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Design of Incident Detection Algorithms 
Using Vehicle-to-Roadside Communication 
Sensors 

EMILY PARKANY AND DAVID BERNSTEIN 

Incident detection methods for the automatic recognition of accidents 
and other freeway events requiring emergency responses have existed 
for over twenty years. Most of the developed and implemented algo
rithms rely on inductive loop data. Inductive loops are the most com
monly used traffic sensor and collect data such as volume and occu
pancy at a point. However, the implemented algorithms using inductive 
loop data work with mixed success. Recently, there has been renewed 
interest in incident detection algorithms partly because of new sensors 
for obtaining traffic information. One of these new sensors is vehicle
to-roadside communications (YRC), which consists of electronic "tags" 
on the vehicles and readers along the roadway. These obtain counts, 
headways, travel times, lane switches, and other information about 
vehicles between subsequent readers. This paper explores the use of 
YRC data for incident detection. After a discussion of the use of YRC 
as a surveillance tool for incident detection, a few example pattern
based algorithms are described. Preliminary results of these algorithms 
suggest that YRC is a viable sensor to use for incident detection. The 
final section discusses further directions for this type of research. 

A recent study suggests that incident-related congestion accounts 
for 64 percent of the total delay due to congestion and that this inci
dent-related congestion could increase to 72 percent of total con
gestion by the year 2005 (1). Additionally, wasted fuel and lost pro
ductivity caused by congestion delays have great societal costs [one 
article suggests congestion delays cost $34 billion a year (2)]. The 
congestion-impact numbers are staggering and show that incident 
management that reduces these delays could provide a significant 
contribution toward the goals of increasing the capacity of existing 
roadways, enhancing air quality, reducing driver frustration, and 
increasing safety. Incident detection, the first step of incident man
agement, is determining that an accident, stall, or something else 
that requires a response has occurred. 

Automatic incident detection algorithms for freeways have 
existed and have been implemented since the early 1970s. Few 
algorithms have been developed for arterials because that is a much 
more complicated problem. For some researchers, new sensors and 
new data have led recently to renewed interest in incident detection. 
The goal of this paper is to show that the data obtained with vehi
cle-to-roadside communication devices (VRC), also called auto
matic vehicle identification (A VI) equipment, may lead to better
performing incident detection algorithms. Other work has been 
conducted recently in this area (3-5), but the approach and algo
rithms presented in this paper are unique. 
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VRC has received considerable attention as the enabling tech
nology for electronic toll collection and related applications such 
as congestion pricing. However, the data that can be obtained 
from VRC are also valuable for traffic monitoring and as inputs to 
traffic control algorithms. This multifunctionality helps to set 
VRC apart from other traffic sensors. An integrated congestion 
pricing, incident detection, and route guidance system is described 
further in Bernstein et al. (6). With such integrated systems, oper
ating agencies are getting "double-duty" from their technology 
investment. Additionally, system operators may find it easier to 
get the public to accept a controversial component, for example, 
congestion pricing, when the public believes that the system is 
providing additional benefits such as incident detection and route 
guidance. 

This research is concerned with detecting the beginning of acci
dents and stalls and other incidents that cause traffic disruptions on 
freeways and require the emergency response of an ambulance, 
police, and/or tow truck. The basic premise of this research is that 
it may be possible to replace the inductive loop data (or loop
emulated data) currently used for incident detection with data 
obtained from a VRC system. 

There are two ways that this can be done. In the first the data 
obtained from the VRC system would be used with existing 
algorithms. However, this may not be effective for two reasons: 
existing inductive loop-based algorithms do not work very well 
[see, e.g., the review articles by Stephanedes et al. (7) and Chen 
and Chang (8)], and VRC data represent only a percentage of 
the vehicles and vehicle types on the freeway and, hence, to use 
these data in existing algorithms may require processing or manip
ulation to be representative of all traffic. The second way to use 
VRC for incident detection is to develop new algorithms that take 
advantage of the different attributes of VRC data. In this paper we 
ex-plore some of the properties of VRC data and take some initial 
steps toward the development of YRC-based incident detection 
algorithms. 

The YRC-based algorithms we develop and describe in this paper 
incorporate several approaches to incident detection. The algo
rithms consider temporal and spatial patterns in the data. The algo
rithms detect in all traffic flow levels and require little persistence 
checking. It is expected that these algorithms can either stand alone 
or be combined with other sensor data and other incident detection 
methods for an incident detection system. 

Vehicle-to-roadside communication is described here as a 
surveillance tool for incident detection along with a few possi
ble incident detection algorithms that use VRC data, preliminary 
results for these algorithms, and future directions for this type of 
research. 
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VRC-BASED SURVEILLANCE 
FOR INCIDENT DETECTION 

In our opinion there are three broad categories of data that can be 
used for incident detection. Point data are collected at a single, spe
cific location and include occupancy, instantaneous speed, and flow. 
Area data are collected over a segment of roadway and include den
sity. Finally, point-to-point data are collected between pairs of spe
cific locations and include travel time. 

Different types of sensors can (and should) be used to collect dif
ferent types of data. The most common sensor in use today, induc
tive loops (and loop emulators), collect point data only. The poten
tial advantage of a YRC-based surveillance system is that it can be 
used to collect both point data and point-to-point data. Very briefly, 
YRC consists of a transponder or "tag" on the vehicle and a reader 
along or over the road and the communications link between the two. 
In all YRC systems, the YRC readers obtain at least the individual 
vehicle identification number from each transponder-equipped vehi
cle that passes. With the identification numbers, the system knows, 
for example, what time car Number 123 passed Reader A and what 
time it passed Reader B and can calculate that car's travel time 
between the readers. Additionally, a YRC system can obtain lane
specific and station-specific headways (time between transponder
equipped, "tagged" vehicles), the volume of tagged vehicles on a 
section at any point in time, the number of tagged vehicles passing 
in each lane at a reader station, and the number of tagged vehicles 
that switch lanes between stations. More information is obtained 
with read-write capabilities as described below. 

Even the more easily obtained data items-vehicle-specific travel 
times, lane- and station-specific headways, section volumes, and 
lane switches-are all parameters that can only best be obtained 
with a sensor that obtains data between two or more points such as 
YRC. This point-to-point data should better represent traffic com
pared with data collected at a certain point. Of course, YRC is not 
the only technology that can be used to collect point-to-point data. 
In fact, as discussed in the review paper by Bernstein and Kanaan 
(9), any automatic vehicle identification (A VI) technology can be 
used for this purpose. Hence, before moving to a discussion of the 
algorithms themselves, some of the issues regarding the develop
ment of algorithms with YRC are briefly discussed here. These 
issues include the number of sensors used, read-only versus read
write capabilities, and penetration rates (percentage of vehicles 
accurately detected) of the sensors. 

Numbers of Sensors 

Some people may presume that the only YRC sensors available will 
be those used for another purpose (such as electronic toll collec
tion). However, it is possible to install "extra" readers. In fact, using 
YRC systems for incident detection likely will involve readers in 
additional locations to those required for electronic toll collection, 
which raises at least three institutional issues. First, although it is 
most likely that the cost of installation of extra readers and software 
for incident detection will be less than the benefits provided by hav
ing an incident detection system, extra readers are an extra expense, 
making it impossible to use the "toll collection and incident detec
tion for the price of one" argument. Second, users need to under
stand that the extra readers will not deduct yet another toll but are 
there to aid in incident detection and thus reduce congestion. Third, 
on proposed systems where conventional toll payers (those using 
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manual toll booths) must exit the roadway to pay a toll, the extra 
readers may be additionally confusing and a safety hazard. 

Read-Only Versus Read-Write Capabilities 

Read-write means the reader obtains information and also writes 
information on the "tag." In addition to the vehicle identification 
being passed, the transponder can pass information written to the tag 
such as initial reader passed (origin information), time passed last 
reader (making for easy travel time calculations), even processed 
data such as average volumes or headways passed from one reader 
to the next. A more sophisticated system may also pass the vehicle 
type, driver-input origin, and destination information, even the trav
eling speed from the vehicle's speedometer to the reader and, sub
sequently, an incident detection system. With a read-write system; 
YRC, unlike other surveillance technologies, allow for the passing 
of required information from one point to the next and traffic con
trol such as incident detection to be performed locally. 

Incident detection can be performed with a read-only system, but 
there would be advantages to using a read-write system. Most obvi
ously and at the simplest level, the time passed the last reader and 
processed data may aid the calculations required at the downstream 
readers and may speed up the effort required for incident detection. 
The algorithms presented in this paper work with read-only tech
nology but could be enhanced with read-write technology. 

Penetration Rates 

Although YRC-based systems have the advantage of being read
write-capable, they do have one important disadvantage. YRC data 
is incomplete in that not all vehicles and types of vehicles are rep
resented with the data. This is because generally only a certain per
centage of vehicles are equipped with transponders. Additionally, 
YRC may be used by a specific group of vehicles such as heavy 
trucks. For example, there are already two multi-state heavy truck 
implementations of YRC. All of this information is valuable, but it 
should be explored whether the partial information is sufficient to 
represent all traffic for incident detection algorithms. It is our guess 
that even a "small" (30%) portion of vehicles if they were autos or 
regular commuters would be sufficient data. However, if only a 
small percentage of vehicles are tagged, then the data obtained 
have greater variance and smaller reliability. For example, headway 
information would be subject to randomly distributed fluctu
ations, especially in light traffic, if a small number of vehicles are 
transponder-equipped. This variability may lead to using different 
algorithms for different percentages of tagged vehicles. Additional 
consideration should be given if only trucks or buses were tagged. 
This surely would add. a bias to the data because trucks and other 
heavy vehicles do not travel as quickly or maneuver as smoothly as 
typical traffic. Yet, this bias may also work in favor of an algorithm. 
For example, an incident detection algorithm based on lane changes 
may be more powerful if it detects that a truck or several trucks have 
moved from the typically used right lane. 

EXAMPLE PATTERN-BASED ALGORITHMS 

There are several different approaches that may be used for incident 
detection algorithms. Recent research has investigated the use of 
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processed video (10), catastrophe theory (11), and artificial intelli
gence (J 2) as methodologies for incident detection algorithms. 
More typical designs are either statistical (generally after a time 
series until an anomaly occurs) (J 3, 14) or pattern-based where the 
data are typically compared with numerical thresholds to determine 
that a stoppage has occurred (J 5, 16). Most of the implemented algo
rithms follow a pattern-based approach, probably for several rea
sons. First, the logic is simple and easily understood by traffic oper
ators who must trust the results of the algorithms. Second, they use 
less computer time and hardware than other methods. Although it is 
considered by many current researchers that other methods will per
form better and that computer requirements and other technology 
advances are less constraining now than fifteen or more years ago 
when different methods were first proposed, this research focuses 
on pattern-based approaches to show that YRC-based pattern algo
rithms work just as well as currently implemented algorithms using 
other sensors. 

Previous research (J 7) and a previous paper (J 8) describe vari
ous VRC data "incident indicators" and four possible pattern-based 
algorithms. The following paragraphs describe the best-performing 
of these algorithms, named the Headway Algorithm, and two addi
tional algorithms that we have named the Lane Switches Algorithm 
and Lane-Monitoring Algorithm. The algorithms are designed to 
be used with vehicle to roadside communication sensors (less 
than 100% of vehicles tagged, accurate identification of all tagged 
vehicles) but can also be used with other types of automatic vehicle 
identification sensors (e.g., processed video license plate readers). 
The motivation and logic behind these algorithms is given 
along with a flow chart of each algorithm. All three of these algo
rithms represent new logical approaches to incident detection. 
These ideas have not yet been described or implemented for any 
sensor. 

Headways Algorithm 

VRC data can be used in two major ways in an incident detection 
algorithm. First, it can be used to observe temporal differences. In 
general, increased travel times from one period to the next or any 
large difference in travel times from one period to the next strongly 
indicates unstable conditions and, possibly, incidents. Second, spa
tial comparisons can be made by either comparing headways (time 
between subsequent tagged vehicles) at two different readers or the 
volumes (number of tagged vehicles) on two different sections. 
Longer headways at downstream readers compared with upstream 
readers or smaller volumes on downstream sections compared with 
upstream sections may indicate an incident. 

Both temporal and spatial comparisons of travel times and head
ways are used in the Headways Algorithm. The algorithm consists 
of three sequential tests; if the three tests are satisfied during a 
particular time interval, then an incident is declared. The first test 
looks for a significant difference in travel time from one time in
terval to the next. It is thought that slower travel times may be 
indicative of an incident. The second test, another temporal test, 
considers the differences in headways at the downstream reader 
for the current time interval and the previous time interval. An inci
dent is likely to cause longer and longer headways as vehicles are 
queued and then have to maneuver around the incident. The third 
test makes the spatial comparison of whether headways are differ
ent at different reader locations. Again, headways may be longer in 
the vicinity of the incident and then decrease downstream of the 
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incident. These different tests can be described mathematically as 
follows. 

The following text describes the Headways Algorithm, which is 
illustrated in Figure 1. In the Figures, int denotes the length of the 
selected time interval. Let NvCtcur) denote the number of vehicles 
that passed the downstream reader location rdown during the current 
time interval, tcur- Then the first test compares the average travel 
time during the current interval, fcun with the average travel time 
during the previous interval, trev· The average travel time, AIT(tcun 
rdown), between the upstream reader, rup, and the downstream reader, 
rdowm during the current interval is given by 

(1) 

where~ is the travel time between readers rup (upstream) and rdown 

(downstream) of the jth vehicle to pass reader rdown during the cur
rent interval, fcur- If IAITCtcun rdown) - AIT(tprev' rdown)I is greater than 
a prespecified, possibly flow-dependent threshold, HD _TH 1, then 
the next test is conducted. 

The second test compares the headways (time between vehicles) 
at the downstream reader for two different time periods (current 
time interval and previous time interval) against a second threshold, 

no incidenl 

le= let- int 

incident 

FIGURE 1 Headways algorithm. 
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HD_TH2. Our parameter for average headways, HDWYS(tcu., rdown), 
is defined as follows: 

(2) 

where tj is the actual time of the }th vehicle to pass reader rdown dur
ing the fcur interval. 

The final test before an incident is declared compares the head
ways at the downstream reader and the upstream reader during the 
current time interval against a third threshold, HD_TH3. We define 
rup as the upstream reader. If IHDWYSUcun rdown) - HDWYSCtcun 
rup)i is greater than HD_TH3, then an incident is declared. 

Lane Switches Algorithm 

In addition to travel time and headway comparisons, there are other 
ways that YRC data may indicate that an incident has occurred. For 
example, YRC is able to provide vehicle-specific data such as lane 
change information. A large number of lane switches noted from 
one reader to the next likely indicates unstable traffic conditions. 

Our Lane Switches Algorithm is depicted in Figure 2. Basically, 
the system determines the number of vehicles that have switched 
lanes between readers, SWITCH(tcun rdown), using the lane-specific, 
vehicle-specific data obtained at the reader rdown during the current 
time period, tcur· This number is normalized by the number of tagged 
vehicles that pass during the time interval NvCtcur) to get 
NM_SWCtcun rdown), the normalized number of switches: 

1 
NM_SWCtcur. rdown) = ---) SWITCH Ctcun rdown) 

Nv(tcur 

no incident 

le= le+ int 

NM SW(tc, rd)= 

SWITCII(tc, rd)/ 

Nv(tc) 

incident 

FIGURE 2 Lane switches algorithm. 

(3) 
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If the result exceeds a certain threshold corresponding to the per
centage of vehicles that have switched lanes (TH_SW), an incident 
is declared. The tested algorithm counted a lane switch from the 
right lane to the left lane (through the middle lane) as one switch. 
Perhaps counting such a maneuver as two lane switches would pro
vide even more information about traffic conditions. 

Lane-Monitoring Algorithm 

The idea behind the Lane-Monitoring Algorithm is to track over 
two or more time intervals the vehicles that pass in each lane at a 
reader location. If fewer vehicles pass in a certain lane than 
expected, then the other lanes are checked to see if more vehicles 
than usual have passed. Rerouted vehicles may be indicative of an 
incident. Each interval, each lane in turn is compared against the 
low threshold. If the low threshold is met, then the other lanes are 
checked against a high threshold. 

Figure 3 shows our Lane-Monitoring algorithm. To smooth out 
the data (and prevent false alarms), this algorithm uses the average 
number of vehicles that pass the reader in each lane over a prespec
ified number of intervals, say, two or three intervals. For example, 

no incident 

le= ll: +int 
y s 

j = 1 

j =j + 1 

incident 

FIGURE 3 Lane monitoring algorithm. 
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the lane average for two time intervals for vehicles in the right lane 
(lane 1) is given by 

(4) 

where tcur is the final (current) time interval, rdown is the reader loca
tion, 11 indicates the right lane, and Nv(l 1, tcur) is the number of vehi
cles passing reader rdown in lane 1 (the right lane) during the current 
interval. The average number of vehicles in each lane is compared 
with a low threshold (TH_LOW). If the average number of vehicles 
is less than this threshold then the average number of vehicles at that 
reader passing during those time periods in the other lanes is com
pared with a high threshold (TH_HIGH). If any of the other lane 
volumes exceed the high threshold, then an incident is declared. For 
example, if few cars are in lane 3 but a higher than usual number of 
vehicles are in lanes 1 and 2, then probably an incident occurred in 
lane 3. 

TESTING THE ALGORITHMS 
USING SIMULATION 

Ideally, one would like to use field data to test and evaluate incident 
detection algorithms. In this case, this was not possible. One of the 
objectives of this research was to evaluate incident detection algo
rithms that use YRC data against an algorithm that uses inductive 
loop data. For this the YRC and loop data must be obtained from 
the same vehicles during the same time periods at the same points. 
Although field inductive loop and YRC data exist separately, both 
sensor types are not available at the same locations. 

Instead of field data, the algorithms were tested on data generated 
by a microscopic traffic simulator described previously (19, 20). 
The simulator has been tested with the San Diego data set used pre
viously to illustrate the performance of INTRAS, another microsim
ulator, and was found to perform slightly better than INTRAS in 
replicating the data collected from the field (19). The tested incident 
detection algorithms were run on simulated inductive loop and YRC 
data. Although simulated data are not perfect, there are several 
advantages to using this simulator. First, the consistent (YRC and 
loop data at the same locations) data can be obtained. Second, it is 
easy to test different incident scenarios under different flow condi
tions. Third, it is possible to change detector spacings and configu
rations and roadway geometries to determine how the algorithms 
perform most optimally. 

The network used to obtain these preliminary results is a 19.31 
km (12.0 mi) long three-lane highway. The first half of the freeway 
is used for warm-up, and then the detectors are placed at typical 1.21 
km (0.75 mi) intervals. Detectors are located in each lane at the 
9.66, 10.86, 12.07, 13.28 km (6.0, 6.75, 7.5, and 8.25 mi) points. 
The first half [9.66 km (6.0 mi)] of the network is used for warm
up because vehic~es are loaded gradually onto the network and 
reach the desired flows for the second half of the simulation. 

Several different incident scenarios were designed to test algo
rithm performance with different incident types, different incident 
locations with respect to the sensors, and different traffic flow lev
els. The forty different incident data sets cover short-duration inci
dents (e.g., a single-vehicle stall on the mainline for 5 minutes), 
more serious accidents (three cars blocking traffic for 20 minutes), 
and incidents in between. To test the performance of the algorithms 
in relation to incidents' locations with respect to the sensor (reader 
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or loop) locations, incidents were staged 0.40 km (0.25 mi) before 
the sensors, 0.81 km (0.50 mi) before the sensors, and at the sen
sors. To test the algorithms against false alarms, nonincident data 
sets included normal flowing traffic and sets where two vehicles 
traveled in adjacent lanes at speeds slower than the rest of the traf
fic flow. The tested flows include 1,000 vehicles per lane per hr, 
1,200 vehicles per lane per hr, and 1,400 vehicles per lane per hr. 
These less-than-heavy traffic flows were dictated by hardware con
straints, but it is assumed that if the algorithms perform adequately 
in medium flows they will perform as well or better with heavier 
flows. 

A 40-min simulation is used that includes a 15-min warm-up 
time, incident occurrence, and clearance. The warm-up time and 
warm-up distance are necessary for traffic to follow normal behav
ior at the desired flow level by the time the sensor locations are 
reached. Thus, 25 effective minutes of simulation are obtained from 
each data set. The same input file is used for each flow level. Vehi
cles enter one end of the freeway according to specified rates and 
exit if they reach the other end of the freeway during the 40 simu
lated minutes. 

All of the algorithms were tested with the same data. It was 
assumed that 50 percent of the vehicles were equipped with YRC 
transponders. This percentage was chosen because current toll col
lection systems have participation rates of 30 to 80 percent. Thirty
second time intervals were used. Data were averaged across all lanes 
at a sensor or considered separately according to the algorithm used. 

PRELIMINARY RESULTS 

Although we are not yet ready to draw any final conclusions about 
the performance of these algorithms, there are some important 
insights that can be drawn from these simulation results. The intent 
of these results is to show that even the simple YRC-based algo
rithms perform at least as well as implemented algorithms using 
other sensors. Additionally, compared with other simple VRC
based algorithms developed, implemented, and tested during the 
course of this research, these specific algorithms and their corre
sponding logics seem to give the most promising results. 

Quantitative Results 

The typical incident detection performance measures-detection 
rate, false alarm rate, and mean time to detect-were used here. 
These measures are defined as follows. First, the detection rate: 

DETECTION RATE = #incdei 
#inc1rue 

(5) 

where #incdei is the number of detected incidents and #inc1rue is the 
number of actual (simulated) incidents. There are two ways to 
define false alarm rates. First: 

FALSE ALARM RATE (def 1) = #incfaise (6) 
hours of simulated time 

This provides a false alarm rate per hr. False alarms are counted 
when the algorithm detects that an incident has occurred and yet no 
incident has occurred at that time. Alarm triggers related to an ini
tial false alarm are counted only once. This is similar to the case of 
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detecting true incidents that cause many triggers-an incident can 
only be detected once. For this calculation the warm-up times were 
deleted from the hours of simulated time. For the second definition 
false alarm rates can be expressed as a percentage of false alarms 
over the number of times the algorithm is repeated: 

FALSE ALARM RATE (def2) = ___ #_in_c=fa'=se __ _ 
#algorithm repetitions 

(7) 

The algorithm is used after an appropriate warm-up time. Finally, 
the average time to detect is calculated by 

"itimedet 
A VERA GE TIME TO DETECT= -----'= 

#incdet 
(8) 

where timectei is the time until the algorithms first declare a true inci
dent from the time an incident is simulated to begin. Incidents that 
are not detected within 6 min are considered undetected (affecting 
the detection rate), and subsequent detections are considered false 
alarms. Thus, this statistic includes only those true incidents 
detected in less than 6 min. 

Table 1 shows quantitative results of the YRC-based algorithms 
described here compared with our implementation of California 
Algorithm #7, a typically implemented pattern-based inductive 
loop-based algorithm. All three algorithms seem to be successful 
compared with the California Algorithm. It is important to consider 
that a different simulator, different flows, different detector spac
ings, and/or different percentages of vehicles used likely would lead 
to different numbers-what is important is the relative perfor
mances of the values. 

These results have been obtained for all four algorithms (Head
ways Algorithm, Lane Switches Algorithm, Lane-Monitoring 
Algorithm, and California Algorithm) with the thresholds that 
jointly maximize the detection rate and minimize the false alarm 
rate and detection time. One expects a linear relationship or high 
positive correlation between detection rate and false alarm rate and 
between detection rate and time-to-detect. Previous research shows 
graphs with such relationships (7). However, this does not neces
sarily seem to be the case with the YRC-based algorithms. Differ
ent combinations of thresholds often led to one performance mea
sure remaining fairly constant while the others fluctuated. 

Several results may be ascertained. The table shows that although 
the false alarm rates for the Headways Algorithm and the Califor
nia Algorithm are similar, the Headways Algorithm clearly per
forms better in terms of detection rate and average time to detect. If 
average time to detect is not of great concern (the difference 
between 2 and 3 min may not be large when an incident impacts 

TABLE 1 Most Promising Evaluation Results 

Detection Rate False Alarm Rate False Alarm Rate Average Time 
(def 1) (def2) To Detect 

(#incidents (false alarms/ (false alarms/ (minutes) 
detected/true hour) algorithm 

Algorithm Name incidents) repetitions) 

Headways 
Algorithm 0.75 1.30 0.0195 2.00 

Lane Switches 
Algorithm 0.94 0.65 0.0098 2.94 

Lane Monitoring 
Algorithm 0.92 2.20 0.0330 1.73 

California 
Algorithm#? 0.53 1.05 0.0158 2.19 
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traffic for 40 min or more), then the Lane Switches Algorithm 
clearly performs well. Finally, the Lane-Monitoring Algorithm 
works quickly with a high detection rate but a relatively high false 
alarm rate. 

Qualitative Results 

Although the numerical results seem promising, it is also valuable 
to describe the performance of the algorithms with respect to inci
dent types, traffic flows, and incident location with respect to the 
detectors. It is helpful to note that slight modifications may improve 
results. 

Headways Algorithm 

The detection rate (-75%) was constant for the different flows 
tested. This algorithm is successful in detecting a short-duration, 
single-vehicle stall type incident. The algorithm seems to be insen
sitive to incident location with respect to the detectors. As expected, 
detection times are reduced as flow increases. False alarms seem to 
be uncorrelated to flow levels or incident types. This algorithm may 
work better if the spatial comparison is made between the reader 
and the reader downstream from it rather than upstream-at the 
downstream reader traffic would be flowing more normally. 

Lane Switches Algorithm 

This simple algorithm performs remarkably well. Although the 
time-to-detect is slow, the time-to-detect is lower for lower flow lev
els, which is the inverse of the performance of typical algorithms. 
As expected, detecting stalls requires the longest detection· time. 
Also as expected, the closer the downstream detector to the incident 
location, in general, the quicker the detection. A simple modifica
tion such as counting switches across two lanes as two switches 
rather than one switch may improve the results significantly. 

Lane-Monitoring Algorithm 

Despite the high false alarm rate, this algorithm shows promise. In 
general, the detection rate, false alarm rate, and time-to-detect val
ues are not correlated with the type of incident, traffic flow level, or 
location of the incident with respect to the readers. This robustness 
is very attractive in an incident detection algorithm. The algorithm 
is then appropriate for many different situations. This algorithm 
may have potential as a back-up or secondary algorithm in an inci
dent detection system. 

CONCLUSIONS 

All three of these algorithms perform reasonably. They show that 
YRC has great potential as a stand-alone sensor for incident detec
tion. The algorithms perform better or as well as expected and deci
sively better than the typically used California Algorithm. The algo
rithms' robustness to various situations make them additionally 
appropriate. Future research as described in the next section may 
enhance the performance of these and other YRC-based algorithms. 
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FUTURE RESEARCH 

The following paragraphs introduce several ideas to spark future 
research. These include extensions to the current research, combin
ing VRC data with data from other traffic sources, considering other 
algorithm methodologies, and performing a cost-benefit analysis of 
algorithms that use VRC compared with algorithms that use other 
sensors. 

There are several obvious extensions to this research. These 
include testing the described algorithms with field data. A complete 
field test would provide the best indication of the algorithms' per
formance. Another extension proposed by this research but that has 
not been explored fully is to use thresholds that are functions of the 
flow. Although calibrating such equations would not be easy, 
threshold-flow functional relationships would reduce dramatically 
the overall calibration effort required. The threshold function may 
also have the percentage of vehicles iagged and/or types of vehicles 
tagged as parameter(s). Also, additional work may be performed in 
calibrating algorithm parameters considering detector spacings, 
configurations, and roadway design with both simulated and field 
data. There is assumed to be a relationship between sensor spacing 
and mean time to detect [closer spacing, lower time to detect (21)], 
thus spacing as close as financial and human factors constraints 
allow should be best. But it is possible that spacing too close 
together causes an intolerable false alarm level. Similarly, it is 
important to investigate how different percentages of tagged vehi
cles and different types of tagged vehicles will change the algo
rithms' parameters and performance. For example, in general, 
higher percentages of vehicles would result in better results. Addi
tionally, some systems may have only heavy vehicles tagged, which 
would introduce a bias into the data and should be considered and 
weighted as such. 

One of the more exciting future research topics is combining 
VRC data with data from other detector types. It is likely that VRC 
systems will be installed on systems already outfitted with inductive 
loops. The spatial, microscopic data from VRC can be combined 
with inductive loop data, or other point data sources such as infrared 
and ultrasonic detectors, representing all vehicles (VRC-tagged and 
nontagged) to obtain better parameters for use in incident detection 
algorithms. It is likely that even better parameters would result if 
VRC data were combined with video or radar images that produce 
density and other spatial information. 

Currently, implemented incident detection algorithms are all pat
tern-based. However, there are several other proposed methodolo
gies for incident detection. These include statistical methods includ
ing times series and filtering, the application of catastrophe theory 
or artificial neural networks, and the use of a traffic flow model. 
Some of the proposed VRC algorithms are statistically based. VRC 
data may require less computational power to obtain the space mean 
speed and density needed in traffic flow models. Model-based inci
dent detection algorithms are expected to work better than other 
incident detection algorithms because the traffic flow model more 
accurately represents traffic and thus can determine better whether 
the traffic flow is non-normal, hence, that an incident has occurred. 
VRC can be used with any of these methodologies. 

It would be beneficial to do a cost-benefit analysis comparing 
algorithms that use VRC with algorithms that use other sensors and 
other incident detection methods. Implemented inductive loop
based algorithms, proposed inductive loop algorithms, the VRC 
algorithms described here, other VRC algorithms, processed video 
algorithms, CCTV scanning by traffic management center opera-
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tors, and cellular phone calls from drivers should all be compared. 
Such an analysis would include benefits described by the perfor
mance measures of detection rate, false alarm rate, time-to-detect, 
public awareness and acceptance, and ease of operation of the algo
rithm or system by the traffic management center. The costs should 
include the costs of the sensors, software development, mainte
nance, and the personnel required to run the system. 

This paper has provided an initial contribution to the use of vehi
cle to roadside communication sensors for incident detection. After 
discussing the use of vehicle to roadside communication sensors as 
the surveillance sensor for incident detection, the paper has con
centrated on three pattern-based algorithms for detection that show 
great promise. The above paragraphs suggest some of the many 
directions to follow to continue the research. 
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