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Artificial Neural Networks for Freeway 
Incident Detection 

YORGOS J. 5TEPHANEDES AND XIAO LIU 

A freeway incident detection algorithm is developed using back propa
gation neural networks. Based on real-time occupancy and volume 
counts from pairs of adjacent loop detector stations, the network is 
trained with actual data, including 31 incidents from a typical freeway 
in the Twin Cities Metropolitan Area over the afternoon peak period 
during 72 days. Results indicate that the neural network, with about 
1,000 connections, can learn the main characteristics of a variety of inci
dents. Algorithm performance, in terms of detection and false alarm 
rates, is superior to most of the best algorithms that have been tested 
with this data set. 

Fast and accurate detection of incidents is vital for the successful 
operation of incident management systems. With incidents account
ing for many of the vehicle hours lost to nonrecurring freeway con
gestion, prompt and reliable detection (critical for assuring effective 
response and clearance) can substantially contribute to improving 
freeway traffic flow. 

Low reliability is the major shortcoming of existing automated 
incident detection methods for freeway operations. Because of the 
high number of false alarms generated by such methods, traffic 
engineers generally do not rely on them for automated detection of 
incidents. 

Because incident management is critical in reducing the total 
delay to drivers in urban freeways, traffic planners continue to 
develop methods that can be used to reliably identify an incident. 
Interest in such methods has increased as transportation officials 
realize that prompt and reliable detection of incidents is critical to 
advanced traffic management systems (J-2), which seek to provide 
optimal control of freeway and arterial networks. 

Recent research has focused on assessing how existing and new 
incident detection systems perform (3). This assessment involved 
developing and testing a new algorithm and comparing it with exist
ing ones. This study represents an effort to improve incident detec
tion systems by designing an incident detection algorithm based on 
artificial neural networks. 

BACKGROUND 

Artificial neural networks, whose structures are based on the pre
sent understanding of biological nervous systems, have been stud
ied for many years in the hope of achieving human-like perfor
mance in various practical applications (4). These models comprise 
a large number of simple, nonlinear computational elements oper
ating within a parallel distributed information processing architec
ture and arranged in patterns reminiscent of a biological neural 
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network. Computational elements or nodes are connected to other 
elements via weights that are typically adapted during use to 
improve performance. Through each connection, each element may 
receive information from another, weighted by the corresponding 
weight of that connection. Research has demonstrated that artificial 
neural networks offer high computation rate, memory, learning, and 
fault tolerance. 

Neural network classifiers are nonparametric and make weaker 
assumptions concerning the shapes of underlying distributions than 
traditional statistical classifiers. They may thus prove more robust 
when distributions are generated by a nonlinear process and are 
strongly non-Gaussian. In particular, they can identify (a) which 
class best represents an input pattern, and (b) where it is assumed 
that inputs have been corrupted by noise or some other process. Sev
eral neural network models can be used as classifiers, including the 
Hopfield net (5), the Carpenter-Grossberg classifier (6), Kohonen's 
self-organizing model (7), and Multi-layer network (8). Multi-layer 
networks are feedforward nets with one or more hidden layers of 
nodes between the input and output nodes. Since the backpropaga
tion training algorithm was proposed, Multi-layer network has 
become the most popular model, particularly in the pattern recog
nition field. The feasibility of neural network models for freeway 
incident detection has been demonstrated (9). 

Ineident detection is a typical pattern recognition problem and 
can benefit from the application of neural network methods. In par
ticular, in incident detection human-like performance is sought in 
detecting unusual events in the traffic stream and in reducing false 
alarms by differentiating incidents from other events, such as com
pression waves, traffic pulses, and equipment malfunction. Meth
ods should be robust under the assumption that the traffic distribu
tions are generated by nonlinear, non-Gaussian processes. Although 
new incident detection algorithms are promising, methods that can 
be adapted during use are expected to improve performance. In 
addition, high computation rate and fault tolerance are needed, and 
these are characteristics of neural networks. A neural network algo
rithm is developed that can be trained to recognize traffic patterns 
through time, and classify such patterns as having an incident or 
being incident-free. The sensitivity of classification performance on 
training methods is also investigated. Finally, the performance of 
the neural network is compared with recent findings from well
performing methods, with encouraging results. 

Brief Description of Back Propagation Algorithm 

The back propagation neural network is a feedforward, multilayer 
perceptron with one or more layers of nodes hidden between the 
input and output nodes, which can be trained using the back propa
gation algorithm. Although it cannot be proven that this algorithm 
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converges, its applications have been shown to be successful in a 
variety of problems. A three-layer network with one layer hidden is 
shown in Figure 1, where 

Ym = f (k=Oik-1 wkm zk - em), 

zk = fC=o IN-I Wik X; - ek), 

m = 0, 1, ... , M - 1 

k = 0, 1, ... , K - 1 

(1) 

(2) 

and W1an, Wik are the connections between nodes k and m, and i and 
k, respectively, usually called weights. 

The back propagation training algorithm is an iterative gradient 
algorithm designed to minimize the mean square error between the 
actual output and the desired output of a multilayer feedforward per
ceptron. Each node in the hidden and output layers adds weighted 
inputs from the previous layer and passes the result through a non
linear function that must be continuously differentiable; the capa
bilities of this network stem from the use of this function. The fol
lowing logistic nonlinearity, familiar to transportation engineers 
from trip demand analysis and other applications, is most com
monly used. 

f (a - 8) = 1/(1 + e«•-0 l) (3) 

where 8 is an internal threshold or offset, and the value off varies 
from 0 to 1. 

The training algorithm is initialized by setting all weights at small 
random values from -1 to 1 and specifying an input vector X and a 
desired output vector D. The actual output vector Y is calculated 
from Equations 1, 2, and 3. Based on the error between desired and 
actual output, the weights are updated using a recursive algorithm 
that begins at the output nodes and works back to the hidden and 
input layers. 

DATA DESCRIPTION 

The neural network detection method was developed with data col
lected from Interstate 35W, a heavily traveled and often congested 
freeway in Minneapolis, Minnesota. The study was confined to the 
afternoon peak period (4:00 p.m. to 6:00 p.m. because incident 
detection under moderate-to-heavy traffic conditions is of greatest 
importance for advanced freeway management. 
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The selected 5.5 mi freeway segment shown in Figure 2 is fully 
covered by TV cameras, allowing detailed traffic information to be 
gathered. This segment includes most types of geometric configu
rations usually found on a freeway, such as entrance and exit ramps 
with or without exclusive lanes, bottlenecks; ramps carrying heavy 
volumes, etc. The data, which were obtained from 14 detector sta
tions imbedded 0.3 to 0.7 mi apart in this segment, consist of 1-
minute volume and occupancy updated every 30 sec and averaged 
over all lanes (see Table 1 ). A total of 140 hr of traffic data from 72 
afternoon peak periods were used. 

In the time period of this study, 31 incidents were reported by the 
Traffic Management Center of the Minnesota Department of Trans
portation. Confirmation of these incidents is made mainly through 
television cameras and recorded daily in incident logs by the TMC 
engineer. Incident logs include time and location of incident occur
rence, incident type, duration, severity, impact on traffic, roadway 
condition, and other information. 

Incidents in the data set, to be detected by the algorithm, include 
incidents blocking one lane, one or both shoulders, or a combina
tion of lanes, shoulders, and freeway entrance-exit. There were no 
incidents blocking two or more lanes. Although the proposed algo
rithm is based on observable changes in the traffic flow all, incidents 
recorded by the traffic engineer were included, even if they had 
minimal or no impact on traffic. Detection of these incidents by the 
neural network algorithm proved to be most challenging. 
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TABLE 1 Original Volume and Occupancy Traffic Data 

Date: 12/06/1989 ~outhbound, afternoon 
Station 042S 046S osos 05\S 

Time 
16:10:30 22t37:t29 24 S2 24 29 17 
16:11:00 24 30 31 28 33 24 33 19 
16: 11:30 29 27 28 31 32 23 33 20 
16: 12:00 29 24 28 29 3fi 23 34 21 
16: 12:30 27 21 32 26 35 23 36 22 
16: 13:00 27 25 31 23 35 23 33 25 
16: 13:30 24 28 32 22 37 25 31 30 
16: 14:00 22 26 34 23 34 27 33 29 
16: 14:30 25 25 32 20 31 35 34 25 
16: 15.00 27 23 30 18 31 36 33 24 

16: 15:30 29 22 31 19 31 29 34 25 
16: 16:00 28 21 32 21 31 25 35 25 
16: 16:30 26 22 32 24 32 22 32 24 
16: 17:00 28 25 30 28 32 20 29 26 
16: 17:30 27 24 29 28 29 26 24 35 
16:18:00 28 22 32 25 22 40 1 i 32 
16:18:30 29 22 32 22 21 46 20 22 
16:19:00 27 23 31 22 24 42 26 17 
16:19:30 23 33 31 25 25 39 26 13 
16:20:00 21 36 26 34 25 41 26 12 

16:20·30 24 31 20 48 25 39 27 13 
16:21:00 27 34 20 52 28 31 28 14 
16:21:30 27 28 22 50 28 32 28 14 
16:22·00 24 22 22 47 26 35 28 14 
16:22:30 19 31 24 43 28 33 28 15 
16:23:00 17 42 26 39 29 32 28 15 
16:23:30 21 42 26 40 29 32 28 13 
16:24:00 23 41 23 43 2!! 35 28 15 
16:24:30 22 38 24 39 27 37 28 14 
16:25:00 22 31 26 35 28 35 28 13 

16:25:30 22 31 27 32 26 29 29 14 
16.26:00 22 32 27 29 28 31 28 14 
16:26:30 22 33 26 29 28 36 28 14 
16:27:00 22 34 28 32 27 33 28 15 
16.27:30 23 33 27 29 29 30 26 14 

t Column 1 indicates volume (veh/ru.in); 
t ColuD1n 2 indicates occupancy(%). 

055S 0605 

29 24 33 23 
26 24 33 28 
30 22 25 26 
33 19 25 23 
3220 3125 
32 22 31 29 
31 26 26 32 
28 29 26 30 
29 26 27 23 
30 26 29 23 

23 36 33 25 
22 33 33 24 
27 22 31 23 
29 22 27 25 
32 22 28 25 
33 23 30 22 
so 22 31 24 
28 20 S3 27 
29 19 31 28 
29 17 27 25 

29 18 29 24 
29 18 32 22 
28 18 30 18 
29 19 26 15 
32 18 28 17 
30 16 31 20 
27 15 :rn 22 
29 1.5 31 25 
28 12 29 22 
27 11 27 21 

26 11 33 26 
28 12 32 24 
26 11 27 20 
25 10 28 21 
28 12 29 22 

INCIDENT DETECTION ALGORITHM 

061S 062S 

32 41 35 JO 
31 35 32 9 
32 32 27 7 
31 35 29 8 
28 36 28 8 
27 37 27 B 
30 35 30 9 
30 31 S3 10 
31 34 31 9 
32 34 31 10 

30 33 30 9 
31 39 29 8 
30 40 37 12 
29 35 40 13 
30 33 33 9 
29 32 28 8 
33 33 28 8 
36 32 27 8 
34 32 28 s 
32 29 29 9 

31 31 30 9 
31 S3 32 10 
32 32 29 8 
30 so 28 8 
27 24 36 11 
33 27 36 11 
37 32 29 8 
35 32 27 
31 31 28 
31 30 30 

33 31 so 7 
31 31 28 7 
30 28 30 7 
30 26 34 10 
30 27 B B 

0635 

19 8 
20 9 
20 9 
20 8 
I 7 7 
16 
14 6 
16 7 
l 7 8 
19 9 

21 9 
17 7 
17 8 
20 9 
20 9 
16 7 
19 9 
21 10 
20 10 
19 10 

18 9 
21 10 
21 10 
24 13 
24 12 
22 10 
23 10 
26 11 
25 10 
24 9 

19 8 
16 8 
24 11 
23 9 
22 10 

Reducing the number of false alarms that can result from short-term 
traffic inhomogeneities is a major objective of the incident detec
tion algorithm developed in this study. To increase the transferabil
ity potential of the algorithm, it is kept as simple as possible. Fol
lowing results from earlier work, the algorithm operates based on 
real-time traffic measurement at pairs of adjacent stations. 

Earlier work has sought to achieve detection performance by 
exploiting the smoothed, normalized spatial occupancy difference 
between adjacent stations through time (3). To simplify the detec
tion process, only raw data are employed in this work. Further, to 
take full advantage of all possible patterns presented by such data 
in real time, both occupancy and volume are presented to the neural 
network. These data are routinely available at traffic management 
centers across the United States and in other countries. Figures 3 
and 4 show occupancy and volume data from a typical incident in 
our data set, occurring on December 6, 1989, at 16:18:00. 

Several neural networks were investigated, all with 41 elements 
in the input layer and one in the output layer. The network that per
formed best had 30 nodes in the hidden layer and was selected for 
the remainder of this work. The number of training iterations was set 
at two levels; the first level, at which error was adequately reduced, 
was 1,500, and the second, at which the effects of over-learning are 
clear, was 4,000. The performance of the neural network for the data 
set was evaluated with respect to detection rate, false alarm rate, and 
time-to-detect. The best neural network algorithm was compared 
with incident detection algorithms previously found to perform best 
(i.e., DELOS, California, and Algorithm 7) (10). 
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FIGURE 3 Detection occupancy data. 

Training 

The training of the neural network involves training with freeway 
data that include 31 reported incidents and with incident-free data 
randomly acquired from 14 of the 72 days in the data set. These are 
30-sec station lane-average volume and occupancy data from 14 
stations along the 5.5 mi freeway section described previously. For 
each incident, one or more 5-min patterns is introduced to the net
work depending on the duration of the incident, for a total of 89 
training incident patterns. 

Because the size of the dataset is limited, each consecutive inci
dent pattern is placed at a 2.5-min overlap with its preceding pattern 
so the number of patterns with which the network is trained 
increases. The selection of 5-min pattern length and 2.5-min pattern 
overlap reflects findings from preliminary analysis of the data and 
is a function of station location, incident duration, and size of data 
set. Sensitivity analysis could be performed to determine the best 
pattern length and overlap in terms of algorithm performance. 
Training could be extended with additional pattern combinations 
from the data set. Because volume and occupancy data are collected 
every 30 sec, each sample includes 10 volume and 10 occupancy 
measurements from each of the two detector stations. As a result, 
each sample contains a total of 5 min ·x 2 measurements/min X 2 
variables X 2 stations = 40 measurements. 

The input vector of the neural network has 41 elements, includ
ing one element of constant 1 for adjusting the internal threshold, 
eb in Equation 2. The output of the neural network is one element 
and can vary between 0 and 1. During classification, an output value 
greater than a user-specified threshold (see later discussion on the 
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sensitivity of algorithm performance on the value of this threshold; 
default value is O.S) indicates an incident, otherwise an incident-free 
traffic state is indicated. The desired output of an incident pattern is 
1 and that of an incident-free pattern is 0. To illustrate, for an acci
dent occurring between Stations SOS and S 1 S on December 6, 1989, 
at 16: 18:00 (see original traffic data in Table 1 ), the first three inci
dent patterns selected are listed in Table 2. 

For training the network with incident-free patterns, 14 days in 
the data set were randomly selected, 336 S-min incident-free 
patterns were randomly acquired such that they average one per 
peak hour from each adjacent-station pair, for a total of 14 days X 

2 hr/day X 12 station pairs. Because of the large number of avail
able patterns, no pattern overlap was employed. In acquiring these 
patterns more weight was placed in areas in which previous work 
(3) had indicated a higher number of false alarms. For instance, the 
first three incident-free patterns between Stations 31S and 3SS on 
December 6, 1989, beginning at 16:00:30, are listed in Table 3. 

In each iteration of the training process, all 42S training patterns 
were presented to the network in random order. Because of the large 
number of patterns, a small gain was used for updating the network 
weights; as a result, a high number (above 1,000) of iterations were 
employed. 

Testing 

The neural network was tested through application to the complete 
data set over the 72-day period. Although the data set is the same as 
the one used for training, the testing procedure involved a substan
tially larger number of patterns, with both patterns containing inci
dents and incident-free patterns. For every two adjacent stations, a 
new pattern was defined in the data every 30 sec for a total of 21 l,S36 
test patterns. For example, the first three input patterns of station pair 
SOS and SlS on December 6, 1989, are shown in Table 4. 

Every 30 sec the neural network classifies the state of traffic as 
either incident or incident-free based on the threshold defined by the 
user. After a persistence test, an incident alarm is declared. Four 
types of detection were tested based on persistence values of P = 0, 
1, 2, and 3. For instance, if P = 0 following an incident classifica
tion at t, an incident alarm is declared. If P = 3 following an inci
dent classification at time t, an incident alarm is declared only if an 
incident classification is also recorded at t + 30 sec, t + 60 sec, and 
t + 90 sec. 

TABLE 2 Incident Patterns 

SOS SIS SOS SIS SOS 5 lS 

v 0 v 0 v 0 v 0 v 0 v 0 

16 15·30 31 29 34 25 16· 18:00 22 40 17 )2 16:20:30 25 39 27 13 

16 16 00 .)l 25 35 25 16:18:'.;0 21 46 20 22 16:21:00 21! 31 28 14 

16·16:30 32 22 32 24 16 19:00 24 42 26 17 16:21:30 28 32 28 14 

16· j7 00 32 20 29 26 16: 19.30 2S 39 26 13 16:22·00 26 35 28 14 

16· l 7 .30 29 26 24 35 16 20:00 25 41 26 12 16:22:30 28 33 28 IS 

16 IS 00 22 40 17 32 16 20 30 25 39 27 13 16:23:00 29 32 28 15 

16.18:30 21 4() 20 22 16 21:00 28 31 28 14 16:23:30 29 32 28 13 

16·19:00 24 42 26 17 16.21:]0 2ll 32 28 14 16:24:00 28 35 28 15 

16.19·30 25 39 26 l) 16:22.00 26 35 2& 14 16:24:30 27 )7 2E 14 

16.20·00 25 41 26 12 16:22:30 28 33 2S 15 16·25:00 28 35 2K 13 
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TABLE 3 Incident-Free Patterns 

31S 35S 315 JSS 31S 35S 

VOVO VOVO VOVO 

16.00·30 23 10 24 09 16 05 30 27 12 24 09 16:10:30 28 12 25 09 

16:0100 25 12 2108 !6:06·00 2912 2509 16:11·00 2& 12 2409 

16:01 JO 24 11 24 09 16:06.30 27 11 28 10 16· I l:JO 28 12 26 10 

16:02:00 24 l l 2:; 08 16 07 00 28 12 26 10 16: 12·00 28 12 26 10 

16:02:30 28 12 21 06 16 07 30 33 15 24 09 16:12 30 29 IJ 24 09 

16.03:00 29 12 25 09 16 08 00 29 12 30 l I 16: 13.00 29 13 27 JO 

16:03:30 30 13 :n 10 16 o8·30 26 11 28 10 16: u 30 32 14 21 11 

16:04·00 31 J 3 26 10 16 09:00 26 l l 24 08 16: 14:00 32 14 28 11 

16:04 30 JO 12 28 10 16·09·30 24 10 24 09 16.14:30 30 13 28 11 

16:05 00 27 l l 28 10 16· 10:00 27 11 23 08 16.15.00 31 l3 27 10. 

The output of the test module is illustrated in Table S, which 
reflects part of the testing on the December 6, 1989, data. The out
put indicates a correctly detected incident and a number of false 
alarms. The incident began between Stations S 1 S and SSS at 
16:18:00 and was continuously detected from 16:19:30 (time-to
detect = 1.S min) until 16:S4:30. Further, four false alarms at zero 
persistence were indicated at 16:07 :30 (Stations 46S-SOS), 16: 10:30 
(Stations SOS-SlS), 16:16:30 (Stations 61S-62S), and 16:18:00 
(Stations SSS-60S). For every continuous false alarm series, one 
false alarm is recorded. 

RESULTS 

Results from testing indicate the neural network's sensitivity to the 
number of iterations, the user-specified threshold, and the persis
tence value. Higher threshold and persistence values reduce the 
false alarm rate, but also reduce the detection rate and increase the 
average time-to-detection. For instance, Table 6 indicates that at 
1,SOO iterations with zero persistence, increasing the user-specified 
threshold from O.S to 0.8 reduces the false alarm rate from 1.4 to 
0.40 percent, but also reduces detection rate from 94 to 81 percent 
and increases average time-to-detection from 2.S to 4.1 min. Simi
larly, if user-specified threshold value is kept constant at O.S, 
increasing persistence from 0 to 3 reduces false alarm rate from 1.4 

TABLE 4 Testing Input Patterns 

SOS SIS SOS 51S sos 5 IS 

v 0 v 0 v 0 y 0 v 0 v 0 

16:00.30 34 19 33 14 16 01.00 33 19 31 14 16:01 30 JS 20 34 17 

16.0l 00 33 19 31 l4 16 01:30 35 20 ]4 Ii 16:02·00 34 19 35 19 

16:01.30 35 20 J4 17 16 02:00 34 19 JS 19 16:02·30 32 17 33 20 

16:02:00 34 19 3S 19 16.02:30 32 11 33 20 16:0].00 32 17 31 24 

1602 30 3;: 17 33 20 1603.00 32 17 2124 16:03 30 34 19 3126 

16 03 ·OO 32 11 31 24 16 03:]0 34 19 31 26 16.04.00 33 20 ,30 22 

16:03 30 34 19 31 26 16.04:00 33 20 30 22 16:()4 30 33 23 2S 26 

16 04 00 33 20 30 22 l6·04:JO 33 23 25 26 16·05:00 31 29 27 33 

16·04 jQ 33 23 25 26 16 05:00 j I 29 27 33 16:05:30 21 44 28 26 

16.QS 00 31 29 27 '.B 16 05:30 21 44 28 26 l6:06 00 21 44 2S 21 
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TABLE 5 Output of Neural Network 

Date: 12/06/1989 southbound, afternoon 
Station 042S 0468 050S 051S 0558 060S 061S 062S 063S 

Time 
16:05.30 
16·06:00 
16·06:30 
16:07·00 
16:07:30 
16.08·00 
16·08:30 
16:09:00 
16:09:30 
16:10:00 

16•10:30 
16:11.00 
16.11.30 
16:12:00 
16:12:30 
16:13:00 
16:13:30 
16:14:00 
16:14:30 
16•15:00 

16:15:30 
16·16:00 
16:16·30 
16:17:00 
16:17:30 
16:18.00 
16.18:30 
16:19:00 
16:19:30 
16:20:00 

16:20:30 
16:21:00 
16:21:30 
16:22:00 
16:22:30 

16.54:30 

Inc 
Inc 

Inc 
Inc 

• Neural network detect~ incident. 

Inc 
Inc 

Inc• 
Inc 

Inc 

Inc 

Inc 
Inc 
Inc 
Inc 
Inc 
Inc 

to 0.40 percent, but also reduces detection rate from 94 to 84 per
cent and increases time-to-detect from 2.5 to 4.7 min. These effects 
are illustrated in Figure 5, in which the performance envelope of the 
neural network is also demonstrated. 

The performance of the neural network algorithm was evaluated 
at different numbers of iterations. Two of these, 1,500 and 4,000 
iterations, are reported in this study. A comparison of Tables 6 and 
7 or Figures 5 and 6 indicates that the performance of the network 
at 4,000 iterations is worse than that at 1,500 iterations. Although 
additional sensitivity analysis may further specify the range of iter
ations for best performance of the neural network, the results indi
cate that at least 1,500 iterations are required for the network to be 
adequately trained and that 4,000 iterations will result in overtrain
ing, which reduces the network's performance. 

The performance of the neural network algorithm was compared 
with the best of the existing algorithms that have been calibrated 
and extensively tested and evaluated for this data set (JO). These 
include Minnesota Algorithm DELOS 3.3 (0.05,6). Minnesota 
Algorithm DELOS 1.1 ( 10,6), Algorithm 7, and the California algo
rithm, in order of decreasing performance. 

The California algorithm consists of three comparison tests to 
preset thresholds. An incident is detected (a) when upstream occu
pancy is significantly higher than downstream occupancy both in 
absolute value and relative to upstream occupancy and (b) when 
downstream occupancy has adequately decreased during the past 2 
min. The last test distinguishes an incident from a bottleneck by 
indicating that a reduction in downstream occupancy has occurred 
over a short period of time as a result of the incident. 
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TABLE6 Performance Results at 1,500 iterations 

Average 
Per.'!1~tence Thre~hold Detection False Alarm Detection 

Rate (%) Rate (%) Time(Min.) 

0 05 94 1.4 25 

0.6 90 1.1 2.9 

0.7 81 0.70 3.4 

08 .!ll 0.40 4.1 

0.5 94 0.92 3.2 

0.6 87 0.68 3.9 

0.7 81 0.36 4.4 

0.8 74 0.19 4.8 

2 04 87 0.75 3.3 

0.5 87 0.58 4.1 

0.6 .!!4 0.40 4.7 

0.7 74 0.19 5.2 

0.8 58 0.10 5.6 

3 0.4 87 0.53 3.9 

0.5 84 0.40 4.7 

0.6 Bl 0.26 5.4 

0.7 71 0.12 5.7 

0.8 48 0.069 6.2 

Algorithm 7 is similar to the California algorithm, but it replaces 
the temporal downstream occupancy difference in the third test with 
the present downstream occupancy measurement. This replacement 
seeks to reduce the false alarms produced by compression waves. 

The Minnesota algorithms use low-pass filtering of the occu
pancy measurements to distinguish short-term traffic inhomo
geneities from incidents. Further, the algorithms attempt to distin
guish recurrent congestion from incident congestion based on slow 

TABLE 7 Performance Results at 4,000 Iterations 

Persistence Threshold 

0 

3 

0.5 

0.6 

0.7 

08 

0.5 

0.6 

0.7 

0.8 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Detection 
Rate (%) 

94 

94 

94 

90 

94 

94 

94 

84 

90 

90 

90 

81 

65 

39 

87 

81 

74 

61 

52 

26 

Avi:rage 
Fal&e Alarm Detection 
Rate (%) Time 1.Min.) 

2.9 1.9 

2.5 2.1 

2.2 2.3 

1.8 2.2 

1.4 3.1 

1.2 3.2 

0.99 3.3 

0.78 3.2 

0.36 3.7 

0.73 3.7 

0.62 4.2 

0.49 4.6 

0.38 4.5 

0.25 4.4 

0.55 4.5 

0.47 4.0 

0.37 4.4 

0.29 4.9 

0 21 4.8 

o.n 4.0 
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FIGURES Neural network performance at 1,500 iterations. 
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FIGURE6 Neural network performance at 4,000 iterations. 

or fast evolution of the congestion, respectively. The distinguishing 
logic of the two tests used is based on a temporal comparison of spa
tial occupancy difference between adjacent stations. Assuming an 
incident occurs at t, the congestion test considers the smoothed spa
tial occupancy difference from k time increments after t, normalized 
by the highest value of the smoothed upstream and downstream 
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occupancies from n increments before t. The incident test compares 
the smoothed spatial occupancy difference for the period after t with 
the corresponding value from the past period. In particular, DELOS 
1.1 ( 10,6) uses a moving average to smooth 10, 30-sec past occu
pancy values, and 6 present values. DELOS 3.3 (0.05,6) uses expo
nential smoothing with a smoothing factor of 0.05, and a time lag 
of 6 between the periods before and after the incident. 

The evaluation results indicate that the neural network performs 
better than all algorithms in the set and, at a detection rate of70 per
cent or higher, performs as well as the best algorithm, DELOS 3.3. 
This performance is noteworthy because the neural network repre
sents the initial results in its class, developed in Minnesota with real 
data, whereas DELOS 3.3 was developed after considerable 
research. A more fair comparison would be between the neural net
work and DELOS 1.1, which also represents the initial findings in 
its class ( 3 ). To illustrate, as Figure 7 suggests, at 70 percent detec
tion rate, the false alarm rate of the neural network is 0.12 percent 
and that of DELOS 3.3 is 0.13 percent. The false alarm rate of 
DELOS 1.1 is 0.25 percent, or twice the number of false alarms of 
the neural network; that of Algorithm 7 is 0.34 percent, or approx
imately three times as many false alarms; and the false alarm rate of 
the California algorithm is 0.52 percent, or more than four times the 
number of false alarms produced by the neural network. Future ver
sions of the neural network are expected to (a) improve time
to-detection by using a more appropriate pattern size, and (b) further 
decrease the number of false alarms by preprocessing and normal
izing the field data before analysis. 

CONCLUSION 

A neural network algorithm that can be used to improve automated 
incident detection in freeways was discussed. Based on real-time 
occupancy and volume counts from pairs of adjacent loop detector 
stations, the three-layer feedforward network with approximately 
1,000 nodes was trained with actual data, including 31 incidents 
from I-35W (a typical freeway in the Twin Cities Metropolitan 
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FIGURE 7 Algorithm performance comparison. 
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Area) over the afternoon peak period. Training with data from 72 
days yielded promising test results and indicated that the algorithm 
was able to learn and classify incident and incident-free patterns 
effectively. Methods for improving the time-to-detect incidents are 
currently being developed by the authors. 

Test results also indicated the sensitivity of algorithm perfor
mance to values of user-specified threshold, persistence, and the 
number of iterations used for training. Algorithm performance in 
terms of detection and false alarm rates was superior to most of the 
best algorithms that have been tested with this data-set. At a detec
tion rate of 70 to 80 percent, the trained network has a false alarm 
rate of 0.12 percent to 0.26 percent. The computation time for one 
test is 4 msec on IBM-486/33MHz, indicating that it is practical to 
conduct incident detection in real time. Algorithm testing is contin
uing with the collection of additional incident data in the Metropol
itan Area of Minneapolis-St. Paul. 
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