
R11 = H1 = 30 
E [wait]= 15 min 
P1 = 1.00 

• Stage 2: Line 2 enters the optimal strategy set. 
Rr = R/ + H2 = 50 
Ri = RI H2 = 600 
Sf (1) =Rf - H1 = 20 
Min [Hi, H2] = 20 min 
E [wait] = 7.78 min 
P 1 = 0.3333 
P2 = 0.6667 

• Stage 3: Line 3 enters the optimal strategy set. 
Rr = Rf + H3 = 62 
Ri = R?_ + Rr H 3 = 1,200 
Ri = R?_ H3 = 7,200 
Sr(l) = Rr - H1 = 32 
Sr(2) = Rr - H2 = 42 
Si(l) = Ri - H 1 Sr(l) = 240 
Si(2) = Ri - H2 S[(2) = 360 
Min [Hi. H2, H3] = 12 min 
E [wait] = 4.24 min 
P1 = 0.16 
P2 =0.26 
P3 = 0.58 
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• Stage 4: Line 4 enters the optimal strategy set. 
Rt = R[ + H4 = 66 
Rj = Ri + R~ + H4 = 1,448 
Rj = Ri + Ri H4 = 12,000 
Rt = Rj h4 = 28,800 
S1(1) = Rt - H1 = 36 
S((2) = Rt - H 2 = 46 
St(3) = Rt - H3 = 54 
Si(I) = Rj - H 1 Sf(l) = 368 
Sj(2) = Rj - H2 S((2) = 528 
Sj(3) = Rj - H3 S((3) = 800 
Si(l) =Rf - H 1Si(I) = 960 
Sj(2) = Rj - H2 Sj(2) = 1,440 
Sj (3) = Rj - H3 Sj(3) = 2,400 
Min [Hi. H2, H 3, H4] = 4 min 
E [wait] = 1.60 min 
P1 = 0.055 
P 2 = 0.085 
P3 = 0.150 
p4 = 0.710 

Note that the link probabilities of (m - 1) lines are calculated using 
the expression that, for the m1

h line, is computed as follows: 

m-1 

l-_IP; (12) 
i=l 

DISCUSSION OF RESULTS 

The comparison of the Spiess-Florian method with the exact 
method indicates a significant difference in the values of the 
expected waiting time and the probabilities predicted for uniform 
passenger arrivals at a node (Table I). It is important to note that the 
actual probabilities depend on the initial line starting times (the rel
ative headway gaps at the start of the time horizon). The link prob
abilities obtained from the exact method give the probability of tak
ing a line, which is unconditional on the initial arrival times. If two 
routes have identical I 0 min headways, with the first arrival on Line 
1 on the hour and arrivals on Line 2 lagged by 2 min, then the first 
route receives 80 percent of the randomly arriving passengers and 
the other only 20 percent. This is not the equal split that would be 
expected using either the exact method or the Spiess-Florian algo
rithm. Particularly in the case of routes with identical headways, the 
variance of probabilities conditional on the starting time is high. 
With the aid of a simulation study, it was shown that, in most cases, 

TABLE 1 Comparison of Spiess-Florian with Exact Method 

Stage Line Headways Spi~F1orian Method Exact method 

No: No: (minutes) 
E [Wait] Probability E [Wait] Probability 

1 1 30 15 1.000 15 1.000 

2 1 30 6 0.400 7.78 0.333 
2 20 0.600 0.667 

3 1 30 3 0.200 4.24 0.160 
2 20 0.300 0.260 
3 12 0.500 0.580 

4 1 30 1.2 0.080 1.60 0.055 
2 20 0.120 0.085 
3 12 0.200 0.150 
4 4 0.600 0.710 
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the variance of the probabilities caused by different starting times 
was low enough to minimize any concerns (Table 2). Moreover, the 
initial starting times for transit services over a large network are 
variable and hence the predicted probabilities, which are uncondi
tional on the starting times, are the best estimates on average, espe
cially during the planning process when assignments are used. For 
combinations of headways that do not share many common divisi
ble factors (for example, headways of 5 and 12 min), the actual link 
probabilities, irrespective of the starting time, closely approximate 
the theoretical unconditional values provided that the time horizon 
is sufficiently long. A typical peak-hour operation of 3 hr is suffi
cient to expect the system to converge to the theoretical values of 
the probabilities, as confirmed by the simulation study. 

IMPLICATIONS OF USING EXACT 
FORMULA TIO NS 

The exact formulations derived for the probabilities and waiting 
time for constant headways and uniform random passenger arrivals 
were implemented in an operational version of the Spiess-Florian 
algorithm. This task was somewhat formidable given the complex
ity of both the derived expressions and the resulting algorithm. The 
Spiess-Florian algorithm performs efficiently largely because of the 
nature of the expressions for line probabilities and waiting times. 
This algorithm adds lines in the order of increasing link costs. Con
sider a simple example where there are n lines operating between a 
single 0-D pair. Let the link costs be t1.2, ... , t11 .i, t11 such that 
t11 > t,,_, > ... > t,. Let H,, H2, ••• , H 11 be the corresponding head
ways. Two rules are presented next. The first rule is implicit in the 
Spiess-Florian algorithm and is used as the criterion for choosing an 
optimal strategy set. Because the optimal strategy set is different 
according to the exact expressions, the second rule is provided as a 
supporting rule to enumerate the optimal strategy set in this case. 

Rule 1: Conventional Rule for Enumeration of 
Optimal Strategy Set 

The Spiess-Florian algorithm adds Line 1 into the optimal strategy 
set and then Line 2 if t2 < £[travel time]. For the general case, 
assume that (n - 1) lines are already a part of the optimal strategy 
set. The expected waiting time for the (n - 1) lines is 
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(13) £[wait] = 11-1 

2 I ..l. 
/=I H; 

The probability of picking a line i is given as 

..l. 
H; 

P·=~ 
I I ..l. 

i=l H; 

(14) 

Using these expressions, the expected total travel time is given by 

11-l 

£[total travel time] = £[wait] + L P; f; (15) 
i=I 

Define a and b as 

11-l 

a=.l+I ..!.i___ 
2 i=I H; 

11-1 I 
b=I-

i=I H; 
(16) 

It follows from these expressions that the expect~d total travel time 
is given by (alb). If the nth line is added to the optimal strategy, then 
the new a' is given by [a + (t,/H11 )] and the new b' is given by 
[b + (1/H11 )]. The new expected travel time is given by a'lb'. This 
line would be a part of the optimal strategy only if (a' lb') < alb 
{i.e., if [a+ (t,/H11 )]l[b + (1IH11 )] <[alb]}. 

Cross-multiplying yields 

ab + b(t11 /H11 < ab + a ( l/H11 ) (17) 

This expression readily simplifies to 

t" <alb (18) 

Because alb is the expected travel time with (n - 1) lines, the inclu
sion of a new line has to satisfy the preceding criterion as employed 
by the Spiess-Florian algorithm, that is, the travel time on the new 
link is less than the current expected travel time to the destination. 
Any line that satisfies this criterion also becomes a line in the opti-

TABLE 2 Summary of Simulation Results for Two-Line Case 

Same Headways (min) Different Headways (min) 

10 10 12 s 
Time Horizon (hours) 3 3 

Probability (Simulation) 0.485 0.515 0.209 0.791 

Probability (Theoretical) 0.500 0.500 0.210 0.790 

Expected Wait Time 
(Simulation) 3.907 2.149 

Expected Wait Time 
(Theoretical) 3.333 2.160 

Probability Variance 0.086 0.001 

. Expected Waiting Time 
Variance 8.075 3.856 
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mal strategy set because it also improves the expected total travel 
time. It is a crucial difference in the context of implementing the 
exact expressions because all the lines that satisfy this condition 
may not be in the optimal strategy set. It is not necessary, however, 
that an entirely new criterion be developed. The Spiess-Florian 
criterion can be used to eliminate unfavorable lines; the strategy set 
needs to be further reduced to make it optimal because the addition 
of a line that satisfies the above criterion may not improve the 
expected total travel time according to the exact expressions. 

Rule 2: Supporting Rule To Enumerate Optimal 
Strategy Set in Exact Formulation 

A supporting rule must be developed for the previous criterion to 
find the optimal set of lines at a node that minimizes the expected 
total travel time. The following rule is proposed: 

One by one, add the lines from the ordered set that satisfy the 
criterion stated in Case 1 and determine the expected total 
travel time as each line is added. Store the expected total travel 
time values at each stage (typically the dual variables in the 
algorithm). Once the set of lines is exhausted, pick the mini
mum and eliminate all the lines that were included after the 
minimum line. 

This rule ensures that some of the lines included in the strategy set 
according to Rule 1 are removed once all the lines are considered. 
Only the lines up to and including the line that caused the minimum 
expected travel time remain in the final set. Thus Rule 1 is used to 
make an initial reduction of the strategy set, and Rule 2 is used to 
find the optimal set. It can be seen that because the strategy set 
between any two nodes is optimal, all the arguments presented by 
Spiess and Florian for the optimality of the algorithm apply here too. 

Special Example of Implementation of 
Exact Expressions 

Consider a two-line example with headways for Lines 1 and 2 of 20 
and 6 min, respectively. The lines connect Nodes A and B directly. 
Applying the Spiess-Florian algorithm, Line 1 is added first to the 
optimal strategy set because. it has the lowest link cost (the expected 
total travel time via Lines 1 and 2 are 13 and 15 min). 

Considering Line 2, the selection criterion u8 + C is 12 min and 
would be considered favorable by the Spiess-Florian algorithm 
because it is less than uA (currently equal to 13 min). This is true 
because the expected total travel time from A to B is improved to 
12.24 min. However, the exact expressions yield an expected total 
travel time of 13.35 min, which is inferior to the current value of uA. 

The inclusion of Line 2 has therefore increased the expected total 
travel time despite satisfying the selection criterion. 

• Spiess-Florian algorithm: 
-Expected wait time = l/2[1/(1/20+ 1/6)] = 2.31 
-Probability of picking Line 1 = 1/20/[1/20+ 1/6] = 0.23 
-Probability of picking Line 2 = 1/6[ 1/20 + 116] = 0. 77 
-Expected total travel time= 2.31 + 0.23 * 3 + 0.77 * 12 = 

12.24 min. 
• Exact expressions: 

-Expected wait time = 11120[(-1) * 2 * 63/3 + 1/2 * 62 * (20 
+ 6)] = 2.70 
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-Probability of picking Line 1 = I /120[ 1/2 * 6 * 6] = 0.15 
-Probability of picking Line 2 = 1/120[120 - 1/2 * 6 * 6] = 

0.85 
-Expected total travel time = 2.7 + 0.15 * 3 + 0.85 * 12 = 

13.35 min 

Line 2 cannot be excluded from further consideration at this stage 
because the addition of another line could make it favorable. The 
main implication in the application of the exact expressions is that 
the expected total travel times calculated at each stage must be 
stored and compared for the minimum value only after all lines at a 
node have been evaluated. 

APPLICATION TO REAL TRANSIT NETWORK 

To illustrate the implementation of the new transit assignment 
model, a small network of four lines has been extracted from the in 
transit network Orange County, California. The optimal strategy to 
reach the University of California, Irvine (Node B) from the Santa 
Ana Transit Terminal (Node A) is to be identified. Line 65 connects 
the 0-D pair directly, whereas Line 61 requires a transfer at Node C 
to either Line 382 or Line 74 to reach the destination. Figure 1 illus
trates the subnetwork along with the headways and link travel time 
(both in minutes). Figures 2 and 3 give the ridership probabilities 
according to the Spiess-Florian algorithm and according to the pro
posed algorithm using the exact expressions for expected waiting 
time and ridership probabilities, respectively. The Spiess
Florian algorithm was independently coded; the EMME/2 program 
was not used. 

The network was simulated with an 0-D demand of 500 person 
trips per hour and for a time horizon of 3 hr. To ensure that the 
resulting line probabilities reflected unconditional values with 
respect to the initial starting times, 200 initial line starting times 
were simulated. Figure 4 gives the ridership probabilities. The 
expected waiting time at the origin node, expected waiting time at 
the transfer node, and the minimum expected total travel time to 
reach the destination for all three cases are presented in Table 3. The 
results obtained from the exact expressions are clearly comparable 
to those of the network simulation. Table 3 also indicates that the 
Spiess-Florian algorithm underestimates the expected waiting time 
at a node and consequently the minimum total travel time to the des
tination. The expected waiting time at the transfer node validates the 
assumption that transfer passengers behave similarly to random uni
form passenger arrivals, particularly if the simulation is run for a 
large number of combinations of initial line starting times. The 0-D 
demand rate of 500 persons per hour is considerably heavy; the time 
horizon of 3 hr is a representative value for a peak period. In the case 
of the exact expressions, the simulation results are only a validation 
of their correctness because the simulations were performed under 
the same assumptions as those behind the expressions. 

CONCLUSIONS AND DIRECTIONS FOR 
FUTURE RESEARCH 

The expressions used in transit assignment models for ridership 
probabilities and expected waiting time are often based on approx
imations and assumptions, such as Poisson line arrivals. However, 
real-world situations possibly conform better to assumptions of 
constant-line headways and random uniform passenger arrivals, 
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HEADWAY TRAVEL TIME (minutes) 

(minutes) 

LINE 65 

LINE 61 (20) 1--~~~~~~-----4~5~m=i~·n=-~~-1 

LINE 382 (20) I 10 min I 

LINE 74 (30) I 15 min I 

NODE A c B 

FIGURE 1 Selected lines from extracted network. 

LINE 65 I 0.40 I 

LINE 61 I 0.60 I 

LINE 382 I 0.36 I 

LINE 74 I 0.24 I 

NODE A c B 

FIGURE2 Ridership probabilities using Spiess-Florian algorithm. 

which have been considered mathematically difficult. Exact expres
sions for these ridership probabilities and expected waiting times 
have been derived in this paper. The expressions are most applica
ble to assignment frameworks that enumerate the choice set of paths 
on the basis of travel times and expected waiting times, as well as 
to those that assign the ridership on the basis of line probabilities 
among a selected set of candidate lines (even if these are based on 
additional criteria besides trav~l and waiting times). The Spiess
Florian algorithm has both these characteristics, hence it is used as 
a benchmark to implement and compare the proposed expressions. 
The modified transit assignment model yields more robust values 
for line ridership than the original Spiess-Florian model in experi
ments based on a simulation of simple transit lines. 

Research goals were not limited to developing the exact expres
sions in the algorithm; they also included the development of an 

efficient implementation procedure to mm1m1ze computational 
efforts. A recursive approach that avoids calculation of the expres
sions by brute force at each stage has been successfully imple
mented in the modified algorithm. 

The assumption of uniform random passenger arrivals may not 
be justified in the presence of improved traveler information. A pos
sible extension would be to develop a comparable model that con
siders the advantage of real-time information provided both at ter
minals and in-vehicle. This would result in a dynamic choice set of 
transit lines as a function of real-time information provided. Such 
models can then be used for the planning and evaluation of 
advanced public transit systems. This proposed extension to the 
model would essentially involve more complex strategies that 
change in real time, depending on the information provided to the 
user. The reliability of a transit service can be significantly 
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LINE 65 I 0.33 I 

LINE 61 I 0.67 I 

LINE 382 I 0.44 I 

LINE 74 I 0.23 I 

NODE A c B 

FIGURE3 Ridership probabilities using exact expressions. 

LINE 65 I 0.33 I 

LINE 61 I 0.67 I 

LINE 382 0.44 I 

LINE 74 I 0.23 I 

NODE A c B 

FIGURE 4 Ridership probabilities using network simulation. 

improved if real-time information is provided; future research in 
this direction is needed. 

The ability of the assumption that the passenger's choice set con
sists of multiple paths that give minimum expected travel times still 
needs to be examined via field validations. Data describing the 
nature of passenger arrival distributions are critical in evaluating the 
applicability of the proposed models to transit systems with real
time information availability. 

TABLE 3 Comparison of Results 

Spiess-Florian 
Algorithm 

Minimum Expected 67.80 
Travel Time (min) 

Expected Wait 6.00 
at Origin (min) 

Expected Wait 6.00 
at Transfer_ (min) 
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Exact Network 
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Improving Efficiency of Commercial 
Vehicle Operations Using Real-Time 
Information: Potential Uses and 
Assignment Strategies 

AMELIA C. REGAN, HANI 5. MAHMASSANI, AND PATRICK JAILLET 

Advances in communication, automatic vehicle location, and geo
graphic information system technologies have made available several 
types of real-time information with benefits for commercial vehicle 
operations. Continuous updates on vehicle locations and demands 
create considerable potential for developing automated, real-time 
dispatching systems. The potential benefits of a diversion strategy in 
response to real-time information are explored under idealized condi
tions, and the technologies that are available for use in commercial vehi
cle operations and selected results derived from simulation are 
described. The results illustrate potential savings from simple diversion 
strategies under real-time information and highlight the need for 
methodological development to support improved truckload carrier 
operations decisions. 

Telecommunications and information technologies provide 
unprecedented opportunities for using real-time information to 
enhance the productivity, performance, and energy efficiency of the 
commercial transportation sector. Achieving the benefits of real
time information requires development of fleet operating strategies, 
including vehicle assignment and dispatching rule with increased 
flexibility, along with suitable decision support methodologies. 
There appears to be virtually no methodology in the literature 
intended specifically for truckload or other surface carrier opera
tions under the kind of real-time information possible with emerg
ing technologies. The lack of methodological development applies 
to both the analysis of carrier operations to evaluate the effective
ness of real-time information and to actual tools that could be used 
by carriers to take advantage of such information. The area of vehi
cle routing and scheduling, including dynamic vehicle allocation 
and load assignment models, has evolved rapidly in the past few 
years, both in terms of underlying mathematical basis and actual 
commercial software tools (1-3). Although these approaches may 
well be adaptable to operations under real-time information avail
ability, they are currently unable to take full advantage of such 
information because their underlying formulations do not recognize 
possible decisions that are meaningful only under real-time infor
mation. One such decision is the possibility to divert in response to 
customer demands. 

After briefly describing some of the technologies available, this 
work identifies and explores potential uses of real-time information 
for the efficient management of truckload carrier operations. In 

A. C. Regan and H. S. Mahmassani, Department of Civil Engineering, Uni
versity of Texas, Austin, Tex. 78712. P. Jaillet, Department of Management 
Science and Information Systems, University of Texas, Austin, Tex. 78712. 

particular an en route "diversion" strategy in response to unfolding 
customer demands is proposed and analyzed. A simulation model 
to explore the profitability of such diversion strategies under vari
ous operational conditions and demand arrival patterns is described 
and conditions under which such strategies might be profitable are 
derived. Findings suggest that meaningful potential exists for 
improving truckload carrier operations. These findings and related 
operational issues are discussed. 

In truckload operations, carriers typically know only a portion of 
the loads that must be moved before the beginning of the day. Typ
ically 60 percent of a given day's loads may be accepted on the 
same day that they are moved (J). The assignment of an available 
driver to a load therefore takes place almost in real time or at least 
shortly after the request is received. In addition, the load acceptance 
decision made by a carrier must be executed in real time and may 
have a significant impact on the carrier's ability to accept other 
loads later in the day or in the days that follow. This research 
explores ways to make "good" assignment decisions, and ultimately 
load acceptance decisions, that lead to overall cost-effective opera
tions but rely on local (current) rather than on long-term or fore
casted information. Although various forecasting methods may be 
used to estimate future demands, this information is not reliable in 
practice because of the large number of possible origin and desti
nation combinations and the inherent randomness of the process (1). 

INTRODUCTION TO TECHNOLOGIES 

Automatic vehicle location (A VL) systems are finding increasing 
application in a variety of contexts, including truckload and less 
than truckload trucking companies; local delivery and courier ser
vices; fire, rescue, and police departments; utility companies; secu
rity companies; public transportation companies; high-value and 
hazardous materials shippers; and taxi and limousine services. Not 
all applications require the same degree of accuracy. The dispatcher 
in a long-distance trucking company will most likely derive the 
same benefit from knowing the locations of the company vehicles 
to within 50, I 000, or even 10 000 m, whereas a police dispatcher 
may need to determine, with certainty, on which streets tracked 
vehicles are located. 

Although global positioning satellite (GPS) technology is often 
perceived as the leading AVL technology, the companies with a 
major market share in the long-haul trucking A VL market do not 
employ GPS technology in their standard products. One of these 
systems uses a group of nationwide specialized mobile radio tow
ers with optional Loran-C location tracking, and the other uses a 
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network of two geosynchronous satellites to perform tracking and 
communication, with Loran-C an optional addition. The 500- to 
1000-m accuracy these systems provide is adequate for dispatchers 
to estimate which highways the trucks are on. Commercial applica
tions that require street-level location information could benefit 
from increased accuracy. Applications that include navigation, 
either on board or at a central location, require more accurate posi
tion information than 500- to 1000-m estimates, as these do not 
ensure street-level accuracy. 

In most A VL applications, the position k>cation obtained must be 
transmitted to the dispatch center over an available communication 
link. Although position estimates and even point-to-point routing 
could, with an appropriate microcomputer, be calculated on board 
the vehicle, the vehicle's position must be transmitted back to the 
dispatch center for display. Communication links available for this 
purpose differ in cost and sophistication. VHF, cellular, or subtitle 
link may all be used, with digital cellular becoming more and more 
widely available. The link used typically depends on the frequency 
of communication and the distance between the dispatch center and 
the vehicles. The communication cost of such a system may be high, 
with messages costing as much as ten cents per brief packet for 
satellite communication systems, about five cents per packet for 
transmission over 800 or 900 MHz trunked radio lines, and more for 
standard cellular in which rates are determined by the minute rather 
than the data packet. If the vehicle locations are 'polled' often by 
the central dispatcher, these costs add up quickly (4). 

This study is most interested in irregular route common carrier 
operations. Discussions with operators of trucking companies of 
various sizes have made clear that whatever the particular tech-
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nologies chosen, A VL and two-way communication systems will 
be necessary for many trucking companies to compete in a market 
where the location and magnitude of demands for service are highly 
dynamic (5). A 1992 survey performed at the University of Texas 
of just under 300 carrier companies pointed out the fact that carri
ers agree that A VL and two-way communications technologies will 
lead to improvements in many aspects of their operations. Figures 
1 and 2 share some of their responses about what they perceive as 
the potential benefits of these technologies. Although it is clear that 
these technologies are beginning to see widespread use, it is equally 
clear that the full potential of these technologies will not be realized 
until responsive real-time dispatching tools become available. 

REAL-TIME ASSIGNMENT STRATEGY: 
DIVERSION 

Because of the length of some empty moves made to pick up loads, 
it is possible that new information on demands to be serviced may 
arrive whi_le a driver is en route to a pickup. Assuming that time 
windows for movements are flexible, this new demand information 
may be used to order demands in such a way as to reduce empty dis
tances driven. Quasi-continuous dispatcher-to-driver communica
tion makes it possible to divert a driver en route to a pickup loca
tion to an alternative load, thereby inducing a resequencing or 
reassignment of the original load. Such diversion strategies are not 
generally feasible under current operations because dispatcher
driver communication takes place at discrete instances only, typi
cally at a load pickup or delivery point (5). 

II % disagree 

D %neutral 

•%agree 

60· 80 100 

Percent of Respondents 

FIGURE 1 User assessment of two-way communication and A VL system benefits: Part 1. 
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II % disagree 

D %neutral 

•%agree 
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Percent of Respondents 

FIGURE 2 User assessment of two-way communication and A VL system benefits: 
Part 2. 

The relative improvement possible under this strategy depends 
on the relative locations of the alternative pickup and delivery 
points. Under some distributional assumptions about the locations 
of these points, the interest is in the probability that diverting the 
driver to a new demand while en route to a previously assigned 
pickup will be beneficial. In even the simplest case, it is difficult to 
derive this probability analytically because the various cost compo
nents are not independent. For this reason, these probabilities and 
various other performance measures are evaluated through simula
tion of such diversion strategies over service horizons of varying 
lengths, under different arrival stream distributions, and under load 
acceptance rules that either require all loads to be serviced or allow 
less profitable loads to be rejected. The scenarios examined up to 
this point are not intended to exactly replicate actual operating 
conditions, but to provide a simplified representation that allows 
derivation of basic insights into the potential benefits of real-time. 
information and the factors that affect these benefits, as well as the 
identification and design of strategies that merit examination under 
more realistic operating conditions. 

Diversion Probabilities Under Simple Assumptions 

To begin with the most basic case, while a driver is en route to a 
load origin, information about another load (and in this initial case, 
only one other load) to be moved becomes available. Answers to the 
following questions are desired: What is the probability, given var
ious diversion decision rules, that the driver will be diverted to serve 

the new load first? What is the probability that following such diver
sion decision rules will result in a reduction of overall distance trav
eled? And, what is the associated expected reduction in travel? 

To clarify, consider in Figure 3, a vehicle that begins at the 
center, c, of a circle and moves toward the origin of a loaded move
ment between Points X1 and X2, where these points are uniformly 
and randomly generated over the area of the circle. Given a diver
sion point (the point at which another load to be moved becomes 
available) some fraction of the distance from the center of the cir
cle and origin Xi. the probability is derived that the distance 
between the diversion point to a new origin X3 will be less than the 
distance from the diversion point to origin X1• Let ex, 0:5 ex ::::: 1 
denote the fraction of the distance from the center to X1 traveled to 
reach the diversion point. The probability that the distance from the 

Xl 

X4 

FIGURE 3 Diversion example. 
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diversion point to the new origin is less than that to the old origin is 
given by (1 - a..)2/2), as shown hereafter. 

Let B(c, r) denote the circle of center c and radius r, and d(x, y) the 
Euclidean distance between points x and y. Consider two random 
points in B(c, r), say, X1 and X3 . For 0:::.; a:::.; 1, let W1(a..) be the point 
on the segment (c, X,) such that d [c, W, (a)] = a [d (c, X1)]. Define 
the following two random variables Y1 = d [W,(a..), X1] and Y2 = 

d [W, (a), X3], where Y, and Y2 represent the distances from the 
potential diversion point to the current and potential load origins. 

Let Z be the radial distance of W1(a..) so Z = d [c, W, (a)], andf 
( ·) be its probability density function: 

p 

P(Y2 > Y,) = J (Y2 < Y, I Z = z)f (z) dz 

p 

= J {X3E B [W1 (a), z/a.. - z]} f (z) dz 

Because W1(a..) is a random point in B(c, a), 

P(Y2 < Y,) = r [(I - a) z/a..]2 (2z/a2
) dz = (1 - a..)212 

0 

(1) 

(2) 

If a myopic strategy of diverting to the new demand origin, X3, is 
followed if it is closer to the diversion point than origin X1, then 
(1 - a..)2/2 represents the fraction of loads for which one actually 
diverts. This probability [P(Y2 < Y1)] is shown graphically as a 
function of the diversion point location parameter, a, in Figure 4. 
However, under this strategy, even if the diversion decision at point 
a = 0 is evaluated, the resulting average savings in terms of reduced 
distance traveled while serving the two loads is less than 1 percent, 
a~d diverting at points further downstream actually results in a 
slight increase in traveled distance, on average. 

A more plausible diversion strategy would also consider the rel
ative distances between the destination point of the first movement 
and the origin point of the next load. In Figure 3 these are given by 
d(X2, X3) and d(X4 , X1). In this case diversion is chosen if 
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Analytic derivation of the corresponding diversion probability 
under this strategy is no longer straightforward because the respec
tive distances are not independent. The diversion likelihood and 
associated expected benefit are evaluated using a simulation 
program under the following underlying assumptions: 

• A circular work area with a radius of I unit of travel as in 
Figure 3, 

• Uniformly and independently generated demand locations, 
• Euclidean (straight-line) travel distances, and, 
• Diversion results compared with a 'base' case where demands 

are serviced in order of their arrival. 

Simulation was used to evaluate the case shown in Figure 3, in 
which the vehicle begins at the center of the circle, c, and only two 
demands are served. A total of 75,000 independent trials were exe
cuted for each of 10 values of a, the diversion point fraction, that 
varied between 0 and 1. When a = 0, that is, resequencing occurs 
before departing for the first demand, as should be expected, rese
quencing occurs in half the cases. The fact that resequencing occurs 
in more than 10 percent of the cases when the diversion decision is 
evaluated at the origin point of the first load, that is, a = 1, is some
what counterintuitive and results from the cases in which the loaded 
movement of the candidate load takes the vehicle close to the ori
gin of the original load. Average savings resulting from such a 
diversion strategy, in which the demand horizon (the number of 
demands served in a single simulation instance) is only two loads, 
vary from 7 percent of the total distance traveled if demands are 
taken in order with a = 0, down to 1 percent with a = I. These 
results are shown in Figure 4. 

This analysis is extended beyond the first diversion decision. 
After serving the load selected, the vehicle begins to move toward 
the unsatisfied demand. Again, a new demand arises along the way, 
creating a new diversion opportunity. With a demand horizon of 
100 loaded movements, evaluated sequentially on a pairwise basis, 
simulation results indicate overall benefits (of the diversion strat
egy) in the range of 1.5 to 12.5 percent of overall distance traveled, 
depending on the diversion point fraction, relative to the base case 
of servicing demands in the order in which they arrive. Figure 5 

-...... 

----Average 

fractional 

reduction of 
distance 

- - - - - Fraction of 
cases where 
diversion was 
chosen 

P(Y2 < Y1) 

FIGURE 4 Probability of diversion when distances to load origins and between two 
demand points are considered. 
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FIGURE 5 Reduction of travel with diversion strategy as fraction of overall travel with 100 
demands served. 

shows the overall reduction in travel cost as the diversion point frac
tion is varied from 0 to 1. A regression model that assumes an expo
nential functional form approximates this curve as 

Reduction = (0.151 )0.111 ex (4) 

Note that in the simulations the new load is assumed to be known 
by the time the vehicle reaches the diversion decision point. If CY, the 
diversion point fraction, is a uniform random variable taken 
between 0 and 1, which would correspond to a scenario in which the 
new load may become known at any point along the route between 
the vehicle's last load destination and the next load origin, then the 
average reduction in travel is more than 6 percent of the total 
distance traveled. 

In addition to these average numbers, it is important to gain 
insight into the worst-case performance of this strategy. If the ser
vice horizon is short, say, less than 10 demands served, it is possi
ble to make one or more diversion decisions that result in an over
all cost (distance) increase over the demand horizon. However, over 
a longer service horizon, diversion outperforms the base case more 
than 99 percent of the cases. Figure 6 gives the expected probabil
ity of overall gain and loss, respectively, along with the associated 
magnitudes of the gains and losses over different demand horizons. 
Each set of numbers is based on l 0,000 simulated realizations of the 
corresponding sequence of random demand locations. Of course, 
overall gain here corresponds to the sequence, not to individual 
diversion decisions. The expected gains (or losses) are given in 
terms of fractions of the overall distance traveled under the base 
case (no diversions). The reported decreases (and increases) are 
conditional values given that the particular sequences experienced 
a decrease (or increase) under the diversion rule. The expected over
all gain (or loss) over a sequence of calls is given by 

E[gain]= E[gainJ gain> O] p(gain < 0) 
- E [gain I gain < 0] p(gain < 0) (5) 

The results in Figure 6 indicate that even with a horizon with as few 
as IO diversion points the probability of overall loss is only 11.6 

percent, with a corresponding expected loss of 2.3 percent of the 
overall distance under the base case. On the other hand, the 84.5 
percent likelihood of gain is accompanied by an expected gain 
greater than three times the expected loss (7 .1 percent reduction in 
overall cost). Note that for the 10-demand case the likelihood of 0 
gain (no diversions chosen at all) is about 3.9 percent. The proba
bility of loss rapidly decreases with the service horizon considered, 
to less than 1 percent with 50 demands (accompanied by an insignif
icant loss of under 1 percent, whereas the corresponding gain is over 
6 percent with over 99 percent probability of gain. The fact that the 
probability of loss and the expected conditional loss are extremely 
small makes the diversion operating strategy appear to be somewhat 
of a win-win strategy. The simple diversion criterion of comparing 
the relative distances to serve a pair of loads sequentially appears 
relatively robust. If it suggests that diversion is profitable diversion 
is done, with a very high probability of realizing some meaningful 
benefit, and if it does not, the original plan is followed. 

To further reduce the likelihood of loss over a finite number of 
decisions one can introduce a threshold in the diversion rule, 
whereby the local gain is required to exceed some minimum level 
to trigger a diversion, as follows: 

If 

d(p, X3) + d(X4 , X,) < d(p, X,) + d(X2, X3) 
- T[d(p, X1) + d(X2, X3)] 

then 

divert and serve load X3 to X4 first, 

where 

p = current diversion point, 
X1, X2 = origin and destination locations of current load, 
X3, X4 = origin and destination of newly arrived load, and 

(6) 

T = threshold multiplier corresponding to the minimum 
relative improvement associated with a given diversion. 
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Expected conditional gain* 

. / P(Gain) 
Expected Gain (Loss) over a sequence of loads */ 

Expected conditional loss* 

P(Loss) 

to Demands 20Demands 

0.071 0064 
0.057 < 0.845 O.OS9 < 0.941 

0023 0.014 

0.116 0.058 

30Demands 
40 Demands 

0.063 
0.062 

0.06U < 0.972 0.061 < 0.985 

.012 0.009 
0.028 O.ot5 

SO Demands 60Demands 

0.062 
0.062 

0.062 < 0.993 0J)62 < 0.997 

Q.OO'J 0.006 
0.007 0.004. 

70Demands SO Demands 

0.062 
0.062 

0.062 < 0.999 0.062 < 0.999 

0.006 0.006 
0.001 0.001 

* as a fraction of base case distance traveled 

FIGURE6 Benefits of diversion (distances to serve both loads considered). 

This multiplier was varied from 0 to 0.5 (50 percent in the 
present analysis. Results suggest that a threshold value of about 10 
percent of the base case cost yields the best performance. How
ever, although the addition of a threshold for diversions reduces 
the risk of bad diversions, any threshold that precludes many 
positive diversions results in a reduction of expected benefits. 
The addition of the threshold rule for diversion increased the 
overall benefits by an amount between 1 and 0.3 percent, depend
ing on the demand threshold. However, more significantly, the 

thresholds cut nearly in half the already low probability of loss in 
each case. 

In these simulations, the diversion point fraction, a, varied 
uniformly between 0 and 1. The diversion decision was based on an 
entire sequence of moves associated with the current and new 
demand points. Alternatively, Figure 7 shows the results of a diver
sion strategy under a strictly myopic or greedy strategy of diverting 
to the closest origin point, that is, if d(p, X3) < d(p, X1) then divert 
to load X3• 
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Expected conditional gain* 

/ 

P(Gain) 
Expected Gain (Loss) over a sequence of loads* . · 

Expected conditional loss* 

P(Loss) 
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0.035 0.034 
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OOIQ O.QlO 
0.0'J2 0.076 

* as a fraction of base case distance traveled 

FIGURE? Benefits of purely greedy diversion strategy. 

Two interesting points can be noted about these two sets of results 
in Figures 6 and 7. The first is that despite the limited information 
employed, that of which origin is closer, the greedy diversion strat
egy consistently leads to a reduction in overall expected travel over 
the demand horizons considered. The second is that by slightly 
increasing the amount of information considered, by also consider
ing the distances that must be traveled empty between the two loads, 
the overall benefits double from 3.1 percent of the distance traveled 

to 6.2 percent over a demand horizon of 60 points. More impor
tantly, the risk of overall loss is reduced significantly. For example, 
the probability that the diversion strategy will result in an overall 
cost increase with 60 demands is reduced from 0.109 (in the greedy 
case) to 0.004 when the distances to the load destinations are also 
considered. This is nearly 2 orders of magnitude less. Overall, these 
results demonstrate the potential power of reacting to even small 
amounts of real-time information on the state of the system. 
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EXTENSIONS OF SINGLE-VEHICLE, 
TWO-DEMAND CASE 

This exploration under highly idealized conditions suggests that 
even a simple local diversion strategy is highly likely to result in a 
reduction of overall distance traveled. After considering only two 
demands at a time, the analysis is extended to consider several 
demands in a particular decision to divert and to look at demands 
that are uniformly generated in space but arrive according to a 
Poisson arrival stream as well as from a uniform distribution. In 
addition, operational constraints in which every demand must 
be served, and those in which one has the freedom to accept or 
reject demands according to the cost of serving them have been 
explored (6). 

Naturally the performance of a given diversion strategy can be 
compared relative to several possible benchmarks or base cases 
with differing results. In addition to the base case of serving 
demands in the order in which they arrive, an "intelligent base" case 
in this analysis, is also considered next. 

Poisson Arrival Stream, Optimal Resequencing, 
All Demands Accepted 

This scenario has the following assumptions: 

• Demands are generated from a Poisson arrival stream over 
time, 

• The rate of arrival is rapid enough that more than one new 
demand may arrive while the vehicle is en route to a pick-up, and 

• Demands diverted away from or not chosen for diversion are 
added to a queue and resequenced optimally with respect to overall 
distance traveled before being served. 

This diversion strategy is compared with two different base cases. 
The first assumes service in the exact order of arrival, as considered 
previously, whereas the second, an intelligent base case, assumes 
that any demands waiting for service are resequenced optimally at 
the completion of each loaded movement. This intelligent base 
strategy is applied with optimal resequencing of up to five demands 
at a time. This itself results in solutions that are only 1 to 2 percent 
higher than those attained under the comparable diversion strategy 
in terms of overall travel distance. Under the assumption that all 
demands must be served, with demands generated from a Poisson 
arrival stream and with an arrival rate rapid enough to produce 
diversion opportunities, this intelligent base scenario leads to sav
ings of more than 12 percent of the base case travel distance, and 
the en route diversion strategy tends to improve on the intelligent 
base by about 1 to 2 percent. 

The dashed lines in Figure 8 show the various distances (costs) 
compared when choosing to divert, resequence, or serve the 
demands as they arrived in the case where two demands are in the 
queue and while the driver is en route to the current demand, origin 
X1• The strategy chooses the minimum cost case of then! alterna
tive orderings, where n is the number of demands in queue. It is 
assumed that n is a small number, say, less than 6, since to enumer
ate all alternatives for even slightly larger queues would take a pro
hibitive amount of time. This assumption of short queues makes 
sense in the trucking application where drivers typically have one 
or two jobs queued at most. Using the notation in Figure 8, when a 

195 

new demand arises the minimum of the following six quantities cor
responding to all possible service sequences is evaluated: 

(7) 

Cases e and f represent a diversion to the new load; Cases c and d 
represent diversion to a load already in the queue, one that was pre
viously found unprofitable to divert to or to place first in the queue 
but was resequenced because of the information on the new 
demand. Cases a and b represent no-diversion cases, that is, the 
vehicle pr~ceeds as before, but the second and third loads may be 
resequenced if that is beneficial. 

Various extensions of these rules were explored, and it seems that 
under the assumption that eventually all demands must be serviced, 
a strategy that allows diversion but limits the number of times that 
one diverts before some demand is serviced is better than one that 
allows diversion whenever it is locally better. If diversion is allowed 
whenever it appears (locally) beneficial, under these assumptions 
costs may be low early in the service horizon and then considerably 
higher at the end. 

Investigation of Poisson Arrival Stream, 
Optimal Resequencing, Loads Accepted or 
Rejected on Basis of Cost to Existing Route 

This investigation has a different assumption from the preceding 
case with respect to load acceptance, namely, many demands are 
generated over time and loads may be accepted or rejected. This 
case assumes a rapid arrival rate for new demands. Whenever a new 
demand becomes known and space is available in the queue adding 
it to the current queue is considered. Rather than inserting the new 
demand into the existing route, resequencing the route in light of the 
new demand is considered. Because to optimally resequence the 
whole route would be computationally expensive (and possibly 
infeasible) the marginal cost of adding a demand to one of the first 
five slots in the queue is determined. If the additional empty dis
tance needed to service the first four demands along with the new 
demand exceeds a given threshold value the new load is rejected. 
Otherwise the load takes an empty slot in the queue. These (up to) 
five demands are then resequenced optimally. Under the diversion 
strategy the load acceptance or rejection decision is made as soon 
as the demand becomes known if the vehicle is moving empty and 
as soon as it becomes empty if it is moving loaded. In the intelligent 
base case load acceptance decisions are made for all loads that have 
become known during the last period of service immediately after 
service is complete. These loads are evaluated for acceptance or 
rejection using the same logic as that in the diversion case (marginal 
cost to add to the first five slots in the queue) in the order in which 
they arrived. It was an a priori thought that the diversion strategy 
would perform well under these circumstances. However, it appears 
that excessive diversion creates a sort of "zig-zag" effect where a 



a) b) 

c) d) 

e) f) 

FIGURE 8 Alternatives with two queued demands and a third arrival: a, no 
change in plan; b, no diversion, resequence; c, divert to previously considered 
demand; d, divert to previously considered demand; e, divert to new demand;f, 
divert to new demand. (Dashed lines represent empty movements, and solid 
lines, loaded movements.) 
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vehicle is en route and then diverts and then diverts again. It appears 
that without additional constraints to restrict the amount of diver
sion a comparable intelligent base case in which the first few queued 
demands are optimally resequenced performs better. T~ble 1 pro
vides a summary of the results presented in the last few sections. 

CONCLUSIONS 

Trucking operations consume a vast quantity of economic and 
environmental resources. A reduction in overall travel of even a few 
percentage points would represent a significant savings to both 
suppliers and consumers of trucking services. The U.S. Department 
of Transportation estimated that in 1991 motor vehicle fuel pur
chases accounted for 7.9 percent of common carrier costs or about 
$8.7 billion nationally (7). If 10 percent of these vehicles had a 5 
percent reduction in fuel consumption, $43.5 million would be 
saved each year. In this work we identify and explore potential uses 
of real-time information for the efficient management of truckload 
carrier operations. Findings suggest that the diversion strategy 
examined may result in reduced travel distances and hence 
improved efficiency under certain conditions. Such strategies could 
become one part of an overall assignment and load acceptance strat
egy for truckload operations. The exploration of idealized scenarios 
suggests that a reduction of overall travel distance of between 5 and 
10 percent would not be unreasonable. Although they are not 
intended to exactly replicate actual operating conditions, these 
scenarios do provide a simplified representation that allows the 
extraction of basic insights into the potential benefits of real-time 
information, the factors that affect their benefits, and the identifica
tion and design of strategies that merit examination under more real
istic operating conditions. 

TABLE 1 Summary of Key Results 

Scenario 
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Continuing developments include extending this analysis to a 
more 'realistic' scenario with respect to geographic region studied 
and customer demand stream. In addition, a fleet of vehicles rather 
than a single truck is examined. As the availability of automa
tic vehicle location and two-way communication technologies 
improves, and as the cost of equipping vehicles with these tech
nologies decreases, more and more fleets will incorporate these 
technologies into their daily operations. Recent interviews with 
carrier company executives and fleet managers suggest that they 
are eager to incorporate communications technologies and opti
mization tools into their operations but that much work remains 
to be done in terms of developing such tools in a manner that 
is responsive to actual operating realities. An additional benefit 
of such tools is that they would enable companies to find good 
solutions to a complicated multiobjective problem. An addition to 
the goal of reducing overall distance driven is that of matching a 
driver with the load that best meets his or her needs. Discussions 
with industry executives have pointed out that irregular route 
truck drivers may stay on the road for more than 3 weeks at a time 
before finding an opportunity to pull a load in the direction of 
their home base. Flexible assignment strategies would improve 
the chances of finding a load that meets the preferences of an 
individual driver. A data base management system that would 
likely be an adjunct to any computer-based dispatching system 
could make the preferences of individual drivers easily accessible. 
It is clear that there are many potential uses of new technologies in 
commercial vehicle operations in general, and freight carrier 
operations in particular. Although technologies are beginning to 
see widespread use, it is equally clear that their full potential will 
not be realized until responsive real-time dispatching tools become 
available. 

Results 

Demands generated a fraction of the way Savings of 1-7 percent of the base travel 
towards the first demand, 2 demands distance depending upon the diversion point 
evaluated in each simulation. fraction. 

Demands generated a fraction of the way Savings of 1.5-12.5 percent of the base 
towards the current demand, 100 demands travel distance depending upon the diversion 
evaluated in each simulation. point fraction. 

~emands generated from a Poisson arrival 
stream, all demands served, optimal 
resequencing of up to first five demands, 
diversion to new or queued demand. 

Demands generated from a Poisson arrival 
stream, accepted or rejected for service 
based upon space in queue and the cost of 
providing service given the current queued 
demands, optimal resequencing of up to first 
five demands, diversion to new or queued 
demand. 

Savings of 13-14 percent base case travel 
distance when compared to the base base, 1-
2 percent of the intelligent base case travel 
distance when compared to the intelligent 
base case. 

No comparison to the base case, little or no 
savings when compared to intelligent base 
case because of zig-zag effect. 

Notes: The base case refers to serving the demands in the order in which they arrive. The 
'intelligent base' refers to the case in which en-route diversion is not allowed, but a short 
queue of demands is resequenced optimally prior to the start of new service. 
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Quasi-Continuous Dynamic Traffic 
Assignment Model 

BRUCE N. JANSON AND JUAN ROBLES 

Several variants of combined dynamic travel models in discrete time 
wi~h d.ynamic user equilibrium or system optimality as the assignment 
objective have been presented recently. This modeling approach is con
verted into quasi-continuous time, which enables two key model 
improvements: (a) traffic volumes are spread over time intervals in con
tinuous time, allowing trips to be split among successive time intervals, 
and (b) the first-in first-out ordering of trips between all zone pairs is 
more precisely maintained. The means by which capacity losses are 
approximated on upstream links caused by spillback queueing from 
oversaturated links and accidents are also described. Trips are assumed 
to have scheduled departure times and variable arrival times, but nota
tional variations allowing other model forms are briefly mentioned. 
Application of this model to a Denver-area network with comparison of 
results to observed speeds and volumes is described elsewhere. 

Among several key issues addressed by researchers developing 
dynamic traffic models over the past 20 years, three critical issues 
are capabilities of the model to (a) fractionally split trip flows 
among multiple paths at any road juncture, (b) validly maintain the 
first-in first-out (FIFO) ordering of trips between all zones pairs, and 
( c) account for spill back queueing effects caused by incidents and 
oversaturated links. This paper formalizes the inclusion of these 
three concerns in a dynamic user-equilibrium (DUE) formulation. 
Robles and Janson (J) apply this model to a Denver-area network 
covering about 100 mi2(260 km2

) with comparisons of results with 
observed speeds and volumes. 

DUE formulations presented by Janson (2,3 ) use 0-1 variables 
called node time intervals to track trips across the network in both 
time and space (i.e., to identify whether trips departing zone r in 
time interval d cross node i in interval t). However, trips departing 
within a given time interval from any node or zone do not all 
depart at a single point in time but instead depart as a uniform trip 
rate over that time interval. This paper improves these earlier DUE 
formulations by representing time more continuously. Herein, the 
integer node time intervals are used to compute "trip flow fractions" 
(i.e., the fraction of trips departing zoner in time interval d to cross 
node i in time interval t). All trip flows are tracked through the net
work in continuous rather than discrete time. This modeling revi
sion improves its (a) spillback queueing effects and dynamic link 
capacity adjustments, (b) FIFO trip ordering between all origin-des
tination (~-D) pairs, and (c) link volume and speed transitions 
between time intervals. 

In DUE, the full analysis period of several hours is sliced into 
shorter intervals. Each trip has a known departure or arrival time 
(but not both) and its corresponding trip-end zones. Because travel 
times are variable, times of departure and arrival cannot both be 

Department of Civil Engineering, University of Colorado, Campus Box 113, 
P.O. Box 173364, Denver, Colo. 80217. 

fixed for any trip. DUEi assumes known departure times for trips 
from each zone but only total arrivals to each zone over the full 
analysis period. DUE2 assumes known arrival times of trips to each 
zone, but only total departures from each zone over the full analy
sis period. Janson (4) formulates DUE2 similarly to DUEl, except 
for numerous notational changes to make node time intervals and 
node-to-destination travel times on the basis of destination zones 
and arrival times. Janson (5) describes a general model including 
both trip types, and Janson and Robles (6) combined route choice 
with departure or arrival time choice in DUEA. 

DUEi as formulated in this paper with scheduled departures is 
defined as follows: 

Given a set of zone-to-zone trip tables containing the number of vehi

cle trips departing from each origin zone in successive time intervals 

of 1 to 10 min each, and also the destination zone but not the arrival 

time of each trip, determine the volume of vehicles on each link in each 

time interval such that, for each 0-D pair of zones, no path has a lower 

travel time than any used path for trips departing within a given time 

interval. 

This DUE condition for fixed departure times, as derived by 
Janson (3), is a temporal generalization of Wardrop's (7) condition 
for static user equilibrium (SUE). Here, the term departing can be 
replaced by arriving for cases with variable departure times and 
scheduled arrival times. As an outcome of equal travel time paths, 
trips between the same 0-D pair with the same departure time also 
have equal arrival times. At equilibrium, each trip arrives at its des
tination on an equal travel time path that departs from its origin 
within the same time interval. 

DUEi presented here is quasi-continuous in that link volumes are 
split fractionally between discrete time intervals from which speeds 
are calculated. In comparison, Friesz et al. (8), Wie (9), and Wie et 
al. (JO) present optimal control theory formulations of dynamic traf
fic assignment in continuous time for which the equilibrium condi
tion is that no used path between any two nodes has a higher travel 
time than any other path at any instant. Path choice according to 
time-of-departure conditions or en route revisions; or both, accord
ing to updated conditions in each time interval lead to models in 
which complete 0-D paths used by trips can have unequal travel 
times for any given departure time. 

Wie (11) and Ran et al. (12, 13) refine and extend optimal control 
models to include elastic demand and departure time choice in user 
equilibrium or system optimal forms. Friesz et al. (14) formulate the 
simultaneous route choice and departure time problem in continu
ous time as a variational inequality. Although proposed solution 
procedures are prohibitive, these papers address important consid
erations about the behavioral assumptions of alternative model 
forms. 
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DYNAMIC USER EQUILIBRIUM WITH 
SCHEDULED DEPARTURES 

Dynamic user equilibrium with scheduled departures (DUE 1) can 
be stated equivalently in terms of path flows, but the link flow form 
shown here does not implicitly assume complete enumeration of all 
paths between zone pairs. Turn movements at each intersection are 
represented by separate links at each node. The exact form of each 
link's impedance function can be specific to the intersection or link 
type. The 0-D trip matrix can be developed from traffic counts or 
from survey data and trip distribution models. In DUEi stated by 
Equations 1 through 4, link lengths are computed on the basis of 
monotonically nondecreasing impedance functions dependent on 
each link's volume in each time interval. 

• Upper Problem (UP) 

Minimize 

t 

I I fij !h (w)dw 
ijeK teT o 

subject to 

for all ij E K, t E T 

qf,, = L [I V~;" <P~f - L vfnj <P~~J 
t~d ~EK ~EK 

for all n E N, r E Z, d E T 

V~;j cp~f ~ 0 for all r E Z, ij E K, d E T, t E T 

Ab~;= Mi - b,1- 1 

= b); - &t 
for all r E Z, i E N, d E T, and b~; 

and, for all re Z, i e N, de T, t E Tin Equations 6a through 6c 

<t>~r-k = (min { 1, [b~; - (t- l)~t]/Ab~;}) a~: fork= 0 

<t>~r-k = [ ~t/Ab~;]a~: 
for all k > 0 for which b~;- 1 - (t..:_l-k)~t:::; 0 

<t>~r-k =.(max {O, [~t(t-k) - b~;- 1 ] /Ab~;}) a~: 
for min k for which bf;- 1 

- (t - 1 - k)~t > 0 

where all {am and {b~;} are optimal for: 

• (Lower problem): 

Maximize 

subject to 

a~:= (0,1) 

"°' adr = 1 L ri 

teT 

for all r E Z, i E N, d E T, t E T 

for all r E Z, i E N, d E T, t E T 

(1) 

(2) 

(3) 

(4) 

(5) 

(6a) 

(6b) 

(6c) 

(7) 

(8a) 

(Sb) 
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[b~; - t~t] a~: :::; 0 for all r E Z, i E N, d E T, t E T (9a) 

[b~; -(t-l)~t]a~:~o forallreZ,ieN,deT,teT (9b) 

b~, = d~t for all r E Z, d E T (10) 

b~; =max [e~;, bf;- 1 + h~t] 
for all r E Z, i EN, d ET, and b~; = b~; - ~t (11) 

0~/ = [(b~; - (t- l)~t)l~t] a~: 
for all r E Z, i E N, d E T, t E T (12) 

g~fj = [0~/ f;}(Xjj) + (1 - 0~/) f;j (xfj)] a~: 
for all r E Z, ij E K, d E T, t E T, p = t - 1 (13) 

(e~j - max {b:L (t-l)M + Mff})a~::::; g~fj a~: 
for all r E Z, ij EK, d ET, t ET, p = t-1, Mff = f;j (xfj) - g~fj (14) 

where 

N = set of all nodes; 

Z = set of all zones (i.e., trip-end nodes); 

K = set of alllinks (directed arcs); 

~t = duration of each time interval (same for all t); 

T = set of all time intervals in the full analysis period (e.g., 
18 intervals of 10 min each for 3-hr peak-period 
assignment); 

xf j = number of vehicle trips between all zone pairs 
assigned to link ij in time interval t (variable); 

v~;j = number of vehicle trips departing zone r in time inter
val d assigned to link ij at some time (variable); 

f/j (xfj) = average travel impedance on link ij in time interval t 
(variable); 

q~11 =number of vehicle trips from zoner to node n depart
ing in time interval d via any path; 0 for any node n EEZ 
(variable); 

e~; = time (including d~t) at which last trip departing zone 
r in time interval d crosses node i via its shortest path 
less FIFO delay time at node i (variable); 

b~; = time(including d~t) at which last trip departing zone r 
in time interval d crosses node i via its shortest path 
(variable); 

a~f == 0-1 variable indicating whether last trip departing zone 
r in time interval d crosses node i in time interval t 
(henceforth called a "node time interval") (0 = no; 
1 = yes) (variable); 

<t>~f = fraction of all trips departing zone r in time interval d to 
cross node i in time interval t (henceforth called a trip 
flow fraction) (variable); 

0~/ = fraction of time interval ~t into time interval t that last 
trip departing zone r in time interval d crosses node i 
(variable); 

gf;j = "average" travel time on link (i,j) of last trip departing 
zone r in time interval d adjusted for time into interval t 
versus t - 1 that this trip enters link (variable); and 
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h = minimum fraction of time interval that trips departing 
zone r in time interval d must follow trips departing in 
time interval d - 1. 

Equation 2 defines total flow on link ij in time interval t to be the 
sum of flows departing any zone r in any time interval d :::; t using 
link ij in time interval t to formulate the objective function as given 
by Equation 1. Conservation of flow Equation 3 constrains inflow 
minus outflow at each node and zone in each time interval to sum 
to the proper trip departure totals in each time interval between each 
0-D pair, and Equation 4 requires all link volumes to be nonnega
tive. DUEl requires nonlinear mixed-integer constraints with "node 
time intervals" and "trip flow fractions," indicating the time inter
vals in which trips from each origin cross each node so as to ensure 
temporally continuous trip paths and to spread the trips more 
continuously in time over these intervals. 

A node time interval a~j differs from a trip flow fraction <l>~i as 
follows. A node time interval is a 0 - l variable that indicates the 
time interval in which trips departing zone r in time interval d "last 
cross" node i. Each node time interval acts as an "if-then" operator 
to activate or deactivate certain constraints as needed. A node time 
interval applies to the last vehicle of each departure time interval, 
with the time of the last vehicle departing zone r in time interval d 

to cross node i, via its shortest path given by b~;. The difference 
between node i crossing times of "last" vehicles departing in suc
cessive time intervals, defined as !ib~; in Equation 5, is used in 
Equation 6a through c to determine the temporal spread of disper
sion of trips crossing node i from the same origin. 

In Figure 1 explained later, trips v~;1 departing zone r in time 
interval d using link (i,j) are uniformly spread temporally over the 
vertical difference between the times when "last" vehicles in these 
two streams pass a given node. In contrast to previous papers, the 
trip variable v~;1 does not have a time superscript t because it is 
always joined by the variable <!>~!. Arrays { a~j} and { b~; } used in 
Equations 5 and 6 are passed in from the lower problem. These 
equations are not solved simultaneously with the upper problem, 
because they provide only exogenous inputs to the upper problem 

5 0 

4 

3 

2 

A B 
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and have no variables that vary while solving the upper problem. 
One may ask whether shorter time intervals could be used instead 

of trip flow fractions. Shorter time intervals add to the computa
tional burden of the problem for several reasons. First, more time 
intervals to span the same analysis period require many more cal
culations and storage of floating point values than using trip flow 
fractions. Second, FIFO trip ordering in this formulation is best 
maintained if link lengths remain well below the time interval 
length as explained shortly. Using shorter time intervals may 
require dividing links into shorter links, thus increasing the compu
tational burden of the problem in all three dimensions (nodes, links, 
and time intervals). 

Equations 8 and 9 compute node time intervals that define tem
porally continuous trip paths with the zone-to-node travel times. 
Equation 8a defines each a~j term to be 0 or 1, which defines the 
last time interval t in which arcs incident from node i are used by 
trips departing zone r in time interval d. For trips departing zone r 
in time interval d, any link ij incident from node i can only be "last" 
used (if at all) in time interval t, and first used in the last time inter
val for trips departing in the previous interval d-1. Equation 8a 
allows only one interval tin which trips departing zone r in interval 
d can last cross node i. 

According to Equations 8 and 9, links are traversed within time 
intervals that trip paths cross their tail nodes. For 5-min intervals, 
Interval l begins at 0, Interval 2 begins at 5 min, Interval 3 begins 
at 10 min, and so on. If the travel time from zoner to node i is within 
t!it, then a~I is l because these trips must cross node i in time inter
val t. Because of tracking last vehicles, if any path crosses a node at 
the exact start of a time interval (to the degree of floating point pre
cision being used), then the solution algorithm sets a~I = 1, but all 
trips from that origin for that departure interval will be assigned to 
the link over previous time intervals. 

In Equation 10, b~r (equal to the start time of the "last" vehicle 
departing zone r in time interval d) is set to d!it to correctly set the 
clock to the end of each time interval and also prevents the (LP) 
maximization from having an infinite solution. A second subtle 
change from previous papers is that M; includes d!it so that it rep-

.---------·-

+ T ip stream 2 de artlng in d+ 1 
n t constrained o follow 

c D E 

SEQUENCE OF NODES ALONG EXAMPLE PATH 

FIGURE 1 Effect of trip after Constraint 11. 



202 

resents "clock time" from the start of the entire analysis period 
rather than travel time from the time of departure. Using "clock 
time" enables a clearer accounting of time in this quasi-continuous 
model. Although a.'~l can never equal l when t= 1, trips departing 
in interval l are uniformly distributed over the previous time span 
b~; - lit at each node of the network such that some trip volumes 
are still assigned in interval 1. 

Equations 11 through 14 impose FIFO trip ordering between all 
0-D pairs according to their travel times in successive time inter
vals as explained next. Vehicles are assumed to make only one-for
one (or zero-sum) exchanges of traffic positions along any link, 
which is acceptable and expected in aggregate traffic models. 

Equation 11 is a vehicle following constraint that prevents later 
trips from "getting too close" to trips departing earlier from the 
same zone in successive time intervals so as to prevent these trips 
from bunching. The value h is the fraction of a time interval that the 
last trip departing from zone r in time interval d must follow the last 
trip departing from zoner in interval d - 1. Note that when solving 
for b~; on the left side of Equation 11, b:1: 1 on the right side is held 
fixed. 

Figure 1 illustrates the effect of Constraint 11 on two trip streams 
(1 and 2) traversing the same series of nodes and departing from the 
same zone in intervals d and d + I, respectively. The node sequence 
(A,B,C,D,E) denotes a series of links along the trip path. A trip 
stream consists of trips with the same origin and departure time 
interval. At Node A, Trip Stream 2 is 0.88t behind Trip Stream 1. 
The two trip streams traverse Node A in different time intervals and 
thus have different travel times for Link A,B. At Node B, the sepa
ration between the trip streams has decreased to 0.68t. The two trip 
streams traverse Node B in different time intervals and have differ
ent travel times for Link B,C. Without Constraint 11, Stream 2 
would pass Stream 1 and traverse Node C earlier. With Constraint 
11, Stream 2 is forced to traverse Node Cat least hlit behind Stream 
1, where h = 0.5 in this figure. 

Allowing that many other paths include the node sequence 
(A,B,C,D,E), it can be deduced from Figure 1 that Constraint 11 is 
less likely to be binding in networks with shorter arc lengths relative 
to 8t. Hence, this representation works best for networks in which 
most arc lengths have free-flow travel times less than 20 percent of 
the interval duration and in which loadings on the network do not 
cause arc lengths to exceed h8t. Example runs revealed the solution 
algorithm explained later to converge more easily if time-varying 
travel demands do not cause arc travel times to exceed these bounds. 

Although Constraint 11 prevents successive trip streams from 
passing each other, the exact specification of h can be improved in 
further research. Reasonable values of h lie between 0.38t and 
0.7 lit, but the exact value of h depends on traffic densities of arcs 
incident to a node in each time interval. However, the value of h 
must lie between 0 and 1. If h = 0, a trailing trip stream can com
pletely overlay (but not overtake) a leading trip stream so that the 
two streams become coincident, which is not realistic. If h = 1, then • 
trailing trips can never partly "gain ground on" leading trips, and 
later departing trips can never have lower travel times than earlier 
departing trips. Because Constraint 11 applies to trips departing in 
intervals d + I and d + 2, trips departing from zone r in interval 
d + 2 must follow trips departing in interval d by at least 2h/it at 
any node. Constraint 11 also applies to all nodes in the network 
regardless of whether any trips departing from zone r in intervals d 

and d + l actually cross node i. 
Because Equation 11 does not insure FIFO trip ordering between 

all 0-D pairs, Equations 12 through 14 are also required. Equations 
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12 and 13 compute an average travel time on link (i,j) of the "last" 
trip departing zone r in time interval d adjusted for the time into 
interval t versus t - 1 that this trip enters the link. Equations 12 and 
13 "smooth out" speed transitions between time intervals in a 
"quasi-continuous" manner so that vehicle speeds do not abruptly 
change if they enter links just split seconds before or after a time 
interval change. When finding shortest paths in the upper problem, 
equations 12 and 13 are also used to calculate link travel times based 
on when trips enter links so as to be consistent with how paths are 
found in the lower problem. 

Even without Equation 14, this improvement to the model elim
inates FIFO violations for trips between all 0-D pairs unless a link's 
travel time exceeds a full time interval (and even for most of those 
cases) as required by the following inequality. 

8~/ f;} (xfj + (1 - 8~/)f!j (xf) + 8~/ 8t 2:.ffj(x';j) 
for all r E Z, ij E K, d E T, t E T, p = t - I 

which simplifies to 

(q.e.d.) 

(15) 

(16) 

If no link travel times exceed 8t, then the left side of Equation 14 
could be written more simply as (eij - b~;) a.~:, but Equation 14 is 
written as shown in DUEi to prevent FIFO violations in cases 
where link travel times exceed 8t if needed. 

Figure 2 illustrates the effect of Constraint 14 on two trip streams 
( 1 and 2) between any two zones traversing the same series of nodes 
departing in two successive time intervals. Without Constraint 14, 
Trip Stream 2 could depart from Node C in Time Interval 3 at a 
faster speed than Trip Stream 1 and pass stream 1, which departs 
from node C in Interval 2 at a slower speed. With Constraint 14, Trip 
Stream 2 will depart from Node C such that it reaches Node D no 
earlier than Trip Stream 1. Kaufman and Smith (15) show that FIFO 
adjustments such as Constraint 14 are easily added to shortest-path 
label-correcting algorithms (but not label-setting algorithms) so 
long as labels are properly updated when it occurs. 

Constraint 14 does not entirely replace the need for Constraint 11. 
Constraint 14 allows trips between different 0-D pairs to become 
concurrent while sharing the same path, whereas Constraint 11 
ensures a minimum separation of "last" vehicles departing from the 
same zone in successive time intervals. If Constraint 11 is removed 
from the problem, then trips from the same zone can "bunch" 
together in overly dense flows. As mentioned earlier, additional 
research will lead to better treatment of this bunching problem. 

Albeit counter-intuitive, the maximization of zone-to-node 
travel times in subproblem (LP) is the correct determination of 
node time intervals and shortest-path travel times subject to arc 
lengths plus FIFO delay in Equations 10 through 14. Using 
the mechanical analogy of Minty (16, p. 724), Bertsekas (17) 
defines this formulation as the dual shortest-path problem accord
ing to the min-path/max-tension theorem defining this primal-dual 
relationship. 

OPTIMALITY CONDITIONS OF DUEl 

Although DUE is nonconvex over the domain of feasible node time 
intervals for all trip departures to all destinations, DUEI is convex 
with a unique global optimum for any given set of fixed node time 
intervals. The optimality conditions of DUEl stated in the paper's 
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FIGURE 2 Effect of Constraint 14 on FIFO order of all 0-D trips. 

first section can be derived from (UP) for a given set of node time 
intervals as given by an optimal solution to (LP). Subproblem (LP) 
is a shortest-path linear program for which there exists an optimal 
solution for any given solution to (UP). Any set of node time inter
vals resulting from (LP) defines a directed network for which (UP) 
is a convex nonlinear program with a global optimum solution. 
Because node time intervals resulting from (LP) are uniquely deter
mined by a given set of link volumes resulting from (UP), they can 
be assumed to be known in the derivation of optimality conditions 
for DUEL The optimality conditions of DUEl are next derived 
from (UP) for a given set of node time intervals to which all tem
porally continuous trip paths in the optimal solution must conform. 

Equation 17 is the Lagrangian of (UP) with fixed-integer node 
time intervals. Over the domain of variable integer values, Equation 
17 is nonconvex, and there are many local optima that are inferior 
to the global optimum. For a given set of fixed node time intervals, 
the bordered Hessian matrix of Equation 17 is positive definite, 
which means that there is a unique global optimum with no local 
optima (18). The bordered Hessian matrix of Equation 17 is only 
positive definite so long as each impedance function is a monoton
ically nondecreasing function of flow on link ij in time interval t 
alone, as was stipulated earlier. 

t 

L(X, V, A,µ, T) = I I rij f;j (w) dw 
ijeK teT O 

(17) 

The optimality conditions are given by Equation 18 through 20. 

for all ij E K, t E T ( 18) 

auav~ij-< µ~j- µ:'i) <P~! = (A.i] - -r~l1) '/J~f 
for all r E Z, ij E K, d E T, t E T (19) 

al/a -r% - > T~ij V~ij cP~f = 0, (T~fj 2: 0) 

for all r E Z, ij E K, d E T, t E T (20) 

where -r~f1 equals 0 if v~iJ <P~! > 0, nonnegative otherwise; equals 
impedance difference from node i to node j via a used path versus 
by link ij (used or unused) in time interval t for trips departing from 
zone r in time interval d. 

The last part of Equation 17 ensures nonnegative link flows and 
results in a third optimality condition given by Equation 20, which 
requires -r~f1 to be 0 if any trips departing zone r in time interval d 
are assigned to link ij in time interval t and nonnegative otherwise. 
According to Equation 18, the optimal solution has a unique equi
librium impedance for each link in each time interval. According to 
Equations 19 through, 20, for any given pair of nodes, all used paths 
for a given origin and departure time must have equal impedances, 
and any unused path between these nodes cannot have a lower 
impedance. 

Optimality conditions for dynamic user equilibrium can be stated 
similarly to Wardrop' s (7) statement of necessary conditions for sta
tic user equilibrium. Let v~iJ be the equilibrium flow on link ij in 
interval t of trips departing zone r in interval d, and A.i] be the equi
librium impedance of link ij in interval t. Also, for trips departing 
zoner in interval d, let µ~1 be the equilibrium impedance of all used 
paths to node i. At equilibrium, according to Equations 21 and 22, 
all paths from zone r to node j used by trips departing in interval d 

have impedance µ~1 and no unused path for this same (r,j,d) com
bination has a lower impedance. 

if v~iJ '/J~f > 0 

and 
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for all r E Z, ij E K, d E T, t E T 

if v~;1 <I>~! = 0 

and 

for all r E Z, ij E K, d E T, t E T 

CONVERGENT DYNAMIC TRAFFIC 
ASSIGNMENT ALGORITHM 

(21) 

(22) 

Whereas SUE can be solved efficiently by linear combination meth
ods for nonlinear programs with all linear constraints [e.g., Frank
Wolfe (F-W) and PARTAN], these methods can easily create tem
porally discontinuous flows if applied directly to DUEi. Instead, the 
two subproblems of DUEi are solved successively by a convergent 
dynamic algorithm (CDA). As indicated in Figure 3, CDA first 
solves (UP) with fixed node time intervals using the F-W method of 
linear combinations (or a similar technique), and then solves (LP) 
(which is a linear program) to update all node time intervals for the 
next F-W solution of (UP). Adjustments to link capacities are made 
between the upper and lower problems to account for spillback 
queueing effects or signal timing changes as explained in the next 
section. 

The CDA algorithm terminates when fewer than an acceptable 
number of node time intervals change from one (LP) solution to the 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

READ NETWORK SUPPLY DATA. 
READ TEMPORAL TRIP MATRICES. 
READ INITIAL LINK FLOWS (optional). 
CALC INITIAL NODE TIME INTERVALS. 

INCREMENT ITERATION COUNTER BY 1 

SOLVE (UP): USE F-W ALG. TO FIND 
DYN. EQ. ASSIGN. OF All TRIPS S.T. 
FIXED NODE TIME INTS. FROM (LP). 

ADJUST CAPACITIES OF LINKS IN TIME 
INTERVALS AFFECTED BY SPILLBACK 
QUEUES, INCIDENTS, OTHER EVENTS. 

SOLVE (LP): RECOMPUTE NODE TIME 
INTERVALS VIA SHORTEST PATHS S.T. 
UE (UP) FLOWS & FIFO CONSTRAINTS. 

HAVE SUFFICIENTLY FEW NODE 
TIME INTERVALS CHANGED SINCE 
PREVIOUS (LP) SOLUTION ? 

STOP 

FIGURE 3 Steps of CDA solution algorithm. 
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next. With fixed node time intervals, subproblem (UP) is solved 
without fixing which links are used. Only time intervals in which 
links are used by trips are fixed, depending on their trip origins and 
departure times. To clarify the CDA algorithm, the following steps 
are performed successively to solve subproblems (UP) and LP to 
near convergence. 

1. Input all network data, temporal trip departure matrixes, and 
initial link flows. Initial link flows are optional, and can be set to 0, 
but SUE link flows reduced to the chosen time interval duration may 
be good starting values. Calculate initial node time intervals by 
solving (LP) with initial link flows. Set iteration counter n = 0. 

2. Increment iteration counter n = n + 1. 
3. (UP) Minimize Equation 1 subject to Equations 2 through 4, 

where all xf1 are variable and all {<!>~/} are fixed as computed with 
Equations 5 and 6 according to the optimal values of { b ~;} and 
{a'm from solving (LP). 

4. Adjust link capacities, which alters the impedance function 
J/1 (xf), for links and time intervals affected by spillback queues or 
other events. 

5. (LP) Maximize Equation 7 subject to equations 6 through 14, 
where all {a~D and { b ~;} are variable and all Xij are fixed to their 
optimal values from (UP). 

6. Sum NDIFFS = total number of node time interval differ
ences between iterations n - 1 and n. Compare each {a'~~ y- 1

• If 
NDIFFS :5 small percent of all node time intervals [ Z(N - 1 )T], 
then stop. Otherwise, return to Step 2. 

CDA converges toward a dynamic user-equilibrium solution for 
the following reasons. First, if node time intervals corresponding to 
the true equilibrium are known, then solving (UP) will reproduce 
the equilibrium link volumes from which these node time intervals 
can be calculated. That convergence proof follows from the fact 
that any set of node time intervals resulting from (LP) defines a 
directed network for which (UP) is a convex nonlinear program for 
which a global optimum exists. Second, given node time intervals 
that do not correspond to a true dynamic equilibrium, then solving 
(UP) with the F-W algorithm will produce link volumes that shift 
the node time intervals toward their correct values. For example, if 
a node time interval is too early, then solving (UP) will assign 
more traffic to paths leading up to that node such that the node time 
interval is shifted later when recalculated in (LP). Oppositely, if a 
node tirrie interval is too late, then solving (UP) will assign less 
traffic to paths leading up to that node such that the node time 
interval is shifted earlier when recalculated in (LP). Thus, CDA 
converges to a set of node time intervals that, when used to assign 
trips to the network in solving (UP), result in temporal link volumes 
that give rise to the same node time intervals when recalculated 
in (LP). 

DYNAMIC LINK CAPACITY ADJUSTMENTS FOR 
SPILLBACK QUEUES 

A key feature of this modeling approach is the adjustments of link 
capacities input exogenously or generated endogenously. Exoge
nous changes (e.g., accidents, weather effects, signal timing 
changes, or time-of-day road restrictions for special events or con
struction) can be input to the program for specific links and times of 
day when they occur (expected or unexpected). Endogenous link 
capacity changes occur when spill back queues reduce the capacities 
of upstream links, or when integrated algorithms for ramp metering 
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and signal timing make adjustments. When accidents or recurrent 
congestion create oversaturated conditions, then upstream link 
capacities are reduced in time intervals affected by spillback queues 
using wave propagation speeds to determine the timing of upstream 
effects. These capacity losses create further upstream effects to the 
extent and duration of the oversaturated condition. For example, if 
an accident occurs at 7:30 a.m. and blocks the right lane of a three
lane freeway, then the capacity of that link is reduced by roughly 50 
percent from 7:30 a.m. until the estimated clearance time of the 
accident. 

A subroutine called QUECAP is executed between the upper and 
lower problems of DUEl to recognize exogenous link capacity 
changes, and toe compute endogenous link capacity changes. Three 
essential steps of QUECAP are to (a) track the locations of multi
ple spill back queues in a network, (b) weight the effects of multiple 
spillback queues when jointly affecting inflows to any node, and (c) 
adjust the capacities of inflow links to each node in proportion to 
the fractions of flows affected by each queue. Endogenous link 
capacity changes stabilize with successive solutions to the two sub
problems of DUEl and are made only between subproblem solu
tions so that the upper problem remains convex for each given set 
of supply specifications. 

The queue propagation and capacity adjustment procedure is 
explained next. First note that all nodes are configured such that 
every node has only one outflow link (a merge node) or one inflow 
link (a diverge node). No node has multiple inflow and outflow links 
(i.e., no merge/diverge nodes). Intersections always have turn 
movement links, and weave sections always have connecting links 
between the merge and diverge nodes. Capacity adjustment steps 
starting from original unadjusted capacities are as follows: 

1. Increment the pass number from 1 until convergence is 
achieved, 

2. Increment the time interval from 1 to T, 
3. Increment the node number from 1 to N, 
4. For each outflow link from a node, compute the cumulative 

queue equal to all excess flow above capacity through the cur
rent time interval. Compute the link length fraction occupied by 
queueing during the current interval on the basis of the cumulative 
queue and wave speed. Exact times and locations where accidents 
initiate queueing can be specified to the program. Spillback from 
an oversaturated bottleneck link not caused by an accident is 
assumed to begin at the start of the time interval and at the entry 
to the link. The link length fraction occupied by a queue is com
puted by comparing the cumulative queue on the link to what the 
link can absorb as the vehicle stream compresses to higher density. 
Wave speed (with upstream being the negative direction) is 
computed as 

wave speed = (flow2 
- flow') I (density2 

- density') 

where 

flow' = flow before queue (below original but above adjusted 
capacity), 

flow 2 = flow inside queue (assumed to equal the adjusted 
capacity), 

speed' =link length travel time for flow' with original 
capacity, 

speed2 = link length I travel time for flow2 with adjusted 
capacity, 
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density' = flow I speed 1 = density before queue (less dense), and 
density2 = flow 2 I speed2 = density inside queue (more dense). 

5. The link length fraction occupied by a queue equals the 
portion of link length (perhaps all) covered by the queue over suc
cessive time intervals. Inflow links are unaffected until a queue 
extends beyond the tail node of an outflow link, and only a fraction 
of the time interval will be affected when this first occurs. The 
affected time interval fraction equals (the interval start time)
(time that queue reaches link's tail) divided by the time interval 
duration !:it. 

6. Compute the weighted volume-to-capacity (VIC) ratio of the 
outflow links from this node, which is weighted by each outflow 
link's volume and fraction of the time interval affected. A detailed 
explanation of this computation is not possible within the brevity of 
this paper. 

7. Adjust the capacity of each inflow link so that its VIC ratio 
equals the weighted VIC ratio of the outflow links just found. Return 
to Step 3 until all nodes are processed; then return to Step 2 until all 
time intervals are processed. Then, if the capaCity of any link in any 
time interval changes by more than an acceptable percent, return to 
Step 1 for another pass or, else, stop. 

To capture the effects of multiple queues spilling back from sev
eral places in the network, and queues spilling back farther than one 
link in any time interval, multiple passes of the above steps are per
formed until all capacities in all time intervals do not change sig
nificantly. Bounding rules are added to prevent endogenously 
adjusted capacities from becoming too small (which generates a 
warning), and to prevent queues from dissipating too quickly. The 
rule here is that a link's capacity during dissipation cannot exceed 
the average of the above calculation and its reduced capacity in the 
prior interval. Adjusted capacities are then returned to the upper 
problem. Hence, both flows and capacities are time dependent in the 
travel time functions of the DUEl objective function. This method 
of adjusting capacities has performed well in these applications but 
can be improved with further refinements. 

SUMMARY AND CONCLUSIONS 

This paper converts the DUE modeling approach presented in pre
vious papers by the authors into quasi-continuous time, which 
enabled three key model improvements: (a) inclusion of spillback 
queueing effects and dynamic link capacity adjustments, (b) more 
accurate FIFO trip ordering between all 0-D pairs, and (c) better 
link volume and speed transitions between time intervals. This 
paper also describes how capacity losses are approximated on 
upstream links because of spillback queueing from oversaturated 
links. 

This dynamic traffic modeling approach has been applied to sev
eral networks ofrealistic size, detail, and complexity. In addition to 
the paper by Robles and Janson (J) mentioned at the start, Darjardi 
and Janson (19) apply it to the Colorado ski region of rural arterials 
and I-70 linking Denver and surrounding communities to ski 
resorts. The CDA found very good solutions to each of these appli
cations without convergence difficulties. These diverse applications 
show the model to be a flexible analysis tool and CDA to be a 
robustly convergent solution algorithm for these types of dynamic 
traffic assignment problems. 
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Contributions to Logit Assignment Model 

FABIEN M. LEURENT 

In the past, research in traffic assignment modeling has been directed 
primarily toward the deterministic model. Alternative, more behavioral 
principles were thought to be too demanding computationally. Two 
mathematical contributions that enable one to solve a logit assignment 
model with flow-dependent travel times at a reduced cost are presented. 
First, a convergence test for Fisk's minimization program is introduced 
on the basis of a duality gap principle. Second, a new definition of Dial's 
STOCH fixed-time logit assignment procedure is given, in which the set 
of available paths is defined only once and the computations are rein
terpreted. A numerical experiment indicates that these tools make the 
logit assignment model competitive compared with the procedures con
ventionally used to solve the deterministic model. 

Traffic assignment is the fourth and final step in the conventional 
travel demand forecasting scheme; by partitioning the origin
destination (0-D) trip rates between several paths, the assignment 
program attempts to duplicate the vehicular flows on the network. 
Most assignment models assume that travelers behave rationally. 
The most well-known assignment principle is that of Wardrop (1); 
that travelers strive to maximize the utility derived from their trans
portation choices-in other words they try to minimize their gener
alized travel time. Thus, a user-optimal equilibrium is achieved 
when no traveler may decrease travel time by unilaterally switching 
paths. 

To account for errors in trip-makers' perception of travel time, 
Daganzo and Sheffi (2) defined the stochastic user principle, 
according to which all trip makers strive to minimize their stochas
tic generalized travel time. This rule allows for partitioning 0-D trip 
rates between several alternative paths, even if their true travel 
times differ from each other. 

Two stochastic models are of particular interest: the logit model 
(3) and the probit model (2,4,5). The latter, although behaviorally 
more appealing, is impractical because only Monte-Carlo proce
dures are available, unless all paths can be identified. The logit 
model however, is endowed with both an extremely efficient fixed
time assignment procedure (Dial's STOCH2) and a convex mini
mization formulation with a closed-form objective function (6). 
Nevertheless, computational difficulties have prevented the logit 
model from enjoying more widespread use. Among other draw
backs, Fisk's (6) objective function was thought difficult to evalu
ate. Only recently have heuristic methods been developed (7,8). 

In this paper two developments that make computation of a lo git 
user equilibrium competitive with its deterministic counterpart are 
presented. First, a theoretically sound convergence test for an equi
librium algorithm such as the method of successive averages (MSA) 
is designed; then it is possible to check whether an equilibrium has 
been reached. Second, the definition of the set of available paths in 
Dial's STOCH2 procedure is modified; the procedure is problem-

Departement Economie et Sociologie des Transports, Institut National de 
Recherche sur les Transports et leur Securite, Avenue du General Malleret
Joinville, 2, 94114 Arcueil, France. 

atic if it is implemented within an equilibration scheme because the 
path set is likely to change from one iteration to the next. Some 
changes that remedy this flaw are suggested. 

The organization of the paper is as follows. First the problem is 
stated formally. Second the convergence test for Fisk's model is 
introduced. Third a definition of efficient paths that does not depend 
on congestion phenomena is derived; it is inspired from Dial's 
STOCH2, and a related path loading procedure is provided, wherein 
it is easy to compute all the terms in Fisk's objective function. 
Fourth a numerical experiment is carried out to demonstrate that the 
MSA, combined with the proposed tools, is indeed an efficient algo
rithm when applied to the logit model. All proofs of the assertions 
presented here can be found in work by Leurent (9), in which elas
tic demand and capacity constraints are also considered and a dual 
solution scheme is proposed. 

PROBLEM FORMULATION AND 
MODELING NEEDS 

Logit Equilibrium Model 

Let r-s be an 0-D pair with traffic fl.ow q,_,., 0 a nonnegative para
meter, k a path from r to s with deterministic travel time T~s and flow 
!~.'""In the logit assignment model (3), it is assumed that the path flow 
f~s is proportional to a negative exponential function of the travel 
time n,: 

exp( - en) 
Lk exp( -eT;s) 

Then it is automatically ensured that 

(1) 

(2) 

The travel time of path k is related to the travel times T" of the links 
a that belong to it via 

(3) 

where f>';~ = 1 if a E k or 0 if not. 

Let Xa be the traffic flow on link a: 

(4) 

Finally let ta be the travel time function of link a (assumed to be con
tinuous and nondecreasing): 

(5) 

Then Equations I through 5 define a logit-based equilibrium. Fig
ure 1 illustrates a logit split between two paths. 
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FIGURE 1 Proportion of travelers choosing Path 1 as 
function of 8 and time difference T2-T1 (binary case). 

Fisk's Minimization Program 

Fisk (6) characterized the logit equilibrium with variable travel 
times as the unique solution to the following convex minimization 
equation: 

JXa 1 ( ft ) min1 h(f) = La ta (x) dx + - Lrsk f;s log __.!!._ 
0 0 q,s 

(6) 

subject to Equations 2 and 4 and of course to f;., ~ 0. In Equation 
6 Fisk's Lrsk f;s log if~s) was replaced with Lrsk f~s log 
(f",,lq,s) to facilitate the understanding of the relationship between 
Equation 6 and the computations in the STOCH algorithm. This 
does not alter the existence and uniqueness results obtained by Fisk. 

Fisk did not address a crucial question: How should the available 
paths be defined? In the deterministic model of Beckmann et al. 
(JO), all existing acyclic paths may be considered; however, in a 
logit model a specific definition is required because the conventional 
shortest-path routines do not automatically find suboptimal paths. 

In Dial's paper (3), two alternative definitions of efficient paths 
are provided, namely STOCH and STOCH2. But these definitions 
are consistent only with respect to fixed travel times (i.e., with con
stant functions ta in Equation 6 and cannot be used in a variable-time 
program. A definition that is consistent with flow-dependent travel 
times will be provided later (STOCH3 procedure). First, equilibra
tion issues are addressed. 

Method of Successive Averages 

Powell and Sheffi (11) proved the convergence of the MSA applied 
to minimization programs as Fisk's (provided that the definition of 
available paths cannot vary). 

Fixed-time assignment (Ff A) is defined as a path-loading proce
dure that partitions the 0-D flow according to the logit rule, based 
on a given set of available paths. An FT A yields a solution to Equa
tion 6 with constant travel time functions and a given set of utilized 
paths. The MSA equilibration algorithm is composed of the fol
lowing steps: 

• Step 0: Initialization. 
-Set iteration counter n = 0. 
-Choose a sequence a<k) of real numbers such that [O :::; a<k) :::; 

l], [La<kl = + oo] and [La<kl2 < +=]. 
-Find an initial feasible ft ow pattern x~?l = x"[f <0>]. It may be 

obtained through an FT A on the basis of link times t,~ _, l = 
ta (0). 
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• Step 1: Link travel time update. 
-Set tJ"l = (, (xY')). 

• Step 2: Direction finding. 
-Compute an FT A of traffic of all 0-D pairs on the basis of 

link travel times tJ11l: this yields a path ft.ow solution g<11l and 
also an auxiliary are flow pattern 

• Step 3: Link flow update. 
-Set x~•) + t) = Xa (f<11 + 'l) = xY') + a<11l [yY'1 - x~;1l] 

• Step 4: Convergence test. 
-Apply a convergence test: either a maximum number of iter
ations or a test on the maximum value (over the arcs a of the 
network) of the change in L ~= 1 a_(k)x(k)" IL~= 1 a<k) from the pre
vious iteration n - 1 to the current one n. If the test is satisfied, 
then terminate; if not, increment the iteration counter n = n + 
1 and go to Step 1. 

The MSA has been widely applied to solve Fisk's program. How
ever, the definition of efficient paths has not been adequately 
addressed. Thomas (12) wrote that "it seems likely that methods 
which incorporate definitions of acceptable paths similar to those of 
Dial and Gunnarsson are intrinsically non-convergent, though in 
practice users often claim them to be satisfactory in that respect." In 
the following section, a theoretically sound convergence test is pro
vided for the equilibration algorithm that will be useful together 
with a formal definition of the efficient paths, as will be given later. 

CONVERGENCE TEST FOR LOGIT MODELS 

First the issue of designing a theoretically sound convergence test 
for an application of the MSA to Fisk's program is considered. It is 
based on a duality gap principle inspired from the deterministic 
model. 

Duality Gap Principle in Deterministic Model 

In the deterministic case, where only those paths whose travel times 
are minimal are used, the objective function reduces to 10 (f) = La 
f~" (f) ta (x)dx. The usual convergence test is to evaluate a duality 
gap between the objective function 10 [f<11 + 1l] and a lower bound 
estimate: 

where g< 11 > is obtained in Step 2 of the MSA (or equivalently of the 
Frank-Wolfe method). Thus, the duality gap is given by 

vc<'/] =La t~l){Xa [f<n+I)] - Xa [gM] 
= Lrskf;_<n+I) [T;,<ll) - mink T;,< 11 >] 

The duality gap DG<"lo is always positive, except at equilibrium, at 
which point it is 0. Hence, a convergence test involves checking 
whether DG is close to 0. 
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Convergence Test for Fisk's Model 

Application of the duality gap principle to the logit model is sug
gested. Denoting the entropic part of the logit objective function 
indicates the following: 

h (f) = JL (f) - JD (f) = t Lrsk f~s log ( J~s ) (7) 
qrs 

Then the flow vector g<n> considered in Step 2 of the MSA is the 
unique solution to the following auxiliary program: 

ming Jr (g) =JD (f(")) + \!JD (f(n)I' (g - f(n)) + JE (g) (8) 

The duality gap associated with the logit objective function is 
DG<'{! = JL [f <11 + 1)] - LBE<11l, where the lower bound estimate 
LBE<11> is defined as 

When applying the MSA algorithm to the logit model, generally 
it is not possible to compute h(f), unless all paths are identified. 
However, for some models such as the one that will be described 
later, it is easy to compute h (g). The trick is to evaluate the dual
ity gap with respect to g<11

> and not with respect to f< 11 + 1i. The fol
lowing convergence test is also suggested on the basis of functions 
related to g<11l rather than to f< 11 + 1>: 

if 

then 

terminate and let g<11
> be the solution to the minimization equation 

(Equation 6) or else return to Step 1. 
If true, the test gives a vector that solves the minimization equa

tion on the basis of the convexity of JL. Conversely, if the path flow 
vector f* solves the program, then auxiliary vector g* that corre
sponds to f* is in fact equal to it and thus the convergence test is sat
isfied (9). If only a relative measure JL - LBE of the duality gap is 
needed, then it is not necessary to compute JE: the test can reduce to 
check if Ji[gM] - LBE(n) :::; E; in other words to check if J D[g<11>] -
JD [f<11l) - ~ JD (f("l) ' (g(n) - f(n)) :::; E. 

DEVELOPMENTOFSTOCH3PROCEDURE 

The results obtained so far apply to any set of utilized paths under 
the sole constraint that no path may include a given node more than 
once. Now a set of efficient paths that enable one to benefit from the 
efficiency of Dial's STOCH2 is defined. 

Most previous lo git assignment models have used Dial's second 
definition of efficient paths, according to which "a path is efficient 
(reasonable) if every link in it has its initial node closer to the ori
gin than is its final node." The word "closer" refers to the travel time 
measured from the origin with respect to a current travel time vec
tor that may change from one iteration to the next. Therefore, there 
was no use trying to compute an objective function for the logit 
assignment model. 

Three problems had to be tackled: 

I. Restrict Dial's set of efficient paths so as to limit its size and 
for each reasonable path not to be much longer than the shortest one, 
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2. Stabilize the definition of efficient paths so that it depends 
neither on congestion nor on the iteration number, and 

3. Find a way to compute the entropic part of the objective func
tion, so as to measure the convergence rate. 

The first two problems are discussed first on the basis of previous 
work by Tobin (13). Then the STOCH3 procedure, which offers a 
practical way to perform a fixed-time logit assignment on the effi
cient paths defined formerly, will be introduced. Finally, a way to 
evaluate JE (g) in the STOCH3 model will be described. 

Definition of Stable Set of Efficient, Not-Too-Long Paths 

A path is considered "STOCH3 efficient" (or reasonable, or avail
ab.le) if it does not include the same node more than once, if every 
link has its initial node closer to the origin than its final node, if 
every link is "reasonable enough" compared with a reference short
est path. 

More precisely, let 

T~ = a reference generalized travel cost for Link a; 

C~(n) = a reference shortest generalized travel cost from origin 
r to node n, based on link costs T~; 

h~ = a maximum "elong~tion ratio" for link a origin r; 
Ba, Ea = the beginning and end nodes respectively, of Link a. 

Definition 1; a path k from origin r to destination s is STOCH3 
efficient if (a) it does not comprise a given node more than once, (b) 

c~ (Ea) > c~ (Ba) "ii a E k; and (c) (1 + h~) [C~ (Ea) - c~ (Ba)] ~ 
T0°, with h~ ~ 0, "ii a E k. 

A link a that satisfies the last two conditions is called STOCH3-
reasonable wrt. origin r. 

The last condition in Definition I limits the number of efficient 
paths by limiting their total reference generalized travel cost: defin
ing Hr = max h~ summing over all links a that are incident to an 
efficient path k yields that 

Length (k) = L T~:::; (1 + Hr)(C~ (s) - c~ (r)) 
aek 

= (1 +Hr) min length (k') 
k' 

Conversely, if k satisfies length (k) :::; (1 + Hr) miri length (k'), 

it may not be efficient because the first two conditions in Definition 
1 must hold as well. 

Definition 1 is inspired from Dial's specification STOCH2 (3), 

with respect to the second condition, and from Tobin (13) with 
respect to the third. The contribution of the author is to impose fixed 
reference travel costs, thus ensuring a stable definition of the effi
cient paths, whatever the congestion phenomena. 

STOCH3 Procedure 

Recall that in the STOCH3 procedure it is necessary to consider, on 
the one hand, the reference generalized travel costs to enumerate the 
available paths and, on the other hand, the "actual" travel times 
according to which the 0-D flows are partitioned between the paths. 
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Equation Variables 

The following variables apply. 

n = node with reference travel cost C~(n) from origin r, 
Or (i) = the ith node in order of increasing access cost C~(n) 

from r, 
!1'~ = an indicator variable of 1 if link a is reasonable from r 

and 0 otherwise, 
T,, = current travel time on link a, 

A (a) = impedance of link a, 
WA(a) = link weight that accounts for importance of a in con-

tributing to a reasonable path, 
WN(n) = node weight, 
XA(a) = flow on link a from current origin r, 
XNCn) = flow passing through node n from current origin r, and 
F(a) = total current flow on link a (over all origins). 

Index r can be omitted when writing variables A, WA> WN, XA, and 
XN because these variables do not need to be stored after dealing 

with origin r. 

Algorithm STOCH3 

• Step 0: Overall preliminaries: calculation of reasonable path. 
-From every origin node r, compute the shortest paths to all 

nodes n, on the basis of the reference link travel costs T~, 
yielding the reference access costs C~ (n) and a labeling Oh) 
of the nodes n in the order of increasing access cost from r. 

-For each link a, set !1';: = I if (I + h':) [ C~ (Ea) - C~ (Ba)] 2:: 

T2 > 0, !1~ : = 0 otherwise. 

• Step 1: Preliminaries for a standard iteration. 
-Initialize the total link flow variables F(a) to 0. 
-Set the link impedances A(a) = exp(-0Ta). 

Steps 2, 3 and 4 are to be run for each origin node r. 

• Step 2: Forward pass. 
-Set all WA(a) and WN(n) to 0. Set WN(r) = 1. 
-For each node n taken in the order of increasing reference cost 
C~(n) (the ith node to be considered is indicated by 0,(i)), for 
each link a with beginning node Ba = n; if !1 ~ = 1, then com
pute WA(a) = A(a)WN(n) and add WA(a) to WN (Ea) or else do 

nothing. 

• Step 3: Backward pass. 
-For each node n, set XN(n) = qnz if n is a destination node, 0 

otherwise. 
-For each nocI.e n taken in the order of decreasing reference 

cost C~(n) (use the labeling 0,.(i) in decreasing order), for 
each link a with end node Ea = n, if !1~ = 1 then compute 
XA(a) = XN(n)WA(a)IWNEa) and add XA(a) to XN(Ba) or else set 

XA(a) = 0. 

• Step 4: Contribution to total link flows. 
-'V, F(a) = F(a) + XA (a) 

At the end of the procedure, the vector F gives the fixed-time 
logit assignment on the basis of link travel times Ta. 
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Computation of Entropic Part of Objective Function in 
STOCH3 Model 

It is shown by Leurent (9) that, at the end of the forward pass from 

origin r, it holds that 

(10) 

g;s = qr.1· exp(- er;,) I ~k exp(- 0 T;s) 

therefore 

By summing over all 0-D pairs r - s, 

Then, the convergence test designed earlier can be applied to the 
STOCH3 set ofavailable paths. 

COMPUTATIONAL EVIDENCE 

In this section, a numerical example to compare the performance of 
the STOCH3 logit model using the MSA is compared with that of 
the deterministic model using both the Frank-Wolfe algorithm and 

the MSA. 

Case Study 

The application is related to the western part of the Paris metropol
itan area during the evening peak period, with a typical trip travel 
time of 1 hr. The test network is composed of 2,000 directed links. 
There are 141 0-D zones. 

The dispersion parameter e is set to 0.233 mn- I so that when two 
routes compete with each other, the first one with a travel time 5 min 
shorter than the second one, approximately three out of four drivers 
choose the first road. Because only the rate of convergence is of 
interest here, the elongation ratios har are set to +00 [as noted from 
previous surveys they may be set to h"r = 1.6 for interurban studies 
(14) or h'; E. [1.3; 1.5] for urban studies (15)]. 

Results 

Figure 2 depicts the performance of the three algorithms, showing 

the evolution of 

I 
_x<n> I 

log ]* - 1 

where (a) in the logit model, J* is the optimal value of the objective 
function in Equation 6, and _x<nl is the value of JL [g'11l]. In the MSA, 
the step size 0'.<11l is set to 11( 4 + nil 0); (b) for the deterministic 
model, J* is the optimal value of the deterministic objective func-
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FIGURE 2 Convergence rates of three algorithms. 

tion, and x<11l is the value of 10 [f<11 + 1l]. In the MSA, the step size cx<11 l 

is set to 1/(1 + n). The convergence rate is much better in the case 
of the logit model, notably because the descent direction includes 
information about all of the available paths-not only about the 
shortest path in each iteration. 

COMMENTS AND CONCLUSION 

Intelligent Vehicle-Highway System Implications 

In an intelligent vehicle-highway system context, the logit model 
may be of particular interest for assessing the level of information 
provided to motorists by a route guidance system (16). One way to 
evaluate the effects of such a system is to model two classes of 
motorists, the first equipped with a route guidance device and char
acterized by a large dispersion parameter 0, and the other class of 
nonequipped drivers characterized by a small e. 

Model Extensions 

The case of elastic demand and capacity constraints is addressed by 
Leurent (9). A dual solution scheme is also introduced, but for 
large-scale applications it is not efficient. The computational effi
ciency of the MSA applied to the logit assignment model facilitates 
the following possible extensions of the model: 

• Diagonalization schemes, for example with travel time func
tions that depend on flows of several links (it is easy to derive a vari
ational inequality formulation of Equation 6), and 

• Simultaneous models that capture more than one step in the 
conventional transportation planning process. 

Path Identification 

• It is useful to identify paths. The STOCH procedure is a way to 
consider all available paths at a reduced cost. The numerical exper-

iment demonstrates here, above all, that path-based equilibration 
algorithms are much more efficient than link-based algorithms. This 
conclusion is also supported by recent work (17, 18). 

• Algorithms that identify paths should better address more 
behavioral models. In a fixed-time path-loading procedure like 
STOCH, the 0-D flow is partitioned between the paths according to 
a behavioral rule. Other available behavioral rules are the probit 
model [(4,5); see the work of Daganzo and Sheffi (2) and Powell 
and Sheffi (11) for a mathematical foundation], and the bicriterion, 
cost-versus-time model [(19); Leurent (20) gives a mathematical 
foundation]. By applying a behavioral rule, the need to search for 
an effective step size in the descent is bypassed. It is thus remark
able that, by the identification of paths, the computational process 
is greatly facilitated, especially in the case of behavioral models. 
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