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Modeling Schedule. Deviations of Buses 
Using Automatic Vehicle-Location Data 
and Artificial Neural Networks 

RAVI KALAPUTAPU AND MICHAEL J. DEMETSKY 

The establishment of the Advanced Public Transportation Systems pro
gram has encouraged bus transit operators to experiment with imple
menting automatic vehicle-location systems for real-time monitoring 
and supervision of operations. While the focus has primarily been on 
the implementation of technologies, such as automatic vehicle-location 
systems, it is necessary to experiment and develop advanced perfor
mance analysis and evaluation procedures that can assist in schedule 
planning and real-time service-control tasks. One potentially useful and 
effective approach to these tasks is system behavior modeling. In this 
study this method is used to model schedule behavior of buses on a route 
using schedule-deviation information. The primary objective of this 
study is to investigate the application of artificial neural networks, 
which have been shown to hold promise when applied to nonlinear 
dynamic system-modeling problems, for developing schedule behavior 
models. Models are developed using the schedule-deviation informa
tion obtained from Tidewater Regional Transit's automatic vehicle
location system. The time-series analysis approach is adopted for the 
development of schedule behavior models at the route level. The results 
of a case study are encouraging and demonstrate the usefulness of arti
ficial neural network techniques, especially the Jordan networks and the 
Elman networks, for modeling schedule deviations of buses on a route·. 

In recent years, bus transit operators have been testing and imple
menting automatic vehicle location (A VL) systems for real-time 
monitoring and supervision of operations. However, implementa
tion of technologies such as A VL systems needs to be comple
mented by the development of advanced performance analysis and 
evaluation procedures for assisting in operational planning, man
agement, and real-time service-control tasks. While real-time mon
itoring provides useful information on bus transit operations, 
advanced analysis and evaluation procedures such as system behav
ior models can be useful for schedule planning and design of real
time service-control strategies. 

The central idea of this study is that a schedule behavior model 
can provide an understanding of the past system behavior of buses 
on a route. Such a model has several potential uses. It can be used 
for prediction of schedule deviations at a downstream stop based on 
current and past schedule deviations of buses at timepoints in the 
upstream section. The predictive model can assist in the design, 
development, and real-time implementation of service-control 
strategies. Also, the schedule behavior models can be used for 
updating and modifying schedule plans. The models can be used to 
speed up and automate performance analysis and evaluation of 
service-control strategies. Currently there are no automated proce
dures available to evaluate the effect of implementing service
control strategies. The rriodels can be integrated into an automated 
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decision-support system to assist dispatchers and supervisors in 
real-time decision making on schedule and headway adjustments to 
improve service reliability. 

In real-time operating conditions, the time required to make deci
sions based on graphical display codes and other features of a num
ber of buses is not sufficient to make reasonable decisions regard
ing schedule or headway changes. Dispatchers and supervisors have 
to make quick decisions based on the information presented graph
ically on the screen. However, they must monitor several buses 
simultaneously, leading to information overload. Hence there is a 
need to develop computer-based analysis and decision-support tools 
to model the system's performance and use it to predict the future 
schedule behavior of a bus on a route. The key purpose of this study 
is to introduce the concept of schedule behavior modeling as a per
formance analysis tool for bus transit operatibns. The primary 
objective is to investigate the development of schedule behavior 
models using historical A VL data and artificial neural network 
(ANN) techniques. In this paper, system behavior is referred to as 
schedule behavior of buses and is used to denote the key perfor
mance indicator, schedule deviation, which is the difference 
between the actual arrival times computed from the location infor
mation and the scheduled arrival times of a bus at a timepoint on a 
specific route. 

ANN modeling techniques have been of great interest to many 
researchers. These techniques have certain advantages such as not 
requiring to assume a priori the nature of the relationship between 
the dependent and independent variables. The modeling approach 
using neural networks performs two important tasks. First, the 
model learns the system performance using past and current A VL 
data. Secondly, the ANN models can be used for predicting the 
behavior of the buses. Such a system behavioral modeling approach 
has been successfully used in other dynamic-system performance 
analysis and control problems (1,2,3). The literature reviewed indi
cated that ANNs have the potential to capture the dynamic and 
interactive effects of schedule deviations of buses on a route net
work. In addition, they are able to capture the trend in a time series, 
especially when the relationship is nonlinear. 

The basic approach adopted for ANN modeling of the perfor
mance of a bus transit system was to develop separate models for 
the different routes instead of one complete model for the entire 
transit route network. By using this approach the ANN modeling 
process becomes simpler and the training process is perhaps faster 
because of its reduced complexity: there is a smaller domain space 
to learn for one route, compared to learning all the routes in the tran
sit network. In addition, such a modeling approach is appropriate 
and justified by the different physical, traffic, and environmental 
characteristics of the various routes. Modeling at the route level can 
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help reduce the complexity of the modeling process and simplify 
and ease the implementation of the service-control strategies. In 
addition, such a modeling approach can help ·reduce the time 
required for system identification, and subsequent selection and 
implementation of a service-restoration strategy. 

A number of ANN architectures and learning algorithms have 
been proposed and investigated for various problems. Since the pri
mary objective of this study is to illustrate the applicability of the 
ANN approach for the problem of bus schedule behavior modeling, 
we discuss only the advantages of ANNs and the applicability of 
alternative strategies to developing ANN models for this problem. 
The fundamental concepts of ANNs are discussed in detail in the 
vast collection ofrelevant literature (4,5,6,7,8,9). 

ARTIFICIAL NEURAL NETWORKS 

ANNs are a type of learning system that has gained some promi
nence in the last decade because they can be trained to identify, 
classify, and predict nonlinear patterns and can solve complex prob
lems much faster than traditional techniques. ANNs are a paradigm 
for intelligent processing of information for some specific objective 
such as classification, pattern recognition, decision-making, system 
behavior identification, and prediction. ANNs have a highly dis
tributed parallel structure and when combined with powerful digi
tal hardware technology can make model simulations economically 
and with relative ease. ANNs mimic human learning processes and 
therefore hold great potential as adaptive learning systems. ANNs 
can handle complex and nonlinear relationships that are common to 
dynamic systems like bus transit operations. In the case of nonlin
ear systems, ANNs have the distinct advantage over a standard 
regression method of not having to know the form of the function a 
priori. Unlike other mathematical techniques, ANN models' learn
ing can be continuous, so that they can automatically adapt to the 
changing characteristics of the operating environment of buses. 
What this implies is that a base ANN model can be developed using
historical A VL data and this base model can be updated and modi
fied using new online data. The potential advantage of an ANN 
learning method is that, unlike mathematical simulation models, 
ANNs can be trained using observed data only, without requiring 
any knowledge of the internal structure of the system or of model
ing techniques (JO). This ability to approximate unknown functions 
through the presentation of past states of a system makes ANNs a 
useful modeling tool in engineering applications, such as bus tran
sit schedule behavior modeling. 

Lapedes and Farber (1) reported that simple neural networks can 
outperform conventional methods. Sharda and Patil (11) concluded 
from their work on 75 different time series that the simple neural 
network model could forecast about as well as the Box-Jenkins 
forecasting technique. Tang et al. (12) in their comparative study of 
the performance of ANNs and conventional statistical techniques 
concluded that for short-term memory series, ANNs appear to be 
superior to the Box-Jenkins model. A review of relevant literature 
indicated that each of the methods performed better than the other 
about half of the time. 

In this study the focus is on using three different ANN architec
tures, namely feedforward networks with input windows, Jordan 
nets, ~nd Elman nets. Jordan and Elman nets are two types of par
tial recurrent neural networks. These three network architectures 
have been feasible for modeling a number of engineering problems, 
such as system behavior identification and prediction and time-
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series modeling, among others (1,2,3,12,13). Hence our initial 
efforts are aimed at investigating these three ANN architectures. 

The main distinction between the feedforward and the partial 
recurrent nets is in the network topology. The two types of partial 
recurrent nets (Jordan and Elman nets) have memory layers in addi
tion to the basic architecture of a feedforward network. These net
work architectures are discussed briefly in the next two sections. 

Feedforward Networks 

Feedforward networks are the most commonly used network archi
tectures for neural network modeling. Depending on the represen
tation scheme, feedforward networks can be different types. Figure 
1 illustrates the schematic architecture of a feedforward network 
with an input window. The most basic approach for handling time 
series is using an input window that holds a restricted part of the 
time series. This type of feedforward network seems appropriate for 
our modeling problem. A feedforward network with an input win
dow has been shown to be superior to a simple feedforward network 
(2, 13, 14). The input window provides the network with information 
on previous states in the form of units in the input layer. This allows 
it to incorporate knowledge about previous states or past values of 
a time series. Therefore such an architecture is suitable for model
ing spatiotemporal sequencing problems such as bus schedule 
behavior. 

Partial Recurrent Neural Networks 

A second way that a neural network can model and predict a time 
series is to incorporate an internal state that enables it to learn the 
relationship of an indefinitely large set of past inputs to future states. 
This is achieved via recurrent connections, and such a network is 
known as a recurrent network. If the recurrent networks are updated 
like feedforward networks (with a single update per time step) they 
are known as partial recurre_nt networks (5). 

Partial recurrent networks have been suggested and proven to be 
applicable by many researchers (7,8) for dynamic problems involv
ing temporal sequencing. The problem of bus schedule behavior 
prediction can be considered a spatiotemporal problem. The sched-
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FIGURE 1 Architecture for a feedforward network with 
input windows. 
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ule deviation at a point in time is affected by the schedule deviation 
at previous timepoint(s). The spatiotemporal sequencing of the 
schedule-deviation information can be modeled and investigated for 
the purpose of predicting the schedule deviations at a timepoint. 
downstream in the route network. This sequential information, 
regarded as short-term memory of the system's performance, can be 
an effective approach for developing an intelligent model of the bus 
transit schedule behavior. Partial recurrent networks, through their 
architecture, have the ability to store and use information about the· 
previous state, and therefore are appropriate for the problem of bus 
schedule behavior modeling. 

Jordan Networks 

Jordan networks (7) are a type of partial recurrent neural network. 
Figure 2 illustrates the basic architecture for a Jordan network. The 
network has the following features: 

• The input layer is fully connected to the hidden layer, and the 
hidden layer is fully connected to the output layer. 

• Output units are connected to context units by recurrent one
to-one connections. Every context unit is connected to itself and 
also to every hidden layer unit. 

• The number of context units is equal to the number of output 
units. 

A partial recurrent network has an input consisting of two com
ponents. The first component is the pattern vector, which is also the 
only input to the partial recurrent network. The second component, 
the state vector, is given through the next-state function in every step. 
In this manner the behavior of a partial recurrent network can be sim
ulated with a feedforward network that receives the state not implic
itly through recurrent links, but as an explicit part of the input vec
tor (7). These networks are regarded as having memory, as the 
recurrent connections allow the network's hidden units to see its own 
previous output. Therefore, behavior can be shaped by previous 
responses. This network memory concept can be used to model the 
schedule behavior of buses. The knowledge of schedule deviation of 
a bus at the previous timepoint or stop can be useful for developing 
a model of the system for eventual use as a prediction tool. The adop-

Time T(k) Timepoint (k) 

6 Units 

SD'(k) Estimated 

(k-1) SD(k-1) 
6 Units 

FIGURE 2 Architecture of a Jordan network. 
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tion of such a structure to the ANN model is appropriate for the bus 
schedule behavior problem because the schedule deviation at a time
point has a strong relationship to the schedule deviations at the pre
vious timepoints. The extent of previous timepoints that should be 
considered is yet to be researched. The approach of this study is to 
take advantage of these features of Jordan nets and investigate their 
applicability to schedule behavior modeling. 

Elman Recursive Networks 

An Elman recursive network is a type of partial recurrent network 
that is also commonly used for learning to recognize and generate 
sequences of inputs. The Elman net, in addition to the basic topol
ogy of a single-hidden-layer feedforward network, has a set of addi
tional units at the input level that are referred to as context units. 
These context units are responsible for the dynamic behavior of the 
network. A typical architecture of an Elman recursive network is 
illustrated in Figure 3. The number of context units is equal to the 
number of hidden units. After each time step, the output values of 
the hidden units are copied to the context units. The context units 
thus provide the network with memory of the previous state through 
implicit representation in the internal state of the network (8). The 
important distinction between Jordan nets and Elman nets has to do 
with where the context units are present. The two networks are both 
essentially memory models, but they differ in whether they have the 
previous state's inputs or outputs in the memory. 

SCHEDULE BERA VIOR MODELS USING ANNS 

Modeling Approach 

In prediction modeling there are two basic approaches that have 
gained prominence and are often adopted. With the fundamental 
approach, it is believed that the forecasting process should at least 
approximately model the mechanisms that underlie the determina
tion of the key variable being predicted (13). The key factors that 
affect schedule behavior and cause schedule deviations are: 

SD (R;,j, k, T) = <!>(Traffic, Driver, Vehicle, Environment, 
Loading and Unloading) (1) 

f 
OUTPUT LAYER 

Hidden Layer 

1.0 

Input Layer Context Layer 

FIGURE 3 Architecture of an Elman network. 
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where 

SD = Schedule Deviation, 
R; =Route i, 
j = Direction, 
k = Timepoint, 
T =Scheduled Arrival Time, and 
<P represents an unknown function that the network would try 

to ascertain during the training process. 

System behavior modeling on this approach is currently not fea
sible due to lack of adequate information in the data set on many of 
the above factors that affect schedule behavior. For example, no 
information is collected on loading and unloading characteristics at 
each timepoint on a given route. The second modeling approach is 
to assume that all the available information (on key factors affect
ing schedule behavior) has already been represented by the values 
of the key variable being predicted (13). For example, with sched
ule deviation prediction, the values that indicate "early or late" have 
been influenced by the various factors that affect it, namely traffic 
conditions, driver characteristics, passenger loading and unloading 
characteristics, and vehicle condition. Therefore nothing else is 
considered while trying to predict the future of the system behavior 
except the past states of the key prediction variable, the schedule 
deviation. Hence a time-series approach is adopted that is mathe
matically represented as follows: 

SD(k) = <I> [SD(k - l), SD(k - 2), ... , SD(k - n)] (2) 

where SD(k) denotes the schedule deviation at timepoint k on a 
specific route and in a specific direction of travel. The term n rep
resents the length of the input time series, or in other words, the 
short-term memory about the schedule deviations of a bus at time
points in the upstream part of a route (k - l, k - 2, ... , etc.). 

The focus of this study is on developing ANN models for one 
particular scenario, that is, given a particular route and direction of 
travel. Two different ANN model sets, depending on the length of 
short-term memory about the time series (n = 1 and n = 2) pro
vided, are investigated. For Model Set I, the schedule deviation at 
the previous timepoint [SD(k - 1)] is provided, while in the Model 
Set II two previous schedule deviation values [SD(k - 2), 
SD(k - I)] are provided. For each of these model sets, two differ
ent cases (Case A and Case B) are examined. The difference 
between the two cases is that in case B, the spatial information about 
the timepoints (k, k - 1, k - 2) are also provided to the network as 
inputs. The distinction between the two cases is illustrated in the 
input layer of Figures 1 and 2. This was done in order to investigate 
the effect of providing information about the spatial location of the 
buses on the route to the ANNs. The two sets of models are briefly 
described in the following section. 

Model Set I: Using Short Input Series of Length n = 1 

Case A 

Input units: Schedule Arrival Time T(k), Schedule Deviation 
SD (k - 1); 
Output unit: Schedule Deviation SD(k). 
SD(k) = <I> [SD(k - l )] 
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CaseB 

Input units: Scheduled Arrival Time T(k), Timepoint k, Time
point k - I, Schedule Deviation SD(k - 1); 
Output unit: Schedule Deviation SD(k). 
SD(TP) =<I> [SD(k - 1), k, k - I] 

Model Set II: Using Short Input Series of Length n = 2 

Case A 

Input units: Scheduled Arrival Time T(k) Schedule Deviation 
SD(k - 2), Schedule Deviation SD(k - 1) 
Output unit: Schedule Deviation SD(k). 
SD(k) = <I> [SD(k - 1 )] 

Case B 

Input units: Scheduled Arrival Time T(k), Timepoint k, Time
point k - 1, Timepoint k - 2 Schedule Deviation SD(k - 2), 
Schedule Deviation SD(k - I); 
Output unit: Schedule Deviation SD(k). 
SD(k) =<I> [SD(k - I), k, k - I] 

CASE STUDY: A SAMPLE ROUTE FROM 
TIDEWATER REGIONAL TRANSIT 

Data Collection 

In order to examine the concept of system behavior models and to 
investigate the application of neural networks to their development, 
real data from Tidewater Regional Transit's (TRT's) AVL system 
was obtained. A sample route (Rt. 23) was chosen for this study. 
The raw data stored in the form of binary files in the TRT's VAX 
system was converted into ASCII format. The history data files 
were preprocessed to extract only the desired information for devel
oping ANN models. A VL information comprising 26 weekday 
(Monday through Friday) data was considered for modeling pur
poses. The focus is limited to weekday operations since insufficient 
weekend (Saturday and Sunday) data was collected. 

Modeling Process 

The ANN models were developed using the following procedure. 

Step 1: Data preprocessing 
Step 2: Network selection 
Step 3: Learning algorithm and update function selection 
Step 4: Weights initialization 
Step 5: Network training 
Step 6: Network testing and performance evaluation 

These steps are discussed in detail in the following sections. 

Data Preprocessing 

Data preprocessing is the critical step in ANN modeling. In this case 
it covered about half of the modeling process. Data preprocessing 
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involved two important steps: elimination of outliers or noise, and 
data scaling. Noise elimination involved removing "outliers" or 
absurd values of schedule deviation at that specific timepoint and 
replacing them with the value of schedule deviation from the time
point immediately preceding it. The data was normalized using 
minimum and maximum values of the variables over the entire data 
set. The scaling of these two variables was accomplished using the 
following expression: 

Xnorm = ( 2.0* MAX~ MIN ) + 

[( 
- 2.0* MIN ) - 1.0] 

MAX-MIN 
(3) 

where Xis the variable to be normalized, and MAX and MIN denote 
the maximum and minimum values of variable X in the data set. 

In this study, for the scheduled arrival time (T) variable, MAX= 
1440 min and MIN = 300 min. The scaling using the above expres
sion, converts the data into the [ - 1, 1] interval. It is important to set 
the scaling so that the units do not affect the net's output (that is, the 
inputs should be either unitless ratios or else chosen so that per
centage changes are the same across monotonic transformations of 
input values). Having most or all inputs scaled identically to the out
put function can speed convergence. Normalization of the output 
data to the [ -1, 1] region prevents the propagation of large error 
signals during training, which could force the middle-layer nodes to 
saturate and become insensitive to training. The output variable, 
schedule deviation, was also normalized using the expression given 
in Equation 3 and the corresponding schedule-deviation values. The 
timepoint data was also transformed into a binary vector. There were 
six timepoints located on the route being studied. Therefore, a vec
tor of length 6 was considered and the timepoints were transformed. 
For example, timepoint k = 1 was binarized as [ 1 0 0 0 0 O]. The 
data set consisting of 26 weekday A VL data was divided into three 
sets: one a training set consisting of 24 days of data, and two test 
sets consisting of one day's data each. 

Network Architectures 

As discussed earlier, three basic neural network architectures were 
examined in this study: feedforward networks with an input window 
Elman recurrent networks, and Jordan recurrent networks. All three 
types of networks had one hidden layer: The network features used 
in this study are given below. 

Model Set I 
Case A: The networks had two inputs. The input consisted of the 

scheduled arrival time T(k) and an input window representing 
schedule deviation SD at the timepoint k - 1 immediately preced
ing the current timepoint k location. All the networks for this case 
had five hidden units and one output unit. 

Case B: The networks, in addition to the inputs discussed in Case 
A, had 12 units representing the current timepoint location k and 
the previous timepoint location k - I. The networks had a total 
of 14 input units. All the networks had 20 hidden units and I out
put unit. 

Model Set II 
Case A: Input Units: 3, Hidden Units: 6 
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Case B: Input Units: 21. Eighteen units correspond to timepoint 
location, 1 unit to scheduled arrival time T(k), and 2 units to input 
windows for schedule deviations. 

Hidden Units: 21. 
ANN architectures are denoted as IX H X 0, where I, H, and 0 
represent number of input, hidden, and output units, respectively. 

Learning Algorithm and Update Functions 

Since both the input (time and location, etc.) and output (schedule 
deviation) variables were known quantities, the schedule behavior 
modeling using ANNs constituted a supervised learning problem; 
hence supervised learning algorithms such as Quickprop were use
ful. QuickProp, which was developed by Fahlman (9), is a faster and 
more efficient version of the standard backpropagation algorithm. 

Weight Initialization 

The weights were initialized depending on the type of network 
architecture selected. The weights for the connections were ran
domly chosen between -0.001 and +0.001 for a feedforward net
work. 

Network Training 

The networks were trained with the QuickProp learning algorithm 
until there was no substantial decrease in the mean square error 
(MSE) for every 1000 iterations. The TanH (hyperbolic tangent) 
activation function was used for the hidden units. Both the MSE and 
sum of square errors (SSE) were computed for each iteration of the 
training process. MSE was used as a stopping criterion during the 
training phase. 

Network Testing and Performance Evaluation 

The networks were tested on the two test data sets, and the MSE and 
SSE were computed. The network performance was evaluated using 
average percentage error (P Eavg) to check the accuracy of the trained 
ANN models on the test data sets. The percentage error PEavg was 
calculated for each point in the test data set (having n patterns) using 
the following expression: 

'\:"'" (SDact; - SDpred;) X 
100 PEavg = Li=l SD act; 

(4) 

where 
SDact is the actual schedule deviation; 
SDpred is the network predicted schedule deviation; and 
PEavg is used to justify the accuracy and validity of the ANN 
models. 

DISCUSSION OF RESULTS 

The performance results of various ANNs are summarized in Table 
1. The results indicate that for Case A, the average percentage error 
PEavg was 3.5 to 6.30 points lower for Model Set II than for Model 
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TABLE 1 Comparison of Predictive Performance of Various Neural Network Models 

ANN NETWORKS Mean Square Error, MSE Average % Error (PEavg) 

TEST Data 

MODEL SET I 
Case A : 2x5xl NETS 

Feedforward Net 0.00279 

Elman Net 0.00412 

Jordan Net 0.00219 

Case B : 14x20xl NETS 

Feedforward Net 0.00421 

Elman Net 0.00720 

Jordan Net 0.00403 

MODEL SET II 

Case A: 3x6xl NETS 

Feedforward. Net . 0.00232 

Elman Net 0.00416 

Jordan Net 0.00203 

Case B: 2lx2lxl NETS 

Feedforward Net 0.00479 

Elman Net 0.00663 

Jordan Net 0.00476 

Set I. This leads to the conclusion that increasing the input series 
from n = 1 ton = 2 results in lower error values and more accurate· 
models. Thus, providing the networks with longer input time series 
(for the example route, SD(k - 6), SD(k - 5), SD(k - 4), ... , 
SD(k - 1)) leads to improved results. More inputs will provide 
more information, and are thus likely to provide more accurate 
results. It is interesting to note that providing additional information 
on the spatial location (timepoints) did not improve the accuracy. In 
the case of Model Set I, the PEavg for Case B was higher than for 
Case A, for both the Elman and Jordan nets. This can be attributed 
to the increase in number of inputs that resulted in an increase in the 
complexity of the network and causes a higher MSE for the same 
number of training iterations. The same error behavior was also 
observed for Model Set II. In addition, the training times for Case 
B models were significantly higher (nearly 1.5 to 2 times) than those 
of Case A models, especially for Model Set II. Therefore it was con
cluded that there is no distinct advantage in including the spatial 
location information for schedule behavior modeling. The overall 
accuracy of the models ranged from 71 to 78 percent. Since no pre
vious work on schedule behavior modeling has been reported in the 
published literature, no comparative study of the results could be 
made. The lower accuracy in network performance can be attributed 
to the following reasons: inadequate training data set, nonoptimal 

TEST Data 

28.19 

24.95 

27.65 

26.55 

26.97 

28.38 

24.25 

21.27 

21.38 

24.57 

25.60 

25.00 

training of networks or shorter input time series (n = 1, n = 2). The 
training data set consisted of only 24 days of A VL information. It 
is believed that a larger data set, consisting of at least 6 months of 
A VL data, will improve the accuracy of the various neural network 
models. This is because ANNs are data-driven models and using a 
larger data set would result in a much better generalization of the 
schedule deviations. 

The actual versus network-predicted schedule deviations are 
illustrated in Figures 4a, 5a, 6a for Model Set I, Case A, and in Fig
ures 4b, 5b, 6b for Model Set II, Case A. The figures show that the 
ANN models performed well in capturing the trend in the schedule 
deviations at different times of day. The three networks learned the 
decreasing (or larger values of schedule delays) trends very well for 
Model Set II. While the best results were obtained for the Elman and 
Jordan networks, there were no significant differences between the 
networks. Hence, no definitive conclusion can be made on the supe
riority of one architecture over the other. The partial recurrent net 
architectures incorporate knowledge about the past states internally, 
and therefore seem more suitable for our schedule behavior model
ing problem. 

The schedule behavior models can be used for predicting the 
schedule deviations at timepoints (k + 1), (k + 2), and so forth, if 
the schedule deviation at the current timepoint k is known from the 
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FIGURE 6b 3 x 6 x 1 Jordan net performance Model II: Case A. 

A VL system. This provides a time window for dispatchers and 
supervisors to evaluate the system performance online, implement 
any service-control strategy such as headway adjustments, and 
schedule adjustments appropriately. In addition, the models are use
ful for evaluating the effectiveness of any service-control strategy 
implemented. If the supervisors take appropriate control actions to 
offset any increase in schedule deviations estimated by the model at 
a downstream timepoint [(k + 1), (k + 2), ... etc.], then the control 
strategies can be evaluated for effectiveness by comparing the actual 
schedule deviations at timepoints (k + 1 ), (k + 2), and so forth, with 
the model-predicted values to see whether there was a decrease in 
the schedule deviations. Currently, there are no procedures available 
for evaluating the effectiveness of service-control strategies in real 
time. Thus, the schedule behavior modeling approach proposed in 
this study can provide bus transit operators with an automated, on
line performance analysis and evaluation tool. 

In summary, the ANN approach provides two distinct advantages 
over conventional statistical techniques for developing and imple
menting schedule-behavior models in real-world operations. First, the 
modeling process can incorporate the concept of spatiotemporal 
sequencing and short-term memory. Second, the models can first be 
developed off-line using historical data, and then used with current 
and new data for on-line updating of the models. This enables transit 
operators to deal with large amounts of data and a dynamic database 
in real time and thus can be useful in developing automated decision
support systems to assist dispatchers and supervisors with real-time 

service-control problems. Initial efforts are focused on investigating 
the development of schedule behavior models using ANN techniques. 

CONCLUSIONS 

The results from this case study indicate the suitability of the sched
ule behavior modeling methodology using ANNs. ANNs have the 
ability to incorporate short-term memory data about schedule devi
ations at consecutive timepoints on a route. While the results are 
encouraging, no definitive conclusions can be made regarding their 
performance unless a comparison is made between these resufrs and 
other applicable techniques such as statistical methods. The 
methodology discussed herein for schedule behavior modeling can 
be used when applying other modeling techniques including statis
tical methods, among others. Ongoing research is aimed at investi
gating the modeling and prediction of schedule behavior of buses 
using conventional statistical techniques such as the Box-Jenkins 
model. Also under development are ANN models using longer 
input time series: SD(k - 6), SD(k - 5), ... , SD(k - 1). The 
development of schedule behavior models using the schedule devi
ation of buses on different routes arriving at a timed-transfer loca
tion is also being studied. Modeling the schedule behavior of buses 
on different routes arriving at a timed-transfer location will be use
ful for more efficient control of the arrival times of buses on vari
ous routes at the transfer location, and thus will minimize the num-
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ber of missed transfers. In addition, the models can be useful for 
designing an optimal time window at timed-transfer locations. 
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