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A Genetic Algorithm Approach for 
Solving the Train Formation Problem 

DAVID MARTINELLI AND HUALIANG TENG 

The train formation plan is one of the most important elements of rail
road system operations. Although mathematical programming formu
lations and algorithms are available for solving the train formation prob
lem (TFP), the computational time required for their convergence is 
usually excessive. At the same time, shorter decision intervals are 
becoming necessary given the highly competitive operating climates of 
the railroad industry. Thus, new techniques are needed for generating 
efficient solutions for the TFP. In this study, we present the develop
ment of a genetic algorithm (GA) as a possible technique for this prob
lem. The calibration and validation of the GA model are carried out for 
three different complexity levels of objective functions. It is found that 
the optimal solutions can be found for all the different formulations 
while consuming only a small amount of computation time. 

Railroad system operating plans are developed to perform the 
sequential decision process of: car block decisions, train formation 
decisions, train schedule decisions, and empty car distribution deci
sions. These are made under the consideration of engine power, 
maintenance, service level requirements, and other competing crite
ria. Car block decisions determine which blocks the cars will be 
assigned to, or which demand each block will carry. Train formation 
decisions determine which train the blocks will be assigned to, or 
which block each train will carry. Train schedule decisions deter
mine when trains will be released from their origin station and arrive 
at their destination station. Finally, empty car distribution decisions 
determine where the empty cars will be sent. In this study, the train 
formation problem (TFP) is defined as: assign the traffic demand, in 
terms of cars, to available trains in a network environment so as to 
minimize the cost incurred in the whole production process. 

Despite the substantial quantity and diversity of rail operating 
decision models, a common element exists in that they all require a 
substantial investment of computational effort and, subsequently, 
implementation time. Experience with these models indicate that 
the computational time required to obtain an optimal (or near opti
mal) solution varies with formulations. 

A common approach for the industry in handling dynamic 
demands has been to shorten the time period between successive 
modeling updates. Unfortunately this introduces a tradeoff between 
longer central processing unit (CPU) time requirements for more 
realistic solutions and the added resources necessary to provide 
more frequent model updates. In light of this tradeoff, new 
approaches such as artificial intelligence are necessary and may 
prove quite fruitful if shorter implementation times can be achieved 
without a substantial loss in solution integrity (J). One such artifi
cial intelligence technique is genetic algorithms (GA). In employ-
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ing GA models, the intelligent optimal solution searching process 
alleviates the impacts of the inputs by directly going to the feasible 
solution region instead of stumbling on the restrictive constraints. 
This is the primary reason that genetic algorithms demonstrate 
promise as a solution technique for the TFP. 

In comparison with conventional models, GA demonstrate sev
eral distinct advantages. First, they employ an efficient optimal 
solution searching technique which can be described as multi-hill 
climbing. The global solutions can be easily found for both linear 
and nonlinear formulations. Second, the optimal solution searching 
process is independent of the form of the objective function. Unlike 
conventional techniques, in which the algorithms usually rely on the 
structure of the formulation such as the conditions for the decom
position algorithms, GA models can be implemented without such 
considerations. Third, conventional algorithms are often sensitive 
to the input patterns such as the conditions set forth by Monte Carlo 
techniques. 

There have been several transportation research efforts in which 
genetic algorithms are employed to deal with a combinatorial explo
sion associated with many optimization problems. Xiong and 
Schneider (2) integrated an artificial neural network model into a 
GA model to solve the traffic network design problem. Foy et al. (3) 
used a GA model to determine the optimal signal timing decisions 
in a simulation environment for on-line decision making. Chan et 
al. [unpublished data; cited by Xiong and Schneider (2)] applied a 
GA to road maintenance planning. 

BINARY INTEGER PROGRAMMING 
FORMULATIONS FOR THE TFP 

An example railroad network having 6 nodes (representing yards) 
and 10 links (representing line segments) is represented in Figure 1. 
Trains are usually divided into long and short distance service. The 
short distance trains are those whose origin and destination yards 
are adjacent; whereas long distance trains are those whose origin 
and destination yards are not adjacent. Normally, short distance 
trains are always provided for each link, whereas the existence of 
long distance trains is determined by the train formation plan. Short 
distance demands are those whose origin and destination are 
connected directly by one link. Long distance demands are those 
whose origin and destination are not directly connected. In general, 
short distance demands are carried by short distance trains and long 
distance demands are carried by a combination of short and long 
distance trains. 

In railroad networks, there are always a number of different phys
ical routes available for a given demand. On a certain route, there 
are always a high number of possible itineraries (or assignments). 
These itineraries are distinguished from each other by the number 
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FIGURE 1 Example railroad 
network. 

and types of trains. For example, for demand from Yard 1 to Yard 
6, there might be four different physical routes possible: (1, 2, 4, 6), 
(1, 2, 5, 6), (1, 3, 4, 6), and (1, 3, 5, 6). Further, additional combi
nations exist for each route. For example, along physical route 
(1, 2, 4, 6), there might be four itineraries possible as represented in 
Figure 2. Referring to Itinerary i2, the demand for Yard 1 to 6 will 
be relayed from Yard 1 to Yard 2, and then to Yard 6. 

The designation of long distance trains and the route they follow 
are presented in Table 1. The corresponding demand matrix is 
represented in Table 2. The short distance trains are denoted such 
as T 12 in Figure 2, where 1 and 2 are the train' s origin and destina
tion, respectively, whereas the long distance trains are in the form 
Of Tijk, wherej and k are the train's origin and destination, respec-

. tively, i is the sequence of the possible roads the train can follow 
between j and k. 

It is a common practice for the sake of convenience that, when 
managing the traffic flow on the railroad network, each demand is 
usually confined to only one itinerary. If for each demand, a set of 
0-1 variables are defined for the choice of itinerary, the TFP could 
be formulated as a 0-1 integer program. If the objective is minimiz
ing the delay times including the travel times of the cars incurred in 
the railroad system, subject to demand routing deviation restriction 
as described above, then the TFP can be formulated as follows. 

2L N 

MINL ti Yi+ Ivjxj (1) 
/=I j~I 

Subject to: 

I xi.k = i. (2) 
keR; 

where: 

1 2 4 6 
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i2 > > 

Tl14 T46 
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Tl2 T24 T46 
i4 > > > 

FIGURE2 Itinerary representation for route 
(1, 2, 4, 6). 
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TABLE 1 Designation for the Long 
Distance Train 

Yard Train Train Route 

1 Tll6 (1, 2' 4' 6) 
T216 (1, 2' 5' 6) 
T316 (1, 3' 4' 6) 
T416 (1, 3' 5, 6) 
Tll4 (1, 2' 4) 
T214 (1, 3 I 4) 
Tll5 (1, 2' 5) 
T215 (1. 3' 5) 

2 Tl26 (2 I 4, 6) 
T226 (2' 5, 6) 

3 Tl36 (3' 4' 6) 
T236 (3' 5, 6) 

4 Tl41 (4 I 2, 1) 
T241 (4 1 3 I 1) 

5 Tl51 (5, 2, 1) 
T251 (5, 3 I 1) 

6 Tl61 ( 6' 4, 2' 1) 
T261 ( 6' 4, 3' 1) 
T361 (6,5,2,1) 
T461 ( 6' 5' 3' 1) 
Tl62 ( 6' 4, 2) 
T261 ( 6' 5' 2) 
T163 ( 6' 4, 3) 
T263 ( 6' 5, 3) 

Here Xj denotes the volume of cars in Train j, Y 1 the volume on 
Link l. Here, t1 is the average travel time on Link l, and vj is Train 
j's operating time at its destination yard. Also, X;.k is a binary inte
ger variable representing the demand-itinerary choice. X;.k will be 1 
if demand i is carried by itinerary k, otherwise zero. R; is the amount 
of traffic of Demand i. R; denotes the set of itineraries by which 
Demand i was supposed to be carried, Sj is the set of itineraries 
which include Trainj as one part of their line haul, and P1 the set of 
trains which pass through Link l. L is the total number of links, M 
the total number of demands, and N the total number of trains 
possible provided. In this study, L = 10, M = 30 and N = 44. 
All the t1s have values of I 0 hr/car and the vjs take values around 
13-15 hr/car. 

Equation 1 is the objective function, in which the first summation 
is for the travel times incurred on line segments, the second sum
mation is for the times incurred at yards. Equation 2 is the demand
route restrictions. The demand flow conservation and balance 
constraints usually appear in transportation network models, but are 
automatically satisfied by this formulation. This is the first case we 
will investigate in this study. 

TABLE2 Demand Matrix 

1 2 3 4 5 6 

1 64 94 121 150 150 

2 78 87 27 54 107 

3 72 95 4 14 150 

4 150 61 19 10 34 

5 136 38 89 87 99 

6 150 150 140 67 26 
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In this constraint forn.mlation, it is assumed that the times in 
which the traffic is incurred at yards and on line segments are inde
pendent of the traffic volume. However, in reality, the times are 
always dependent on the volume. The relationship between times 
and the traffic volume is nonlinear. Modifying the objective func
tion accordingly, we have: 

2L N 

MIN I t(Y1) Y, + I v(X) xj (3) 
/=l j=I 

The formulation for this case is the objective function of Equa
tion 4 plus the constraints in Case 1. This is denoted as Case 2 in 
this study. 

Furthermore, in practice, it is likely to impose constraints on 
some variables such as link flow and train load. These constraints 
can be formulated as: 

Y, ::::; b 1 for l = 1, 2, ... , 2L, 
X 1 2: b7 for j = 1, 2, ... , N. 

The first indicates that the traffic volumes on links should be less 
than b,. The second indicates that the trains can be provided only 
when the loads on them are larger than b2• The formulation of Case 
3 for this problem is that of Case 2 plus these two additional 
constraints. 

Referring to the railroad networks in Figure 1, there are 10 long 
distance demands. For demand from l to 6 and from 6 to 1, each is 
assumed to have 16 possible itineraries. For the remaining 8 long 
distance demands, each is assumed to have 4 possible itineraries. 
For these conditions, the overall combinations of demands and itin
eraries is around 1017

• All of the formulations in these three cases 
are binary integer programs. For Case 1, some algorithms such as 
branch-and-bound, cutting plane and Lagrangian relaxation have 
been proved to be effective conventionally. The common point of 
these algorithms might be the use of the linear characteristics of the 
objective function. In each operation of "branch," for example, 
relaxed linear programming can be efficiently solved. However, in 
Cases 2 and 3, the objective functions are not linear. To some 
extent, this makes the conventional approaches in Case 1 ineffec
tive. Furthermore, these nonlinear functions are convex in nature. 
This makes the approximation approach almost impossible. With 
these difficulties, a GA approach is demonstrated in the following 
sections. 

INTRODUCTION TO GENETIC ALGORITHMS 

GAs are search algorithms based on the mechanics of natural selec
tion and natural genetics. They combine survival of the fittest 
among string structures with a structured, yet randomized, infor
mation exchange to form a search algorithm with some of the inno
vative flair of human search. In every generation, a new set of arti
ficial creatures (strings) is created using bits and pieces of the fittest 
of the old. An occasional new part is tried for good measure. 
Although effective, GAs can be quite simple in their application, 
they efficiently exploit historical information to speculate on new 
search points with expected improved performance (4). 

In the following section, the GA framework is introduced 
through a simple optimization problem (SOP): 

MAX 1024 - (x - 31) 2 (4) 
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TABLE3 Solution Strings and Fitness Values 

No. x String Fitness % of Expected 
Total Count 

1 5 000101 348 9.4 0.566 
2 42 101010 903 24.5 1.469 
3 53 110101 540 14.6 0.878 
4 38 100110 975 26.4 1.586 
5 61 111101 124 3.4 0.202 
6 16 010000 799 21. 7 1. 300 

Total 3689 100 

Average 614.8 

Subject to 0 $ x $ 63 (5) 

where x is an integer. 
First, The bit string representation is implemented by the widely 

used list of O's and l's. Table 3 shows the binary strings for six solu
tions: 5, 42, 53, 38, 61, and 16. The evaluation function is the same 
as Equation 5, and fitness values for the six solutions are also listed 
in Table 3. Second, these six solutions are assumed to be the first 
generation. Third, to generate the offspring generation, three com
monly used operators are employed: reproduction, crossover, and 
mutation. These three operators are applied, in tum, to the solutions 
in the current generation during the search process. 

The first operator, reproduction, is a process in which good solu
tions survive and are retained and bad solutions die. The number of 
solutions reproduced by each original solution is proportional to its 
fitness value. For instance, referring to Table 3, String 1 has a fit
ness of 348, which represents 9.4 percent of total fitness of the 
population of solutions. Therefore, its expected count is 0.566 
which is obtained through dividing its fitness by the average fitness. 
Hence, using the population shown in Table 3 as parents, a possible 
population generated by reproductions is shown in Table 4, in 
which String 4 in Table 3 produces two solutions whereas String 5 
produces none. 

The second operator, crossover, is generally performed on the 
population newly generated by reproduction. The crossover pro
ceeds in two steps. First, members of the reproduced strings are 
mated at random. Second, the two solutions in each solution pair 
exchange their "chromosomes" which are represented by an aipha
betic string. Suppose in Table 4, String l is mated with String 2, 
String 3 with String 4, and String 5 with String 6. If k is 1, 4, and 2 
for these three pairs, respectively, the population generated will be 
as shown in Table 5, in which the crossover sites are denoted 

by" I." 
After crossover, a mutation operator is used. This operation 

works on a bit-by-bit basis. It simply changes every bit (or charac
ter) in every solution string in the population to its opposite bit 

TABLE4 Population Generated by 
Reproduction 

No. x String Fitness 

1 5 000101 348 
2 42 101010 903 
3 53 110101 540 
4 38 100110 975 
5 61 111101 124 
6 16 010000 799 
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TABLES Population Generated by Crossover 

No. Old Mate New x Fitness 
String String. 

1 0100101 1 001010 10 583 
2 1 01010 1 100101 37 988 
3 1101101 2 110110 54 495 
4 1001 10 2 100101 37 988 
5 10 I 0110 3 100000 32 1023 
6 01 0000 3 010110 22 943 

Total 5020 

Average 836.7 

(or other character) with a very small probability. Suppose that, in 
this SOP, the mutation probability is .001. In this particular case, it 
is very likely that no mutation will be made to any bit and the result
ing population will not differ from that shown in Table 5. 

Finally, after the operations of reproduction, crossover, and 
mutation, the population of a new generation becomes those pre
sented in Table 5. The average fitness value for the SOP has been 
increased from 614.8 in Table 3 to 836.7 in Table 5, and the maxi
mum fitness has also increased from 975 to 1023, respectively. 

GA FORMULATION TO THE TFP 

Referring first to the conventional formulation, train formation deci
sions are represented by 0- l strings which are illustrated in Figure 
3. In this figure, X;.k is the decision variable from Equation 1 where 
each route for each demand has two itineraries. 

Second, the evaluation functions derived for the three cases are 
the following: 

(6) 

[

2L N l 
BM - ~ t 1Y1 + j~ vjXj (7) 

[ 

2L N 2L 

BM - ~ t(Y1) Y1 + J~ v(X) Xj + ~ f(Y1 - b1) 

+ j~ g(X1 - b2)] (8) 

where BM is used to convert the minimizing objective functions to 
maximizing. The variables! and g are penalty functions. 

Demand i 

Route 1 Route 2 

itinerary itinerary itinerary itinerary 
k k+1 k+2 k+3 

.. 

xi,k X; I lc.+1 xi,k+2 Xi ,k+3 

FIGURE 3 GA string representation of train formation decision. 
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Third, the GA operations are designed as follows: 1) The initial 
set of solutions are generated randomly and 2) The operations of 
reproduction and mutation are the same as those demonstrated in 
the SOP. However, with regard to the constraints represented in 
Equation 2, the mate sites in the crossover operation are selected 
uniformly at random from a specific set of positions, instead of from 
a set of consecutive numbers like that in the SOP. In this way, the 
constraint in Equation 2 can be guaranteed automatically in the 
genetic algorithm operation. 

CALIBRATION OF THE GA MODEL 

The calibration process for the GA model is to find the appropriate 
parameters by which the best solutions of the GA model can be 
obtained. These parameters include the size of the population, the 
number of generations, the crossover probability, and the mutation 
probability. In order to quicken the calibration, it is decomposed 
into two steps. The first step considers only the first two parameters. 
When generating the schemes, only the first two parameters vary 
within certain ranges, whereas the last two parameters are fixed at 
0.9 and 0.03, respectively. From this step, the optimal number of 
generations and population size are determined. Given these deter
mined values, the second step generates schemes by varying the last 
two parameters in a certain range. From this step, the optimal values 
for crossover and mutation probability are obtained. This process is 
conducted for all three cases. The details of the validation are 
described as follows. 

In the first step, the generations are set at 100, 200, ... , I 000, 
respectively. The population sizes are set at 10, 20, ... , 100, 
respectively. Then, for each case, 100 schemes will need to be gen
erated and evaluated. After a rough scanning of all the results, it is 
determined that the generation of 1000 is the most appropriate to 
evaluate the performance of the GA model. Then, the remaining 
task is to investigate the influence of the population size on the 
search process. The results are plotted in Figure 4 for Case 1. Sim
ilar plots were generated and used for Cases 2 and 3. The popula
tion sizes are determined by two criteria: the time the GA model 
uses to decrease the objective function values to the best solution 
and the stability after the best solutions have been achieved. For 
some processes, the convergence from the initial objective function 
value to the optimum is rather quick. On the other hand, other 
processes will fluctuate around the optimum value. The optimal 
population size is found to be 10 for Case 1, 100 for Case 2, and 70 
for Case 3. 

Following the procedures for Step 2, the results listed in Table 6 
are obtained. The crossover probabilities are set at 0.6, 0.7, 0.8, 0.9, 
and 1.0 respectively. The mutation probabilities are set at 0.01, 0.02, 
0.03, 0.04, and 0.05, respectively. For ease of analysis, the solution 

Demand i+1 

Route 1 Route 2 

itinerary itinerary itinerary itinerary 
k+4 k.+5 lc+6 k+7 

Xi+1,k+4 Xi+1,k+S Xi+1,k.+6 Xi+1,k+7 
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FIGURE 4 Determination of population size for Case 1. 

TABLE 6 Calibration for Crossover and Mutation Probability in Cases 1, 2, and 3 

Mutation Crossover Probability case 1 
Probability 

0.6 0.7 0.8 0.9 1. 0 

0.01 3 2 2 2 2 

0.02 3 2 2 2 2 

0.03 4 3 3 3 3 

0.04 4 2 3 3 3 

0.05 8 2 4 4 10 

Mutation Crossover Probability case 2 
Probability 

0.6 0.7 0.8 0.9 1.0 

0.01 19 10 16 16 (3) 

0.02 46 ( 3) 186 (2) 19 

0.03 (2) 160 73 (2) (3) 

0.04 853 117 73 48 81 

0.05 (3) (4) (2) (3) (4) 

Mutation Crossover Probability case 3 
Probability 

0.6 0.7 0.8 0.9 1.0 

0.01 (3) (2) 46 (3) (3) 

0.02 (4) 92 32 (3) (3) 

0.03 72 43 277 529 834 

0.04 (2) 121 (2) 123 ( 2) 

0.05 ( 3) (4) (2) (2) (2) 
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FIGURE 5 Search process: Pattern 2. 

searching processes are classified into four patterns. In Pattern 1, the 
searching processes are stable after the smallest values are found. 
The generation at which the smallest values are found is called the 
stable generation. This pattern is viewed to have the best perfor
mance. Pattern 2 and Pattern 3, which are represented in Figures 5 
and 6, respectively, are similar in the solution search processes. 
Both patterns indicate that the search processes will fluctuate after 
the smallest objective function value is achieved. However, in Pat
tern 2, the search process stays at the convergence status for a longer 
time than that in Pattern 3. Further comparing with Pattern 4, which 
is represented in Figure 7, the extent of fluctuation in Pattern 2 and 
3 is smaller than that in Pattern 4. Among these four patterns, Pat
tern 1 shows a strong ability to keep the smallest values they 
achieved. Pattern 4 is the worst condition. 
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Referring to Table 6, the number outside parentheses represents 
the stable generation in Pattern 1, and the numbers in parentheses 
represent the designation of patterns. The crossover and mutation 
probabilities are determined by the corresponding row and column 
values of the cell which have the smallest stable generation. In Case 
1, the crossover and mutation probabilities are determined to be . 7 
and .01, respectively. For Case 2, corresponding the stable genera
tion of 10, they are determined to be .7 and .01, respectively. For 
the Case 3, corresponding to the stable generation of 32, they are 
determined to be .8 and .02, respectively. 

Referring to Table 6, it can be seen that the linear case (Case 1) 
involves fewer generations to obtain the optimal solution than the 
nonlinear cases (Case 2 and Case 3). In Case 1, regardless of the 
parameters, the GA model always obtains the optimal solutions. In 

0 0.2 0.4 0.6 0.8 1 

Number of Generations (Thousands) 

FIGURE 6 Search process: Pattern 3. 
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FIGURE 7 Search process: Pattern 4. 

Case 2, there are 11 schemes which cannot yield the optimal 
solution; in Case 3, there are 15 such schemes. Furthermore, from 
Table 6, it can be seen that additional constraints in Case 3 make the 
solution searching process longer. In Case 2, there are 14 stable 
schemes, and the average stable generation is 123, whereas in Case 
3, there are 10 such schemes with an average of 217. 

VALIDATION OF THE GA MODEL 

The task of the validation process of the genetic algorithm model is 
to test whether the obtained solutions are optimal. In this study, dif
ferent validation methods are employed for different cases. For 
Case 1, because the optimal solutions can be obtained from avail
able software developed by conventional algorithms, the solutions 
from the GA model are compared with them. For Cases 2 and 3, the 
optimality of the solutions from the GA model are evaluated by 
observing whether the solutions have obeyed the constraints 
imposed by the nonlinear delay time functions and imposed by 
some practical considerations. After the feasibility of the solutions 
is determined, a variety of combinations around the obtained solu
tions are tested to see whether smaller objective values can be 
achieved. 

TABLE 7 Train Loads of the Three Cases for Validation 

In Case 1, the optimal solution is obtained by using Quant Sys
tems (Version 2.1 ). This solution is compared with that obtained 
from the GA model. The solutions are the same, except that GA 
models can also produce other optimal solutions when multiple 
solutions exist. In each case, all the solutions are optimal, whereas 
the itinerary choices are different. The train loads and link volumes 
from one of the optimal solutions are listed in Tables 7 and 8. 

In Case 2, the link volumes should be as small as possible, 
because convex links and train performance functions are used. 
From the point of view of networks, however, the link volumes 
should not fluctuate dramatically. Observe Table 8, comparing with 
the solution of Case 1, the link volumes in Case 2 are indeed evenly 
distributed. The largest value in Case 1, 508, disappeared in Case 2. 
Referring to Figure 3, the load on the trains should be as much as 
possibl<:'.. In Table 7, all of the trains are assigned as large a load 
as possible. From these two observations, it is apparent that the 
solutions are feasible and the nonlinear functions are effective. 
Following this analysis, the solutions are analyzed by providing all 
possible and comparable schemes. It is concluded that the solutions 
are truly optimal in terms of minimizing the total delay in the rail
road system. 

In Case 3, beside the nonlinear objective function, the remaining 
two constraints are added, that is, the volume on each link should 

The Load Assigned for the Long Distance Train 

T114 T214 T115 T215 T116 T216 T316 T416 T126 T226 T136 T236 

Case 1 121 0 0 150 150 0 0 0 0 107 150 0 

Case 2 121 0 150 0 ·o 0 150 0 107 0 0 150 

Case 3 0 0 0 0 0 0 0 0 0 0 0 0 

The Load Assigned for the Long Distance Train 

T141 T241 T151 T251 Tl61 T261 T361 T461 Tl62 T262 T163 T263 

Case 1 0 150 0 136 0 0 0 150 150 0 140 0 

Case 2 0 150 136 0 150 0 0 0 0 150 0 140 

Case 3 0 0 0 0 0 0 0 0 0 0 0 0 
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TABLE 8 Link Volumes of the Three Cases for Validation 

Traffic Volume on Each Link of Each Direction (car) 

link link link link link 
12 21 13 31 24 

Case 1 335 78 244 508 298 

Case 2 335 364 244 222 255 

Case 3 335 364 244 222 255 

Traffic Volume on Each 

link link link link 
34 43 46 64 

Case 1 154 319 334 357 

Case 2 154 169 291 217 

Case 3 154 169 291 217 

be no more than 300 cars (which is realized by setting b, equals 
300), and the load on each long distance train should be more than 
200 cars (which is realized by setting b2 equals 200). These two con
straints establish that the possible load on each of the long distance 
trains are not sufficiently large to justify the provision. In Table 7, 
the loads are really zero, whereas in Table 8, it appears that the link 
volume constraints are not effective. However, after careful calcu
lation, the overall demand through those links where the volumes 
exceed 300, it is found that there is no way to distribute these 
volumes without avoiding the penalty of the violation of the 
constraints. Thus, the solution is truly the optimal. 

GA MODEL COMPUTATIONAL PERFORMANCE 

In Case 1, the Quant Systems consumes 1.17 sec of CPU to produce 
the optimal solution. However, the GA model uses less time. 

In Cases 2 and 3, for the number of generations equal to 1000, the 
GA model requires approximately 10 min of CPU. Because both 
cases can obtain the optimal solutions in less than 40 generations, 
the computation time should be about 20 sec. Comparing with the 
size of the problem (10 17

), this computation time is quite satisfactory. 
Using the calibrated parameters, the GA model is used for vari

eties of demand patterns. In Table 2, the long distance demands are 
varied in the range of 100 to 150 cars; there are almost no compu
tation time variations. For all the demand patterns, the GA model 
produces the optimal solutions within 40 generations. 

CONCLUSIONS 

Several conclusions can be derived from this study. First, a GA 
model is able to produce optimal solutions for the formulations 
which might be difficult conventionally. Also, the computation time 
is satisfactory. Second, a GA model is not as sensitive to the input 

link 
56 

206 

249 

249 

link link link link link 
42 35 53 25 52 

211 164 375 161 38 

211 164 229 204 324 

211 164 229 204 324 

Link of Each Direction (car) 

link link link link link 
65 23 32 45 54 

176 87 95 10 82 

316 87 95 10 82 

316 87 95 10 82 

patterns compared to Monte Carlo algorithms. Third, the imple
mentation process for a GA model is straight forward. In all three 
cases, the implementation simply involves the adjustment of the 
objective function formulations. There is no need to give the struc
ture of the formulation a special consideration. The calibration and 
validation process are also straight forward. Fourth, the binary 
representation for the binary integer program (BIP) is especially 
effective: 

Based on the principle introduced in this study, GA models can 
likely be effective when applied to large railroad networks. The 
patterns recognition of the solution_ searching process needs to be 
analyzed quantitatively instead of qualitatively, however. To this 
end, some statistical model might need to be developed. 
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