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Use of Fuzzy Relations To Manage 
Decisions in Preserving Civil Infrastructure 

DIMITRI A. GRIVAS AND YUNG-CHING SHEN 

The use of fuzzy relations to manage uncertain information in civil 
infrastructure preservation is addressed. Subjectivity and imprecision of 
uncertain information and ambiguity of terminological knowledge in 
preserving infrastructure facilities are the primary motivation for the 
employment of fuzzy sets and fuzzy relations. Formal decision 
processes use the concept of knowledge graphs that enable the estab­
lishment of general-specific or cause-effect relations between condition 
factors, as well as relations between condition and symptom factors. 
Fuzzy relations allow the characterization of the uncertainty associated 
with these relations. Fuzzy graphs assimilating the degree of certainty 
involved in decision processes are used to illustrate the connection 
strength of the elements in the associated fuzzy subsets. A case study in 
pavement preservation applied to the New York State Thruway is pre­
sented. This research makes contributions to synthesizing uncertain 
information involved in the decision processes of preserving civil infra­
structure. In particular, the case study exemplifies the benefits of using 
fuzzy relations to identify feasible treatment options. 

This study is concerned with the use of fuzzy relations to structure 
decision processes in preserving infrastructure facilities such as 
pavements and bridges. Feasible preservation methods aim at 
improving or strengthening infrastructure facilities that are in defi-
cient condition. The complex behavior of infrastructure compo­
nents renders the preservation decision into an environment of 
uncertainty. The uncertainty associated with the decisions is con­
cerned mostly with personal preference and judgment, which 
involves graded or qualified statements that are not strictly true or 
false. 

The qualified statements of engineering judgment are mostly 
expressed in the form of conditional relation between different 
quantities, e.g., the relation between climate and cracking of a struc­
tural component such as pavement. Frequently the relationship 
between two mutually dependent classes or variables is neither 
exact nor inexact. In other words, the linkage between objects in the 
two classes, or values taken by the two variables, varies gradually 
from a condition of weak to strong. Such situations can arise basi­
cally from two sources: (a) fuzziness in the definition of classes or 
variables, and (b) ambiguity of the conditional relations. 

Fuzzy relations enable the characterization of the uncertainty 
involved in conditional statements. In civil engineering, Blockley 
(J) illustrated fuzzy relations in the uncertainty analysis of struc­
tural safety. Among other applications, this approach was exempli­
fied in a fuzzy relation between compressive stress and longitudinal 
slenderness for a steel column. Brown and Yao (2) examined the 
fundamental theory of fuzzy sets and illustrated engineering deci­
sions in estimating the strength of concrete using fuzzy conditional 
relations. Kikuchi and Perinchery (3) introduced the concept of 
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fuzzy sets and fuzzy measure for representing two types of uncer­
tainty: vagueness and ambiguity, in engineering planning problems. 

In this paper the uses of fuzzy relations to structure decision 
processes concerned with condition diagnosis and treatment identi­
fication in preserving civil infrastructure are addressed. The concept 
of knowledge graphs (4) is used to identify the relations. The uncer­
tainties involved in the relations are manipulated with fuzzy set 
theory and illustrated with knowledge graphs. A computational 
framework is formulated to calculate the strength of belief of the 
diagnosed conditions and identified treatments. A case study on the 
preservation of pavements is presented. The strengths and weak­
nesses of using fuzzy relations to structure decisions involving 
uncertainties are discussed. 

INFORMATION AND UNCERTAINTY 

Several types of uncertain information, defined by Klir and Folger 
(5) as the amount of uncertainty associated with the system, are pre­
sent in infrastructure preservation decisions, each of which occurs 
under its own distinct conditions. The most significant types of 
uncertainties in the present study are subjectiveness, imprecision, 
and statistical uncertainty. Information about condition assessment 
of infrastructure facilities is generally presented in linguistic form, 
which has meaning that is inherently vague or subjective. This 
vagueness reflects the uncertainty represented and manipulated with 
fuzzy sets. The second type of uncertain information involved in 
preservation is a measurement or test with an instrument, or the 
uncertainty of imprecision. Imprecision is represented and calcu­
lated using fuzzy set theory. Also, statistical uncertainty is involved 
in quantitative information such as traffic volume, climate, and oth­
ers. Quantitative information is represented with probability density 
functions that address statistical uncertainty. In this study the focus 
is on the uncertainties that are represented with fuzzy sets and 
manipulated with fuzzy calculus (6). 

The uncertainty concerned with the reliability of descriptive 
information, defined by Klir and Folger (5) as the shortest descrip­
tion of the system in some standard language, is a result of ill­
defined concepts (fuzziness) involved in the problem domain. 
Within the category of descriptive information, uncertainty (ambi­
guity) may occur as a result of weak implication, when an engineer 
is unable to establish a strong correlation between premise and con­
clusion of conditional statements in preservation decisions. 

PRESERVATION DECISIONS 

The decision-making process for preserving civil infrastructure 
generally consists of problem identification, determination of 
potential solutions, and selection of the preferred solution. In prob-
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!em identification, existing infrastructure conditions are identified 
through data collection, data evaluation, and project constraints. On 
the basis of this information, feasible rehabilitation methods are 
analyzed and recommended. The preferred solution is selected by 
analyzing costs and by considering project constraints and non­
monetary factors. Shen and Grivas (4) proposed a decision frame­
work for pavement preservation that consists of symptom observa­
tion, condition diagnosis, and treatment identification. 

For infrastructure in general, symptom observation is a process 
of gathering data and facts required to identify existing infrastruc­
ture condition. Condition diagnosis includes the knowledge 
required to evaluate infrastructure condition. This part of the deci­
sion task represents actual diagnostic processes for detecting the 
causes of deterioration of an infrastructure component. Treatment 
identification recommends several potential met~ods that are feasi­
ble to remedy infrastructure deterioration. Condition diagnosis and 
treatment identification are ill-structured decision problems. There 
are no definitive procedures for the evaluation of infrastructure con­
dition and the identification of treatment options 

Using the concept of knowledge graphs (4) to formalize the deci­
sion problems allows clear identification of the relation of contexts 
and the structure of knowledge. 

KNOWLEDGE GRAPHS 

A knowledge graph is a graphical representation of a decision 
process that attempts to mimic the knowledge of domain experts. 
Figure 1 shows an example of a knowledge graph for condition 
diagnosis. The structure of knowledge graphs is established by for­
malizing the decision processes with a three-step procedure: (a) 
problem decomposition, (b) term interpretation, and (c) heuristics 
organization. Formalization of the decision process was presented 
by Shen and Grivas (4) in a study of pavement preservation. 

The sample knowledge graph indicates that the terms used by 
maintenance engineers have different interpretations in describing 
structural conditions. For example, the problem of insufficient sup­
port (Node 3) is recognized by most engineers. Some emphasize 
that the cause of insufficient support is overloaded traffic (Node 8), 

OJ Poor Subbase 

(1] Cracks in PCC Slab 

UJ Insufficient Support 

[I] Freeze Thaw Action 

[[) Water in Subbase 

[§] Slab Movement 

[I] Temperature Variation 

(i] Overloaded Traffic 

[fil Rut Depth 

[IQ] Profile Irregularity 

[ijJ Pumping 

[1lJ Traffic Volume 

FIGURE 1 A sample of knowledge graph. 

II 

while others consider that the problem is evidenced by rut depth 
(Node 9), which, in tum, indicates the problem of water in the sub­
base (Node 5). 

Understanding the precise meaning of each term was used to 
establish the knowledge graphs. Some terms are abstract and are 
defined informally and implicitly by the Thruway engineers 
because a standard vocabulary has not been designated. The mean­
ings of such terms were derived mostly from engineers' experience 
in the maintenance actions. Therefore, the terms that experts use are 
generally vague because the degree of certainty (truth) of the term 
varies from case to case. The facts, relations, and rules of thumb 
(conditional statement) contained within the knowledge graphs usu­
ally manifest varying degrees of uncertainty. These uncertainties 
indicate either vagueness of a concept or ambiguity of a relation or 
both. The use of exact satisfaction of the premise of a conditional 
statement seems unnatural in the context of infrastructure preserva­
tion. Therefore, fuzzy relations from the derived knowledge graphs 
more realistically represent the decision process and, as well, more 
clearly account for the uncertainties involved. 

FUZZY RELATIONS 

The relations established in the knowledge graphs for condi­
tion diagnosis and treatment identification can be expressed as a 
conditional statement: If A, then B; A and B are fuzzy predicates 
represented by membership functions rather than the proposi­
tional· variables defined in the classical propositional calculus. In 
essence, the conditional statement describes a fuzzy relation (7) 
between two fuzzy variables. In this study, fuzzy sets are used to 
account for the uncertainty (vagueness) of linguistic terms, while 
fuzzy relations help to clarify the confusion (ambiguity) in inter­
preting the terms. 

Membership Matrix 

Fuzzy sets help establish inexact relationships between different 
quantities or classes of objects presented in a membership matrix. 
(See Table 1.) Two classes of objects, e.g., temperature variation 
and slab cracking, form a cause-effect relation that describes the 
condition of infrastructure facilities, and can be denoted by the 
Cartesian product of two fuzzy sets, X and Y. In X, the elements of 
fuzzy sets are various degrees of temperature changes in a day that 
may affect deterioration (cracking) of slabs. In Y, the fuzzy ele­
ments are a six-level severity of cracking. 

The Cartesian product of X and Y, X X Y, forms a fuzzy relation, 
R, that constitutes a new universe with the ordered pairs as. its ele­
ments, characterized by a membership function µR(x, y). A typical 
operation for the Cartesian product is represented as 

µR(x, y) = µxxy(X, y) = min [iLx(x), µy(y)] (I) 

A fuzzy relation is a subset of the Cartesian product, X X Y. An 
example of a fuzzy relation is established from the conditional state­
ment: If temperature variation is high then slab cracking is moder­
ate general. The linguistic value "high" is represented by fuzzy sub­
set A and "moderate general" is B (8), as follows: 

A = .Q:..!_ + 0.4 + 0.7 + 0.9 + (2) 
X5 
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TABLE 1 Typical Two-Dimensional Membership Matrix of XX Y. 

Y = Slab Cracking 

x = Temperature Y1 (Tight Y2 (Tight y3(0pen y4(0pen Ys (Spalled Ye (Spalled 
Variation {°F) Cracks) Cracks in 3 or 

more slabs) 

X1= 20 µR(x1.>'1) µR(.x1.J'2) 

X2= 30 µR(~.Jlt) µR(~·Y2) 

X3=40 PR (.r3,.)'1) PR(.x3.~) 

X4= 50 µR(x4.y1) PR(.r4.~) 

Xs=SO PR(Xs.YJ) PR(Xs.J'2) 

B = Q2 + Q2 + 0.9 + J_ + Q& + Q:.!_ (3) 
Yi Y2 Y3 Y4 Ys Y6 

Specifically, A is a fuzzy subset of the universe of discourse, X, 
and B is a fuzzy subset of Y. The fuzzy relation R(A, B) is charac­
terized by a membership function µR(x, y) and is expressed: 

R =AX B = {µR (x, y)l(x, y) Ix EA andy EB (4) 

This expression is a special fuzzy relation of X X Y, and the rela­
tion combines all x EA and y EB in the form of ordered pairs repre­
sented as a membership matrix: 

[ 0.1 
0.1 0.1 0.1 0.1 

0.1 l 0.2 0.4 0.4 0.4 0.4 0.1 
AX B = 0.2 0.5 0.7 0.7 0.6 0.1 (5) 

0.2 0.5 0.9 0.9 0.6 0.1 
0.2 0.5 0.9 1 0.6 0.1 

The membership matrix represented for a fuzzy relation can be 
derived from the maintenance engineers about their strength of con­
fidence on related fuzzy elements. In the case of preserving civil 
infrastructure, interviews with engineering experts would be neces­
sary to identify membership values. Typical questionnaires for the 
interview are: 

1. Does symptom i of concrete pavements always indicate a 
problem of condition j? 

2. Is symptom p of a steel-girder bridge often caused by the con­
dition q? 

3. Is condition r of an overlaid pavement very likely a specific 
case of condition s? 

The relations between condition factors as well as the relations 
between symptoms and conditions presented in the questionnaire are 
associated with implicit uncertainty. A membership grade [0,1] is 
assigned for the linguistic terms, always, often, may-not likely, very 

Cracks) Cracks in 3 or Cracks) Cracks in 3 or 
more stabs) more slabs) 

µR (x1.J13) µR(.x1.Y4) µR(X1,)'5) µR(.x1.Y6) 

µR (.r2.YJ) µR(~.y4) µR(~·.Ys) µR(~ • .Y6) 

µR(.x3,y3) µR (.X3.)'4) µR(~·Ys) µR(.r3.y6) 

µR(.r4.y3) PR(x4.y4) µR(x4.y5) µR(.x4,y6) 

>'R (.r5.YJ) µR(Xs,J14) µR(Xs.J's) >'R(Xs·Y6) 

likely, and others. For example, the connection strength between 
symptom i and condition j is 0.9, which represents the uncertainty 
value "always." Furthermore, concentration and dilation operation 
are modeled with the linguistic modifiers: µvery A(x) = µJ:2 (x) and 
µmay-noiA(x) = µ1(x), respectively. The created membership matrix for 
a fuzzy relation can also be interpreted using a fuzzy graph (9). 

Fuzzy Graph 

Elements of the matrix with nonzero membership grades are repre­
sented in the diagram by lines connecting the respective nodes. Fig­
ure 2 presents the fuzzy graph of the conditional relation "If tem­
perature variation is high then slab cracking is moderate general." 
The nodes of the fuzzy graph are considered as the elements of the 

Temperature Variation 
is High 

Slab Cracking 
is Moderate General 

FIGURE 2 The fuzzy graph of the conditional relation "If 
temperature variation high Then cracking is moderate general." 
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fuzzy relation. These nodes are labeled with the membership grade 
of related fuzzy subsets. For a fuzzy relation, the connection 
strength of a path is defined as the minimum strength of related ele­
ments. As shown in Figure 2, temperature variation of 60°F 
(15.5°C) has the greatest influence (membership grades are 0.9 and 
1.0) to open cracks on slabs. However, the 60°F (15.5°C) tempera­
ture variation does not cause a major problem to spalled cracks, 
where the membership grades of the relations are 0.6 and 0.1. In 
other words, spalled cracks are a phenomenon that temperature 
changes would not strongly affect. 

Composition 

Two fuzzy relations can be composed to a new relation. For exam­
ple, a new relation can be established from a composition between 
symptom-condition relation and condition-treatment relation. A 
typical example of composition can be established from the fol­
lowing two conditional relations: 

1. If temperature variation is high (A) then slab cracking is mod­
erate general (B). 

2. If slab cracking is moderate general (B) then seal the cracks 
(C). 

In C, the fuzzy elements are the four generic types of treatments: 
preventive maintenance, minor rehabilitation, major rehabilitation, 
and reconstruction. The membership function of seal the cracks in 
this condition relation is defined as 

C= ~ + _!__ + Q2 + QJ_ (6) 
Z1 Z2 Z3 Z4 

Suppose that Risa relation on A X B (A and Bare represented in 
Equation 2 and 3, respectively) and Sis a relation on BX C (Band 
C are represented in Equation 3 and 6, respectively). One might 
want to know the fuzzy relation from A to C. An operator can be 
defined to establish the relation between A and C via B. This study 

Temperature Variation 
is High 

Slab Cracking 
is Moderate General 
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follows max-min composition, denoted by 0 , that is: 

(7) 

The composition is formulated as follows: 

[01 0.1 0.1 0.1 0.1 0.1 l 0.2 0.4 0.4 0.4 0.4 0.1 
Ro S = 0.2 0.5 0.7 0.7 0.6 0.1 

0.2 0.5 0.9 0.9 0.6 0.1 
0.2 0.5 0.9 0.6 0.1 

[0.2 0.2 0.2 

01] 0.5 0.5 0.5 0.1 
0.8 0.9 0.5 0.1 
0.8 1 0.5 0.1 
0.6 0.6 0.5 0.1 
0.1 0.1 0.1 0.1 

[0.1 0.1 0.1 
0.1 l 0.4 0.4 0.4 0.1 

= 0.7 0.7 0.5 0.1 
0.8 0.9 0.5 0.1 
0.8 0.5 0.1 

Figure 3 shows the fuzzy graph of the composition. The connec­
tion strength between x5 and z2 via y4 is the strongest among all the 
paths between them. Minor rehabilitation is recommended, which 
would require more work than just filling the sealer in the cracks. 
On the other hand, if temperature variation is at 50°F (10.0°C) and 
the cracks appear to be open on three or more slabs, then apply the 
treatment, and seal the cracks, as preventive mainten~nce. 

Fuzzy Mapping 

Mapping is a fuzzy transformation when uncertainties are involved 
in a system. When information is passed through a fuzzy system, an 
extra fuzziness will be added because of the fuzziness of the system 

Z1 (Preventive Maintenance) 

Z2 (Minor Rehabilitation) 

Z3 (Major Rehabilitation) 

Seal the Cracks 

FIGURE 3 The fuzzy graph of the composition between temperature variation 
high and seal the cracks. 
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itself. Even if the input is crisp, the output will be fuzzy; if the input 
is fuzzy, the output will be fuzzier. 

For a fuzzy transformation, a relation R between two fuzzy sets, 
X and Y is expressed by the membership function, µR (x,y). The 
image of A on X under this transformation, using a matrix expres­
sion, is given by 

(9) 

with the membership function 

(10) 

This transformation enables identification of treatments from the 
observed symptom once the fuzzy relations between symptoms and 
treatments are established. 

CASE STUDY 

The area covered in this study is a section of the New York 
State Thruway that was originally constructed in 1955. The 9-in. 
(22.5-cm) reinforced cement concrete pavement section was con­
structed over a 12-in. (30-cm) granular subbase. Later there were a 
2Vi-in. (6.5-cm) asphalt concrete overlay, a 1-in. (2.5-cm) asphalt 
concrete overlay, and a 3-in. (7.5-cm) asphalt concrete overlay until 
1993. The occurrence of cracking, rutting, spalling, and other con­
ditions has affected the load-carrying of the pavement structure. 
This case study places emphasis on the identification of treatment 
options based on rut depth data collected from a roughness survey 
and engineering judgment about the preservation of pavement 
structures. 

The decision process of treatment identification follows the 
symptom and/or data collected from the field. In accordance with 
the established knowledge graph (as shown in Figure 1 ), rut depth 
(Node 9) may be the effect of water in subbase (Node 5), which, in 
turn, indicates poor subbase (Node 1 ), or rut depth may be an indi­
cation of insufficient support (Node 3) of the pavement structure to 
carry overloaded traffic (Node 8). However, the rut depth may also 
be simply treated without rectifying any structural problem of the 
pavement. 

In this study fuzzy relations are used to pursue three different 
decision processes: direct symptom-treatment relation explored in 
Method A, symptom-condition-treatment relation in Method B, and 
symptom-condition-condition-treatment relation in Method C. A 
fuzzy relation between symptom and treatment will be composed 
from all the parameters involved in each decision process. Fuzzy 
ordering enables a comparison of the strength of belief among the 
treatment options derived from each method. Thus, th~ three meth­
ods aim at establishing fuzzy relations for the conditional statement: 
If rut depth is large general then what kind of treatment is consid­
ered to be the most appropriate one. 

Method A 

The first method applies a direct symptom-treatment relation that 
enables identifying the strength of belief to the treatment, milling 
wheel rut, based on the severity of rut depth. In X (the symptom) the 
elements of fuzzy sets are defined as four levels of rut depth, and the 
five elements of fuzzy sets for Z (the treatment) are "do nothing" 
and four generic treatments. 
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X = 5 Rut Depth 

X1 < lcm 
2cm > x2 ::::::: lcm 
3cm > x3 ::::::: 2cm 
X4::::::: 3cm 

Z = Treatments 

z1 = Do Nothing 
· z2 = Preventive Maintenance 
z3 = Minor Rehabilitation 
z4 = Major Rehabilitation 
z5 = Reconstruction 

The membership matrix of the relation between rut depth and 
treatments is established from interviewing experts about their 
judgments on determining potential treatments for a certain range 
of rut depth, and represented as 

[

0.8 0.6 0.2 

R = X x z = 0.4 0.8 0.3 
0.2 1 0.6 
0.1 0.7 1 

A fuzzy relation is applied to the conditional statement: If rut 
depth is large general (A), then treatment is mill wheel ruts (C) to 
derive the fuzzy subset of the treatment. In the premise of the con­
ditional statement, linguistic value "large general" is represented by 
fuzzy subset A as 

(12) 

The membership function (C) is obtained from mapping the "rut 
depth is large general" to MA, C =Ao MA: 

c = 0.4 + J_ + ~ + Q2 + Ql (13) 
Z1 Z2 Z3 Z4 Zs 

The membership grade for the treatment, mill wheel ruts (C), is 
expressed in terms of the generic treatment, Z1• The operation of map­
ping the symptom to treatment is illustrated using the fuzzy graph 
shown in Figure 4. Membership values of the fuzzy relation are 
marked on the lines connecting the symptom and the treatment. 
Among them, the connection strength between x3 and z2 is the highest. 

Method B 

The decision path of the second method, according to the knowl­
edge graph in Figure 1, is from symptom rut depth to a structural 

Z1 (Do Nothing) 

Symptom (A): Treatment (C): 
Rut Depth is Large General Mill Wheel Ruts 

FIGURE 4 A fuzzy graph for Method A. 
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condition, insufficient support. The latter can be rectified by 
extended maintenance overlay ( 4). Thus, the conditional statements 
for the second method include: 

1. If rut depth is large general (A), then insufficient support (B). 
2. If insufficient support (B), then extended maintenance over­

lay (C). 

The level of severity of insufficient support can be estimated 
from a falling weight deflectometer test. The deflection of pavement 
structure obtained from the test may be classified into none, small, 
moderate, and large, which become the elements of the fuzzy sets 
of defining the structural condition. 

X =Rut Depth 

X1 < lcm 
2cm > x2 ;::::: lcm 
3cm > x3 ;::::: 2cm 
X4;::::: 3cm 

Y = Insufficient 
Support 

Yi= None 
Y2 =Small 
y3 = Moderate 
y4 =Large 

Z = Treatments 

z1 =Do Nothing 
z2 = Preventive Maintenance 
z3 = Minor Rehabilitation 
z4 = Major Rehabilitation 
Zs = Reconstruction 

The fuzzy relations of symptom (X) and condition (Y), R, are 
established from interviewing maintenance engineers by identify­
ing their confidence on a severity of insufficient support that causes 
a range of rut depth; and the fuzzy relations of condition (Y) and 
treatment (Z), S, are the confidence on the type of treatment for a 
severity of insufficient support. The relations, R and S, are repre­
sented as following: 

[

0.5 

R = 0.3. 
0.1 
0.0 

0.8 
0.7 
0.4 
0.3 

0.2 
0.5 
0.9 

O.~] 
0.5 
0.8 

The composition of R and S forms a relation between symptom 
and treatment for the Method B. 

s = [o.~ 
0.7 
0.4 

0.6 
0.8 
0.9 
0.7 

0.2 OJ 0.3 0.1 
0.8 0.4 

1 0.8 

A fuzzy set representation of structural condition is obtained by 
mapping the membership function of "rut depth is large general" to 
R. Similarly, a fuzzy set representation of treatment (C) is a map­
ping to M 8 . For the case of rut depth is large general a fuzzy subset 
describing the degree of truth of insufficient support (B) i·s 

B= Ql_ + Q2 + _2-:2_ + ~ 
Yi Y2 YJ Y4 

(17) 

In addition, the extended maintenance overlay is given a fuzzy 
set representation as 

c = Q2 + 0.9 + _2-:2_ + ~ + ~ (18) 
Z2 Z5 

Figure 5 presents a fuzzy graph showing the mapping from the 
symptom, rut depth, to the condition, insufficient support, and from 
the condition to the treatment. The highest connection strength 
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among the decision paths is X3 - Yi - Z2 or X3 - Yi - 23. This 
method indicates a lower certainty value on the suggested treat­
ment, extended maintenance overlay. In addition, it shows greater 
uncertainty on selecting a type of treatment option. 

Method C 

The decision process follows a different path of the knowledge 
graph in Figure 1. The conditional statements for the third method 
include: 

1. If rut depth is large general (A), then water in subbase (B 1), 

2. If water in subbase (B 1
), then poor subbase (B2), 

3. If poor subbase (B2
), then maintenance overlay (C). 

The level of severity of water in subbase is classified into none, 
low, medium, and high, four levels. The certainty values for the 
fuzzy predicate poor subbase are defined as: (a) impossible, (b) 
very_low_chance, (c) it_may, (d) most_likely, and (e) certain. The 
elements of the fuzzy sets of each parameter used in Method C are 
given as follows: 

X =Ruth Y1 =Water Y2 =Poor 
Depth in Subbase Subbase Z = Treatments 

X1 <I cm y 1 =None Yi = Impossible Z1 = Do Nothing 
2cm > x2 2::: Icm y2 =Low Y2 = Very _low z2 = Preventive 

_chance Maintenance 
3cm > x3 ;::::: 2cm y3 =Medium y3 = It_may z3 =Minor 

Rehabilita-
ti on 

x4 2::: 3cm Y4 =High Y4 = Most_likely Z4 =Major 
Rehab iii ta-
ti on 

y5 =Certain Zs= Recon-
struction 

Applying the same interviewing procedures, fuzzy relations of X 
and Y1

, Y' and Y2
, and Y2

, and Z are shown in the following matri­
ces, R, S', and S2

, respectively: 

[09 0.3 0.2 

O.~] R = 0.8 0.4 0.2 
0.7 1 0.6 
0.4 0.8 0.9 0.5 

(19) 

S' ~ [ o.! 
0.9 0.2 O.~] 1 0.3 

0.8 0.9 0.4 0.2 
0.6 0.9 0.7 0.5 

(20) 

[ I 

0.5 0.2 0 

o.~l 0.8 I 0.7 0.4 
S2 = 0.6 0.9 0.8 0.6 0.2 

0.5 0.8 0.9 0.7 0.4 
0.3 0.7 0.9 1 0.8 

(21) 

The composition of the three relations in equations 19, 20 and 21 
is as follows: 
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Z1 (Do Nothing) 

Symptom (A): Condition (8): Treatment (C): 
Rut Depth is Large General Insufficient Support Extended Maintenance Overlay 

[

0.9 

M = 0.8 
c 0.9 

0.8 

0.9 0.7 
0.8 0.7 

1 0.7 
0.9 0.8 

FIGURE 5 A fuzzy graph for Method B. 

0.6 
0.6 
0.6 
0.6 

0.3] 0.3 
0.4 
0.5 

(22) 

A fuzzy set representation of water in subbase and poor subbase 
can be obtained by mapping the membership function of "rut depth 
is large general" to R and S1• Similarly, a fuzzy set representation 
of treatment (C) is a mapping to Mc. For the case of rut depth is large 
general a fuzzy subset describing the degree of truth of maintenance 
overlay (C) is derived as 

c = Q:2_ + _!__ + Q:§_ + 0.6 + 0.5 (23) 
Z2 Zs 

Figure 6 is a fuzzy graph showing a transformation of a fuzzy 
subset from symptom to treatment. The membership values 
obtained from maintenance expertise and represented in the fuzzy 
relation are marked on the lines connecting symptom, condition, 
and treatment. The highest strength of decision path in this graph is 
X3 - (Y 1 ) 2 - (Y2) 2 - Z2• Although the identified treatment option 
is preventive maintenance, maintenance overlay, which is sug­
gested in this case, is in the category of minor rehabilitation. 

Symptom (A): Condition (81): 

Rut Depth is Large General Water in Subbase 

FIGURE 6 A fuzzy graph for Method C. 

Fuzzy Ordering 

Ranking the identified treatments is a major decision-making issue 
in preserving civil infrastructure. It is usually involved with uncer­
tainties and fuzziness. Ordering the types of treatment is based on 
the strength of belief calculated from each method, and ordering the 
suggested treatments is based on the degree of certainty of the 
derived fuzzy subsets. The symptom-treatment relations established 
in the three methods are applied to identify a treatment for a symp­
tom such as rut depth is large general. 

Mapping the symptom to the fuzzy relations of Methods A, B, 
and C generates the fuzzy subsets of suggested treatments shown in 
equations 13, 18, and 23, respectively. The order of treatment types 
for Method A is z2 > z3 > z4 > z1 > Zs in which preventive main­
tenance, mill wheel ruts, is recommended. Similarly, the order of 
treatment types for Methods B and C are z2 = z3 > z4 = Zs > z1 and 
z2 > z1 > z3 > z4 >Zs respectively. Preventive maintenance is also 
the identified treatment type for both Methods B and C. Although, 
extended maintenance overlay (a major rehabilitation) is recom­
mended for Method B and maintenance overlay (a minor rehabili­
tation) for Method C. It appears that the associated treatments are 
neither totally committed for Method A nor for Method C, in accor­
dance with the computed membership grades. 

Z1 (Do Nothing) 

Condition (82): Treatment (C): 
Poor Subbase Maintenance Overlay 
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Ranking the suggested treatments (mill wheel ruts, maintenance 
overlay, and extended maintenance overlay) can be achieved from 
a fuzzy measure to estimate the degree of certainty. 

DISCUSSION 

The three different decision methods of identifying treatment 
options for a given rut depth information show different results. In 
this section, two interesting points are discussed that contribute to 
the investigation of this study. 

First, the fuzzy relation matrices shown in Equations 11, 16, and 
22 can be compared using an a-cut (10). a-cut is a method of con­
verting a fuzzy set into a crisp set which provides a criterion of mea­
suring the fuzziness of a set. A membership value of one-half has 
the highest degree of difficulty of deciding whether it is a member 
of the set or not. Membership grades close to one are closer to being 
in the set, membership grades close to zero are closer to being out 
of the set. In the present study, applying an a value to the three 
membership matrices, MA, M 8 , and Mc is to clarify the ambiguity of 
selecting a treatment among the three methods. 

Setting a = 0.9, the symptom-treatment relation obtained from 
Method B identifies preventive maintenance and minor rehabilita­
tion as the potential treatment options. 

0 
0 

0 
0 

0 
0 
0 
0 

(24) 

However, as the a value decreases to 0. 7, this method essentially 
has no way of identifying a preferred treatment. This is evident from 
Equation 18 where it shows almost the same strength of belief of 
applying different maintenance strategies for the given symptom. 

After decreasing the a-cut value to 0.6, Method C shows a higher 
strength of belief on the four treatment options. 

(Melo,= [ l (25) 

In comparison with Method B, Method C is less fuzzy in identi­
fying treatment for a given symptom. On the contrary, Method C is 
fuzzier than Method A, because the membership matrix, MA, shows 
a higher focus on preventive maintenance and minor rehabilitation. 

0 
0 

0 
0 

(26) 

This result is consistent with the specific case study obtained 
from Equation 12. This higher focus means that the result ob­
tained from Method A is less fuzzy than the results of Methods B 
andC. 

Second, the condition fuzzy variables, insufficient support in 
Method B, and water in subbase and poor subbase in Method C, 
indicate some influence on the decisions of identifying treatment 
options because of the uncertainty factors of these variables 
involved in the processes. However, the results of Methods B and 
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C provide more information about potential treatment availability 
and the degree of certainty assigned to each treatment. 

The decision processes can be reffned by interviewing mainte­
nance experts who can present a more reasonable preference func­
tion (membership function) in describing the uncertain information. 
The membership function resulting from interviewing processes is 
a quantification of design preference that the engineers have the 
greatest confidence in using, or desire to use with respect to treat­
ment options. 

The fuzzy sets representation for general-specific or cause-effect 
relations has no distinguished differences. The cause-effect relation 
between water in subbase and rut depth is part of the decision path 
in Method C. The membership matrix of equation 19 establishes a 
fuzzy relation that allows evaluation of the cause (water in subbase) 
of the problem using fuzzy mapping for a given symptom (rut 
depth). Both water in subbase and poor subbase are the causes of rut­
ting. However, there is a general-specific relation between poor sub­
base and water in subbase. Structuring expertise with the approach 
of problem decomposition is well suited to infrastructure condition 
reasoning that is involved in several levels of abstraction. Higher­
level knowledge sources are employed to deal with more general 
concepts, while lower-level knowledge sources are used to deal with 
much more detailed operations applied to more specific domains. 

In the case study the three decision paths are represented with 
three different membership matrices for a given symptom. Each 
membership matrix is established for a relation between the symp­
tom, rut depth, and the treatments. The matrices allow us to explore 
the degree of confidence on the identified treatment type, which, in 
turn, clarify the ambiguity of the terms interpreted in the knowledge 
graphs. Uncertainties involved in the knowledge graph can be 
assimilated using fuzzy graphs. Fuzzy graphs provide a graphical 
presentation for the process of fuzzy mapping and the composition 
of fuzzy relations. The graphs allow the connection strength 
between the related fuzzy elements to be identified. 

SUMMARY AND CONCLUSIONS 

In this study the use of fuzzy relations to manage uncertain infor­
mation in civil infrastructure preservation was investigated. Empha­
sis was placed on structuring decision processes concerned with 
condition diagnosis and treatment identification in preserving infra­
structure. The concept of knowledge graphs was employed to iden­
tify the relations. The uncertainties involved in the relations are 
manipulated with fuzzy set theory and illustrated with fuzzy graphs. 
A computational framework was formulated to calculate the 
strength of belief of the diagnosed conditions and identified treat­
ments. 

Three different paths of a decision process were examined based 
on the fuzzy relations for the conditional statement: If rut depth is 
large general, then what kind of treatment is most appropriate? Fol­
lowing a series of compositions of fuzzy relations in association 
with the observed symptoms, the degree of confidence (certainty) 
in the identified treatments can be obtained. The composition of 
membership matrices was further illustrated using fuzzy graphs for 
the decision processes involved in the case study. On the basis of 
the findings from the use of fuzzy relations in the present study, the 
following conclusions may be drawn: 

I. Fuzzy relations allow us to synthesize the uncertain informa­
tion involved in civil infrastructure preservation decision processes. 
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2. Fuzzy graphs provide an efficient tool to explore the strength 
of confidence of the related parameters represented in fuzzy sets. 

3. Fuzzy set representation has the advantages of ordering deci­
sion parameters in prioritizing identified treatments. 
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