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Neural Network Estimation of 
Waterway Lock Service Times 

YEON MYUNG KIM AND PAUL SCHONFELD 

Good service-time estimates at locks are essential for evaluating water­
way performance, planning improvements, and controlling operations. 
Difficulties in estimation are due to great variations in lock characteris­
tics, vessel characteristics, operating options, and environmental condi­
tions. In this study several artificial neural network models for lock 
service-time estimation are developed and compared. Results show that 
simple artificial neural network models yield lower prediction errors 
than simple regression models, that systematic removal of outliers can 
reduce the number of artificial neural network prediction errors, and that 
combined service-time models for locks with dissimilar chambers can 
be.,obtained without unreasonably compromising accuracy. 

Inland waterway transportation in the United States is used for ship­
ping heavy or bulky commodities because it is inexpensive and 
energy efficient. There are 216 lock chambers at 167 lock sites oper­
ated in the United States. The lock structures (Figure I) used to raise 
or lower vessels across dams constitute the major bottlenecks in the 
U.S. waterway network and generate extensive queues, which lead 
to costly delays. 

Locks have one or two parallel chambers whose characteristics 
may differ greatly. A commercial tow typically consists of a tow 
boat and a number of barges. If a tow has more barges than the 
chamber can accommodate, it must be disassembled into several 
pieces (called cuts) to pass through the chamber, and must be 
reassembled later. The lock service time mainly depends on the 
chamber size and tow size. The number of barges, number of cuts, 
and tow direction also affect the lock service time. 

PROBLEM STATEMENT 

Good estimates of lock service times are essential for improving 
lock operations, either through long-term investments or short-term 
control. However, service times are quite complex and are influ­
enced by numerous factors. Lock service time is defined as the sum 
of all times (approach time, entry time, chambering time, exit time, 
time between cuts, turn-back time, etc.) spent processing a given 
tow through a specific lock. 

Several studies of lock service time have used traditional meth­
ods such as regression analysis (J) and simulation (2), and have 
obtained relatively inaccurate models. Dai and Schonfeld (2) had to 
use historical service-time distributions rather than estimated mod­
els in their simulation. In this paper, we explore the possibility of 
obtaining better service-time models using neural network methods. 
In the following sections we discuss candidate variables, neural net­
work models, comparative regression model building, model 
results, and model validation. 

Transportation Studies Center, University of Maryland, College Park, Md. 
20742. 

IDENTIFICATION OF CANDIDATE VARIABLES 

For this work we used the data from the Corps of Engineers' per­
formance monitoring system (PMS) 1988 data base, which provides 
comprehensive records of the arrival and processing times for all 
vessels using a lock. Lock 27 on the Mississippi River was selected. 
It has a large main chamber (33.55 m X 366 m) and a half-size aux­
iliary chamber (33.55 m X 183 m). From the PMS data base, 14 
candidate variables were selected based on their high correlations 
with lock service time. From those 14 variables, 6 input variables 
(tow direction, index of same direction, number of cuts, number of 
barges, ratio between tow length and chamber length, and ratio 
between tow width and chamber width) and 1 output variable (ser­
vice time) are defined. The service time is the sum of approach time, 
entry time, chambering time, and exit time. If the tow must be cut 
to get through the lock, the time between cuts and turn-back time 
are added to the service time. 

Statistical Analysis of Service Time 

It is difficult to define the specific distribution of service time due 
to its complexity and the great variation in causal factors. The 
service-time distribution can be checked by analyzing its statistical 
characteristics. During 1988, 8090 tows were observed through the 
main chamber and 3784 through the auxiliary chamber. Table 1 
shows the summary statistics for the service times of the main and 
auxiliary chambers. 

The mean service times for the main and auxiliary chambers are 
44.218 min and 26.490 min, respectively. Histograms for both cham­
bers in Figure 2 show that service-time distributions are skewed to 
the right. Very few tows have large service times. The maximum 
deviation of service time from the mean is 6.4 standard deviations 
(a) for the main chamber and 11.2 a for the auxiliary chamber. 

Because data collection is performed by lock operating person­
nel, mistakes are sometimes made. Some data may be recorded 
incorrectly or illogically. Such flawed data compromise the accu­

. rate estimation of service time and must be removed from the input. 
The data collected during lock failure conditions are also excluded 
from the input in this study. 

NEURAL NETWORK MODELS 

Neural networks are biologically inspired. They are composed of 
elements that perform in a manner that is analogous to the most ele­
mentary functions of the biological neuron. These elements are then 
organized in a way that may be related to the anatomy of the brain 
(3). The neural networks are also called connective systems or par-
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FIGURE 1 Lock system. 

allel distributed processors. The many areas addressed by a neural 
network approach include data compression, recognition, predic­
tion, classification, image processing, decision making, control, and 
optimization. For the estimation of service time, a backpropagation 
neural network model with three layers was constructed, as shown 
in Figure 3. 

The neural network can also be defined as an interconnection of 
neurons such that neuron outputs are connected, through weights 
(e.g., W; and Vij), to all other neurons including themselves. Both 
lag-free and delay connections are allowed (4). Figure 3 has one 
input layer of neurons, one output layer, and one hidden layer 
between the input and output layers. (This type of network may 
have more than one hidden layer.) Each of the neurons in a layer is 
connected to each of the neurons in the next layer. Table 2 defines 
the variables in Figure 3. 

Normalization of Input Data 

The weighted sums of inputs are compressed by the activation 
function into output values between 0 and 1. This study used the 
unipolar sigmoid activation function expressed in Equation 1 (4). 

f(W'X) = -----
1 +exp (-A.W'X) 

(1) 

The normalization facilitates error convergence when the models 
are trained. The six input variables used here were normalized by 
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dividing their actual values by their maximum values. Service times 
are normalized using the following equation: 

Z'= Z; - Zmin 
1 

Zmax - Zmin 
(2) 

where Z/ = normalized service time and Z; = service time. 

Training the Neural Network 

A number of neural network models and training algorithms are 
currently available. Because of its reliability and its applicability to 
this study, the backpropagation algorithm that has been widely 
applied for prediction was chosen ( 4). The following backpropaga­
tion training procedure was used for n given training pairs: 

Step 1: Select a learning constant (11) and initialize the weight 
vectors wand v using random numbers. 

Step 2: Present the input data and compute the layers' output 
based on the unipolar activation function. 

Step 3: Compute the error value: Ek+ 1 = (dk - ok)2 + Ek 
Step 4: Compute the error signal for the output layer (oz) and 

hidden layer (oy): 

(3) 

K 

0: = Yi(l - y) L OzWkj (4) 
k=I 

TABLE 1 Summary of Statistics of Tow Service Times at Mississippi Lock 27 

Standard Min/Max. 
plt p

99
t No. of 

Type of chamber Mean 
deviation service time tows 

Main chamber 44.218 14.857 8/140 14 82 8090 

Auxiliary chamber 26.490 11.749 9/158 12 64.66 3784 

t the service time which has 1 % probability in the cwnulative distribution 

i the service time which has 99 % probability in the cwnulative distribution 
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FIGURE 2 Histograms of service times before removing 
outliers. 
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Step 5: Adjust output layer weights (WkJ = 11o:f) and hidden 
layer weights (~; = T)Oy Z) to minimize the error signal. 

Step 6: If n pairs of data are all trained, go to Step 7. Otherwise, 
go to Step 2. 

Step 7: If the stopping rule is satisfied, terminate. Other~ise, go 
to Step 2. 

In order to control the learning speed, the algorithm was run using 
different learning constants (11). The effectiveness and convergence 
of the error backpropagation learning algorithm depended on the 
value of learning constant 'Yl· In general, however, the optimum 
value of Tl depends on the problem being solved. The purpose of the 
momentum (M) method was to accelerate the convergence of the 
error backpropagation algorithm (3). For best results, different input 
parameter values were used to train the neural network: 

• The number of hidden nodes (H): 3, 4, 5; 
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• The value of the learning constant (11): 0.4, 0.45, 0.5; and 
• The value of momentum (M): 0.2, 0,3, 0.4. 

To run the program, the input data were divided into two groups 
of training data and test data ( 4090 training data and 4000 testing 
data for the main chamber, and 1984 training data and 1800 testing 
data for the auxiliary chamber). 

Performance Evaluation 

The test data sets, 4000 pairs for the main chamber and 1800 pairs 
for the auxiliary chamber, were used to verify the trained neural 
network. Each test data set was evaluated after training the neural 
network through 50 iterations. The following three types of predic­
tion errors were considered in assessing the neural network model 
performance: 

• Maximum error between actual service time and estimated 
service time 

• Average error between actual service time and estimated 
service time 

•·Mean absolute percent error (MAPE): 

1 ( ~ I A; - E; I ) 
MAPE = -;; ~ A; *100 

where 

A; = actual service time of testing data, 
E; = estimated service time from neural network model, and 
n = number of testing data set. 

(5) 

Here, MAPE was mainly used to assess the model's prediction 
accuracy. 

IMPLEMENTATION AND RESULTS 

To estimate the lock service time, the neural network model devel­
oped in the previous section was applied. The backpropagation 
algorithm was encoded in the C language, and run on the Unix sys­
tem. The PMS data were divided into two groups of training data 

v Output Layer 

W z d.,.z 
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& 

t 
1 I 

I Bias Unit I : 
·--~-------

Bias Unit 

-FIGURE 3 Backpropagation neural network. 
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TABLE 2 Input and Output Variables 

Variables Definition Ranges 

Tow direction 

Index of tow with same direction (0) or opposite 
direction ( 1) from the previous one 

1or2 

0 or 1 

Number of cuts in a tow l-3cut 

Number of barges in a tow 

Ratio between tow length and chamber length 

Ratio between tow width and chamber width 

Hidden layer output 

O t - 23 barges 

ot - 3t 
ot - 2t 

Weight matrix for hidden layer 

Weight matrix for output layer 

Setvice time, output layer 

t Recreational boats have zero values. 

8 - 158 min 

t If~ or~ are greater than 1.0, tow must be divided into cuts to fit into lock chambers. 

and test data. The neural networks were trained with 4090 input data 
for the main chamber and 1984 input data for the auxiliary chamber 
at each iteration. All experiments were limited to a maximum of 
1000 iterations. At every 50 iterations, the service time was esti­
mated with testing data based on the trained neural network mod­
els. The experiments were performed for every combination of 
parameter values, for a total of 27 experiments (3 types of hidden 
node X 3 learning rate values X 3 momentum values). The test 
solution with the best MAPE was saved from these experiments. 
The estimation results obtained with neural network models show 
that the MAPE of training data usually conve~ges to one value. 
However, in some experiments the MAPE fluctuates. A possible 
reason is the inappropriate choice of values for such parameters as 
learning rate (11) or momentum (M). Table 3 shows the initial best 
MAPE solution in the specific experiments. 

Data Manipulation 

As described previously, some data might have been recorded incor­
rectly or illogically, since data were collected by humans. These data 
hinder accurate estimation of service time and should be removed if 
they can be properly detected. Barnett and Lewis (5) define an out­
lier as "an observation which appears to be inconsistent with the 
remainder of that set of data" and explain the relationships between 

the extreme observations, outliers, and contaminants. An outlier can 
also be defined as an extreme observation that has errors that are 
consid.erably larger in absolute value than the others, about 3 or 4 
standard deviations from the mean (6). In order to detect outliers, the 

deviations between actual and estimated service times were com­
puted. These deviations and the outliers with deviations beyond 3 a 
(3 standard deviations) are summarized in Table 4. 

The summary shows that the mean values of deviations for both 
chambers are negative (-2.03 and -0.56), which means that ser­

vice times are slightly overestimated. Bell-shaped histograms of 
deviations between actual and estimated service times for both 
chambers are shown in Figure 4. The error analysis detected 81 out­
liers for the main chamber and 59 for the auxiliary chamber. His­
tograms of service times for both chambers after removing outliers 
are shown in Figure 5. The service time for the cleaned data sets was 
then reestimated with same procedure initially used in service-time 
estimation. The results are shown in Table 5. 

Without outliers, the new MAPEs for the main chamber are about 
16.8 percent lower and for the auxiliary chamber about 16.1 percent 
lower than those in Table 3. The main chamber and auxiliary cham­
ber have their best solutions when the numbers of hidden nodes are 
5 and 4, learning rates are 0.4 and 0.5, and momentum values are 
0.3 and 0.4, respectively. The auxiliary chamber shows a higher 
MAPE, largely because the service times at the auxiliary chamber 
are more variable than at the main chamber. 

TABLE 3 Performance Value of Neural Network Without Removing 
Outlier Data 

Main chamber 

Auxiliary chamber 

Maximum absolute 
error (minutes) 

61.996 

77.696 

Average absolute 
or (minutes) 

7.855 

5.872 

MAPE 
(%) 

21.049 

23.461 
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TABLE4 Summary Statistics of Deviation 

Mean 

Main Chamber -2.031 

Auxiliary chamber -0.556 
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TABLES Performance Value of Neural Network After Removing Outlier Data 

l\1aximum Average absolute MAPE %MAPE 
absolute error error (minutes) (%) improvement 
(minutes) 

Main chamber 37.059 7.846 

Auxiliary chamber 27.003 5.502 

Multiple Regression Model 

For a comparative assessment of prediction accuracy, multiple 
regression models of service times were also developed. Model I 
is a linear function and Model II is a nonlinear function that 
can be transformed to linear form by taking the logarithms of 
both sides. 

• Model I: 

• Model II: 

Table 6 shows the results of multiple regression analysis based 
on the same training data sets. Both Model I and Model II have 
lower R-squared values. Because the R-squared values are related 
to linear models, they were not used as performance measures. 
Instead, the MAPE was used for a comparative assessment. 

Overall, MAPEs are considerably lower (by up to 30.9 percent) 
for the neural network models than for the regression models. A 
possible reason for the superior neural network performance is the 
ability to search for any linear or nonlinear relation without explic­
itly defining that relation or specifying its properties. 

ESTIMATION OF COMBINED SERVICE TIME FOR 
TWO-CHAMBER LOCK 

In earlier sections, separate neural network models were developed 
to separately estimate the service times for main and auxiliary 
chambers. There are, however, some practical applications in which 
it is not known in advance which tows will use which chamber. To 
allow such applications, a combined service-time model was devel­
oped for a two-chamber lock (Mississippi Lock 27). 

TABLE 6 Results of Multiple Regression 

R-square 

Model I Main chamber 0.4801 

Auxiliary chamber 0.4151 

Model- II Main chamber 0.5811 

Auxiliary chamber 0.4071 

(%) 

17.516 16.8 

19.683 16.1 

Combined Input Data 

Previously, six variables were used as inputs. The combined 
service-time estimation models used the same variables except for 
the ratio between tow and chamber length, which was replaced by 
tow length. (That ratio is not known until a chamber is selected.) 
Thus, the six input variables were tow direction, index of same 
direction, number of cuts, number of barges, tow length, and ratio 
between tow width and chamber width. The two separate data files 
for the chambers were combined into one input file with 12,160 
tows based on 1988 PMS data at Mississippi Lock 27. 

Figure 6 shows the cumulative distribution and histogram of 
actual combined service times. The mean actual combined service 
time is 38.93 min and the standard deviation is 16.39. The combined 
input data were trained using Neuroshell 2 software (7). 

Training the Neural Network 

Backpropagation networks are known for their ability to generalize 
well on a wide variety of prediction problems. Backpropagation 
networks are a supervised type of network, that is, trained with both 
inputs and outputs. Three different types of backpropagation net­
works, standard connection, jump connection, and recurrent, were 
used to train the input and output data. To find the best combined 
service-time estimation model, the following neural network mod­
els were selected for training the input and output. 

• COM271: three-layer standard connection backpropagation 
network; that is, every layer is connected or linked to the previous 
layer. 

• COM272: four-layer standard connection backpropagation 
network. 

• COM273: five-layer standard connection backpropagation 
network. 

• COM274: three-layer jump connection backpropagation net­
work; that is, every layer is connected or linked to every previous 
layer. 

MAPE 

25.34 % 

26.01 % 

24.75 % 

27.86 % 
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FIGURE 6 Cumulative probability distribution and histogram 
of actual service times for combined chambers. 

• COM275: four-layer jump connection backpropagation net­
work. 

• COM276: three-layer recurrent backpropagation network with 
dampened feedback. 

• COM277: General regression neural networks (GRNNs). 
There are no training parameters such as learning rate and momen­
tum for these networks, but a smoothing factor determines how 
tightly the network matches its predictions to the data in the train­
ing patterns. 

It should be noted that a three-layer network has one hidden layer 
and a four-layer network has two hidden layers. 

TABLE7 Summary of Estimation Statistics 

ANN network types Mean (min) 

Actual service time 38.93 

COM271 38.925 

COM272 44.424 

COM273 38.864 

COM274 39.672 

COM275 39.498 

COM276 39.121 

COM277 38.915 
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Results for Combined Service-Time Models 

Each model was trained until stopping rules were satisfied. Train­
ing stopped when either the average error was below a predefined 
level, or when 50,000 events occurred without improvement in the 
minimum average error. The values of the learning constant and 
momentum were updated from 0.1 to 0.5 by 0.1 increments at every 
iteration. The weight vectors were also updated to minimize the 
error between actual values and estimated values. The best test set 
was saved every time it reached a new minimum average error. 
Combined service times were estimated for each model at Missis­
sippi Lock 27 based on the saved best test set. ·Table 7 shows the 
summary of statistics for combined estimation models . 

The means and standard deviations were calculated from the best 
test set. As shown in the table, the COM277 (GRNN) model has the 
lowest MAPE. Figure 7 shows the cumulative probability distribu­
tion and histogram of service times estimated by the COM277 
model, which has a tendency to estimate the service time as two val­
ues of 22 min and 48 min. 

SUMMARY AND CONCLUSIONS 

This study has statistically analyzed lock service times, developed 
neural network models for service-time estimation, and compara­
tively assessed neural network models and regression models. First, 
the statistical analysis of lock service times shows that the main 
chamber has a mean service time of 44.218 min and a standard devi­
ation of 14.857 min. The auxiliary chamber has a mean service time 
of 26.490 min and a standard deviation of 11.749 min. Both distri­
butions are skewed to the left. The maximum deviations of service 
times from the mean are 6.4 cr for the main chamber and 11.2 cr for 
the auxiliary chamber. 

Second, neural network models for estimating service times were 
developed separately for the main and auxiliary chambers at Mis­
sissippi Lock 27. The estimation was performed with six input vari­
ables and one output variable based on 1988 PMS data. The MAPEs 
are 21.05 percent for the main chamber and 23.46 percent for the 
auxiliary chamber. After removing the outliers (beyond 3 cr), the 
MAPEs decreased by 17 .52 percent for the main chamber and 19 .68 
percent for the auxiliary chamber. For a comparative assessment of 
prediction accuracy, two multiple regression models were devel­
oped and the lock service times were estimated. The MAPEs of 
regression models range from 24.75 percent to 27.86 percent. Com­
parisons between these neural network models and regression mod-

Standard deviation MAPE(%) 

16.39 

12.580 21.354 

21.784 30.036 

12.492 21.280 

12.217 22.519 

17.411 26.018 

11.361 22.915 

12.680 21.040 
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FIGURE 7 Cumulative probability distribution and histogram 
of estimated service times for combined chambers. 

els show that the MAPEs are considerably lower (by about 24.3 per­
cent for the main chamber and 29.2 percent for the auxiliary cham­
ber) for the neural network models. 
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Third, combined service-time models for locks with dissimilar 
chambers were developed based on six input variables and one out­
put variable. The results show that the combined actual service 
times have a mean of 38.932 min and a standard deviation of 
16.389. The best combined service-time estimation model 
(COM277) has a mean of 38.915 min and a standard deviation of 
12.680. The MAPE of the best set is 21.039 percent. This combined 
service-time estimation model can estimate the lock service time 
without unreasonably compromising accuracy, even before know­
ing which tows will use which chamber. 

Based on these results, the prediction accuracy of neural network 
models is considerably better than for the regression models con­
sidered. Neural network models clearly have considerable potential 
for improving lock service-time estimation . 
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