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Response of Pavement Systems to Dynamic 
Loads Imposed by Nondestructive Tests 

RAFAEL FOINQUINOS, JOSE M. ROESSET, AND KENNETH H. STOKOE II 

Dynamic nondestructive testing of pavements can be grouped into two 
categories: (a) deflection basin tests and (b) wave propagation tests. 
Among the deflection basin tests, the Falling Weight Deflectometer test 
(FWD) has seen the most widespread use. Of the wave propagation 
tests, the Spectral Analysis of Surface Waves (SASW) test can be used 
with or serve as an alternative to deflection basin tests. The theoretical 
formulation used to analyze the dynamic response of pavement systems 
to dynamic loads imposed by such nondestructive testing techniques is 
presented. Analytical studies of the dynamic response of two general
ized pavement systems (a flexible one and a rigid one) to the FWD and' 
SASW tests were carried out. The results indicate that dynamic deflec
tion basins due to the FWD load can be substantially different from 
those obtained under static conditions. The study shows that when com
plete time histories of FWD deflections are stored, the additional infor
mation can provide substantial insight into the properties of the pave
ment system and can significantly facilitate the inversion process. The 
dispersion curves obtained with the SASW test are very sensitive to the 
stiffness of the surface and sub grade layers but, unfortunately, are rela
tively insensitive to the properties of the base layer. These results are 
true even when bedrock is present at shallow depths. 

Dynamic nondestructive testing techniques have been used for years 
to evaluate the structural capacity and integrity of highway and air
field pavements. These techniques can be grouped into two categories: 
(a) deflection basin tests and (b) wave propagation tests. Deflection 
basin tests are those in which maximum deflections are recorded along 
the surface of a pavement subjected to a steady-state harmonic load or 
a transient dynamic load. Typical of this group are the Dynaflect and 
Road Rater tests (steady-state loads) and the Falling Weight Deflec
tometer test (transient load) [Uddin (l)]. At present, interpretation of 
deflection basins, in order to backfigure the moduli of the pavement 
layers, is normally performed with static analyses and assuming that 
the subgrade extends to infinity. This approach neglects the dynamic 
nature of these tests and the fact that, in many cases, the soil will be 
underlain at some depth by much stiffer, rocklike material. 

The second category of dynamic nondestructive tests is wave 
propagation tests. In these tests, the time histories of motion due to 
an applied dynamic load are recorded at two or more receivers on 
the pavement surface. By computing the surface wave travel time 
between adjacent receivers for different excitation frequencies, a 
dispersion curve is obtained relating phase velocities to frequencies 
(or wavelengths). Thicknesses and stiffnesses of the pavement lay
ers are then obtained by an inversion process based on the propa
gation of generalized plane surface waves of the Rayleigh type. This 
type of test is represented by the Spectral Analysis of Surface 
Waves (SASW) method [Nazarian and Stokoe (2)]. 

Among these testing techniques, the Falling Weight Deflectome
ter (FWD) test has seen the most widespread use, largely because 
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of its ability to impose on a pavement high-amplitude dynamic 
loads similar to those imposed by truck traffic. The FWD consists 
of a drop weight mounted on a vertical shaft and housed in a trailer 
that can be towed by most conventional vehicles. The drop weight 
is hydraulically lifted to predetermined heights ranging from 5 to 51 
cm (2 to 20 in.). The weight is dropped onto a 30-cm-(l l.8-in.-)in 
diameter loading plate resting on a 5.6-mm-(0.22-in.-)thick rubber 
buffer. The resulting load is a force impulse with a duration of 
approximately 30 msec and a peak magnitude ranging from about 
9,000 to more than 90,000 N (2,000 to 20,000 lb), depending on the 
drop height and drop weight. The force and deflection signals at var
ious points along the surface are measured by a load cell and a set 
of vertical velocity transducers. The position of the load and record
ing stations are shown in Figure l(a). 

In the SASW test, an impulsive load is applied at the surface, and 
the passage of the surface wave train is monitored at two vertical 
receivers, also located on the surface. A spectral analysis of the two 
recorded signals is performed, and the variation of the surface wave 
velocity with frequency or wavelength (dispersion curve) is found. 
The general arrangement of the source, receivers, and recording 
equipment is shown schematically in Figure l(b). A piezoelectric 
shaker can be used to generate surface waves ranging from about 1 
kHz to 50 kHz. The high frequencies are necessary to sample the 
stiff surface layer. A digital waveform analyzer, coupled with a 
microcomputer, is used to capture and process the output from the 
receivers. Compared with the FWD test, the SASW test imposes 
smaller loads on the pavement surface, but data analysis is more 
complex, and automation is less well-developed in the SASW test 
than in the FWD test. 

An analytical study of the dynamic response of pavement sys
tems to forces simulating the excitations of the FWD and SASW 
tests is presented. The FWD deflection basins obtained with a 
dynamic model and those computed with static analyses are com
pared. The effects of the depth to bedrock on the deflection basins 
(FWD) and on the dispersion curves (SASW) are investigated. The 
sensitivity of both types of tests to the properties and thicknesses of 
the various layers is also discussed. 

THEORETICAL FORMULATION 

To understand how a pavement system responds to dynamic loads 
applied to the surface, a review of the theoretical studies that deal with 
the dynamic response of uniform and layered systems is necessary. 

Dynamic Loads on a Semi-Infinite Medium 

Lamb (3) was the first to study the effect of a pulse on a uniform 
elastic half-space. Lamb treated four basic problems: surface line 
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FIGURE 1 General configuration of equipment used in FWD and SASW testing of 
pavements. 

and point load sources, and buried line and point load sources. 
He derived a solution to these problems through Fourier synthesis 
of the steady-state propagation solution. For the surface source 
problem, Lamb evaluated the surface displacements (horizontal 
and vertical), and noted that the largest disturbance in the far 
field is the Rayleigh surface wave. He noted the nondispersive 
nature of the solution, and that for a point-load excitation, the dis
placement decays as Yr, where r is the distance from the source. 
Through the years these problems have taken on the name, Lamb's 
problem. 

The first closed-form solution for Lamb's problem in three
dimensional space was provided by Pekeris ( 4) for the case a mate
rial with Poisson's ratio of 0.25. A generalization for arbitrary val
ues of Poisson's ratio is due to Mooney (5) and also can be found 
in Eringen and Suhubi (6); however, the Green's functions (in the 
time domain) for this case are available only for a vertical point 
pulse with a step time-function acting on the free surface. 

Miller and Pursey (7) considered the case of a circular disk 
vibrating harmonically and normally on the free surface of a half
space. They found explicit expressions for the displacements at 
points at large distances from the loaded area. These expressions for 
the horizontal and vertical (u, w) displacements at the surface of the 
medium due to a unit disk load are of the form 

R1 ~ ~ j(v). - . -- . e-i Cr 
G Cr·r 

where 

R = the radius of the disk load, 
G = the shear modulus of the medium, 
w = the circular frequency of excitation, 

Cr = the Rayleigh wave velocity of the medium, and 
r = the distance to the source. 
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The term f(v) is a complex function of Poisson's ratio, for 
instance, for v = 113,f(v) = -0.182(Yl/2 + i Vl/2) for the hori
zontal displacement, and 0.286(Yl/2 - i Vl/2) for the vertical dis
placement. 

While closed-form solutions to Lamb's problem have significant 
theoretical uses, it is improbable that exact solutions will become 
available soon for more complicated material or load configurations 
because of the mathematical difficulties involved. Thus, for the 
solution of dynamic problems in layered media such as pavement 
systems, numerical techniques must be used. 

Dynamic Loads on Layered Media: Application to the 
Dynamic Analysis of Pavements 

Consider a pavement system that consists of horizontal layers. The 
mass densities and elastic moduli of the pavement system change 
with depth, from layer to layer, but are (assumed to be) constant 
over each layer. For the present application, the top layer represents 
the pavement surface layer (assuming it extends to infinity in both 
horizontal directions); the second layer is the base; and the remain
ing layers are the subbase layer, the soil subgrade, or both. Deter
mining how this system responds to dynamic loads applied on the 
surface (or at any point within the profile) falls mathematically in 
the realm of wave propagation theory. 

Formulation of these problems starts normally by considering 
steady-state harmonic forces and displacements at a given fre
quency. For an arbitrary transient excitation (case of the FWD test), 
the time history of the specified forces must be decomposed into dif
ferent frequency components using a Fourier series, or more con
veniently a Fourier transform. Results are then obtained for each 
term of the series (each frequency) and combined to obtain the time 
history of displacements (inverse Fourier transform). 

For an isolated layer with uniform properties, the stresses and dis
placements along the top and bottom surfaces can be expanded in a 
double Fourier series (or Fourier transform) in the two horizontal 
directions for Cartesian coordinates, or in a Fourier series in the cir
cumferential direction and a series of modified Bessel functions in 
the radial direction for cylindrical coordinates. For each term of 
these series corresponding to a given wave number, closed-form 
analytical expressions can be determined in the form of a transfer 
matrix relating amplitudes of stresses and displacements at the bot
tom surface to the corresponding quantities at the top (or vice 
versa). This approach [Thomson (8) and Haskell (9)] has served as 
the basis for most studies on wave propagation through layered 
media in the past 35 years. An alternative is to relate the stresses at 
both surfaces to the displacements, obtaining a dynamic stiffness 
matrix for the layer [Kausel and Roesser (JO)], which can be used 
and understood in much the same way as in dynamic structural 
analysis. For a half-space, the stiffness matrix directly relates 
stresses and displacements at the top surface because the bottom 
surface is pushed to infinity. 

For FWD and SASW testing of pavements with an axisymmetric 
load, only one term of the Fourier series is needed. The displace
ments U and forces Pin the wave number domain are then related by 

KU=P (1) 

where K is the dynamic stiffness matrix of the profile obtained by 
assembling the stiffness matrices of the layers and the underlying 
half-space. For a uniform vertical load applied at the surface over a 
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disk of radius R, the only nonzero term of the vector Pis the second 
term, which is equal to 

where 

q = the magnitude of the uniformly distributed load, 
k = the wave number, and 

J, = the first order Bessel function. 

If u" and w1 are the first two terms of the vector U, obtained by 
solving Equation 1 for a vector P with all components 0 and a 1 as 
the second term (for every value of k), the surface displacements as 
a function of the distance r to the center of the loaded area become 

u = q · R J
00 

u1 • J 1(kR) · J,(kr)dk 
0 . 

w = q · R r w, · J,(kR) · J0(kr)dk 
0 

(2a) 

(2b) 

The solution of the problem thus requires assembling the dynamic 
stiffness matrix K of the layered medium, solving the system of 
Equation l for many different values of k and evaluating numerically 
the integrals of Equation 2. The numerical integration is performed 
through shifting the poles of the integrand by including a small atten
uation in the materials (for materials with damping, all of the poles 
are complex, so that no singularities are encountered along the real 
axis of integration). However, for systems with sharp variations in 
material properties between layers, the integrands may exhibit con
siderable waviness, making it difficult to evaluate the integrals. The 
solution of the equations also is time-consuming when there is a 
large number of layers. The procedure is convenient when dealing 
with a homogeneous half-space or a small number of layers. 

An alternative can be obtained by expanding the terms of the 
dynamic stiffness matrix of a layer in terms of k and keeping terms 
only up to second-degree (the terms of the transfer or stiffness 
matrices of each layer are transcendental functions). It can be shown 
that this is equivalent to assuming that the displacements have a lin
ear variation with depth over each layer using standard finite ele
ment techniques to derive the layer matrix. The stiffness matrices 
of each layer, the half-space, and the total profile can then be 
expressed in the form 

K = Ak2 + Bk + G - w2 M (3) 

The expressions for the matrices A, B, G, and M are given by 
Kausel and Roesset (JO). By computing the in-plane modes of prop
agation as the solution of a quadratic eigenvalue problem (11, 12) and 
keeping only the modes propagating outward, Kausel (13) has shown 
that the displacements u" w, in Equation 2 can be expressed as 

211+2 k 
u, = I U;1 W;1 -----

i= I k;(k2 - k]) 

211+2 - ""'-? w, = L WT1 
i=l (k2 

-: k7) 

(4a) 

(4b) 
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for a system with n layers, where u;1 and w; 1 denote the horizontal 
and vertical displacements at the surface in the ith mode and k; is the 
eigenvalue, or wave number, in the ith mode. By substituting Equa
tion 4 in Equation 2, the integrals can be evaluated analytically in 
closed form (13). 

This formulation requires a subdivision of the layers (thin layers 
are needed to accurately reproduce the variation of displacements 
with depth with a piece-wise linear approximation). It is particularly 
convenient when dealing with a large number of layers, such as 
when obtaining a detailed variation of soil properties with depth is 
desired. Furthermore, since the fundamental solutions (or Green's 
functions) are known explicitly, the displacements or strains at 
many locations can be determined without significant additional 
computation. 

Both continuous and discrete formulations had been imple
mented at the University of Texas at Austin [Roesset and Shao (14), 
and Roesset, Stakoe, and Foinquinos (15)] to simulate the FWD and 
SASW tests. Although a large number of sub layers must be used in 
the discrete formulation to obtain satisfactory results, this formula
tion has been found in general to be much more efficient computa
tionally than the continuous formulation. Therefore, the results 
were obtained using the discrete formulation. 

ANALYTICAL STUDIES 

Two generalized pavement profiles, a flexible one and a rigid one, 
were selected to illustrate the dynamic response of the pavement 
systems to the application of FWD and SASW. Because variations 
in total unit weight (-y), Poisson's ratio (v), and damping ratio (D) 
have minor effects on the dynamic response (within ranges of log
ical values) compared with changes in the stiffnesses of the layers, 
they were assumed to be the same for all the layers; that is, 'Y = 

18,850 N/m3 (120 lb/ft3
), v = 0.35, and D = 0.02. The elastic prop

erties and thicknesses of the layers in both profiles are given in 
Table I. 

FWD Testing 

Flexible Pavement 

First the dynamic response to the FWD load of a flexible pavement 
with rigid rock at 6.1 m (20 ft) was computed. Figures 2(a) and 2(b) 
show the amplitude of the transfer function of displacements (ampli-

TABLE 1 Values of Elastic Properties and Layer Thicknesses of 
Generalized Pavement Profiles 

Type of 
pavement 

Flexible 

Rigid 

La yer 

Surf a ce 

Base 
Sub rade 

Surfa ce 

Base 

Subb ase 
Sub rade 

Thickness 
cm (in.) 

15 (6) 

30 (12) 
variable 

22.5 (10) 

15 (6) 

30 (12) 
variable 

Young's Shear wave 
Modulus velocities 
MPa (ksi) m/sec (fos) 

3013 762 (2500) 
(436.7) 
483 (70) 305 (1000) 
124 (18) 152 (500) 

39020 2743 
(5660) (9000) 
3013 762 (2500) 
(436.7) 
483 (70) 305 (1000) 
124 (18) 152 (500) 
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tude of displacements due to a unit harmonic load as a function of 
frequency) at Station 1, located at the center of the load, and at Sta
tion 7, which is the farthest measurement point. For low frequencies, 
the system behaves as if the load were applied statically. As the fre
quency increases, the displacements increase until they reach a peak 
at the same frequency at all stations. The low amplitudes of dis
placements at high frequencies are a result of inertial effects. These 
transfer functions are multiplied by the Fourier transform of the 
excitation and then inverted to obtain the displacement-time histo
ries. Figure 2(c) shows the time history of displacements at each sta
tion. The main pulse is followed by oscillations with decaying 
amplitude, which represent the free vibrations of the complete pave
ment system and the soil subgrade layer in particular. These free 
oscillations have a well-defined period (which lies between the nat
ural period of the subgrade for shear and compressional waves) and 
are essentially the same for all the recording stations. The frequency 
of the free vibration coincides with the frequency of the peak in the 
transfer functions. Chang et al. (16) have suggested a simple formula 
to estimate the depth to bedrock based on the free vibration period 
from the displacement-time records. This figure also shows that 
there is a time offset at the stait of the motion and at the occurrence 
of the peak displacements at the different stations. Seng (17) has 
suggested the use of the offset time to find the shear velocity of the 
subgrade. Figure 2(d) shows the dynamic peak displacement at each 
station (deflection basin), obtained from the maximum displacement 
recorded at each receiver. 

The effect of depth to bedrock on the FWD deflection basins is 
considered next. The analysis for the flexible pavement with differ
ent depths to bedrock is shown in Figure 3. Figures 3(a) and 3(b) 
show the transfer functions at Stations 1 and 7, respectively. As the 
depth to bedrock decreases, the peak displacement and the fre
quency at which it occurs increase, but the static displacement 
decreases. It also can be seen that the dynamic effect is more impor
tant at the farthest stations. Figures 3(c) and 3(d) show the dis
placement-time histories when the depth to bedrock is 6.1 m (20 ft) 
and when it extends to infinity. In the second case, the free oscilla
tions are no longer present because there are no reflections from 
bedrock. Figure 3(e) shows that the static displacements are very 
sensitive to bedrock depth. However, the dynamic deflection basins 
are nearly independent of the depth to bedrock for depths greater 
than 3 m (10 ft), as shown in Figure 3(/). 

Rigid Pavement 

The same type of analysis was performed for the rigid pavement, 
and the results are shown in Figure 4. It can be observed again that 
the static displacements are very sensitive to the depth to bedrock, 
but the dynamic deflection basins are insensitive to this depth. Also, 
the shape and magnitude of the static and dynamic deflection basins 
are quite different from the ones for the flexible pavement. 

Dynamic Amplification 

The ratio of dynamic to static displacements (amplification factor) 
at the different stations was computed as a function of depth to 
bedrock. The results are shown in Figures 5(a) and 5(b) for flexible 
and rigid pavements, respectively. For these profiles the maximum 
amplification occurs at a depth to bedrock of about 2.1 to 3 m (7 to 
10 ft). This means that for shallow profiles the use of a back-calcu-



Foinquinos et al. 61 

100 
(a) 

35 
(b) 

30 

~8 25 

6 20 
~60 

15 .g 
u 
0 

r:+:: 10 
040 

5 

20 0 
.1 10 100 100 .1 10 100 1000 

Frequency (Hz) 0 Frequency (Hz) 

8 
(c) 

0 -- tatlon 1 

(d) 

---- 2 -10 -·-· 3 

f ---- 4 
--- 5 -20 
-·--· 6 

64 --7 
-30 

<I) 

c: 
0 -40 ·a 
0 

r:+:: -50 0 
0 

-60 

0.1 0.2 0.3 -700.0 0.3 0.6 0.9 1.2 1.5 1.8 
Time (sec) Distance (m) 

FIGURE 2 Dynamic response of a flexible pavement with bedrock at 6.1 m to FWD loading: (a) 
and (b) transfer functions at recording Stations 1 and 7, (c) displacement-time histories and (d) 
measured deflection basin. 

lation process based on static analysis (with a known depth to 
bedrock) would lead to an underestimation of the stiffness of the 
subgrade layer and associated complications in evaluating the other 
layers. For the rigid pavement, the deflection ratio becomes less 
than 1 for depths greater than about 4.5 m ( 15 ft). In this range a sta
tic back-calculation procedure would lead to an overestimation of 
the stiffness of the subgrade layer and associated complications in 
evaluating the other layers. 

In static back-calculation procedures it is often assumed that the 
subgrade is an elastic half-space. It is therefore more interesting to 
compare the dynamic results for a given depth to bedrock with the 
static deflections for an infinite depth to bedrock. The ratios of these 
deflections are shown in Figures 5(c) and 5(d) for flexible and rigid 
pavements, respectively. The results indicate that the dynamic 
deflections are smaller than the static deflections for a half-space 
(although they can be larger than the static deflections for the same 
profile with a finite bedrock depth). This implies that the static back
calculation process as normally applied will lead to an overestima
tion of the stiffness of the layers, particularly for shallow profiles. It 
can also be observed that the dynamic peak displacements remain 
constant for a depth to bedrock greater than about 4.5 m ( 15 ft). This 
depth depends mainly on the properties of the subgrade (Seng, 1992). 

SASW Testing 

The effect of depth to bedrock on the theoretical dispersion curves 
obtained with the SASW test are shown in Figure 6 for the flexible 
pavement. Figure 6(a) shows the case in which the subgrade 
extends to infinity. For very short wavelengths (high frequencies), 
the phase velocity is approximately equal to the Rayleigh wave 
velocity of the surface layer and remains almost constant until the 
wavelength approximately equals the thickness of the surface layer. 
For long wavelengths (low frequencies), the phase velocity 
approaches the Rayleigh wave velocity of the sub grade. Figure 6(b) 
shows the dispersion curve with a finite depth to bedrock [6.1 m (20 
ft)] and Figure 6(c) shows the variation of the dispersion curves for 
different depths to bedrock [the rock was considered to have a shear 
wave velocity of 1,524 m/sec (5,000 ft/sec)]. Figure 6(c) shows that 
the dispersion curves start bending upward at a wavelength which 
is approximately equal to the depth to bedrock. 

Therefore, bedrock does not affect any of the measurements 
performed at wavelengths shorter than the depth to bedrock. The 
same type of analysis was performed for the rigid pavement, and 
the results are qualitatively the same as those of the flexible 
pavement. 
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FIGURE 3 Dynamic response of a· flexible pavement with different depths to bedrock to 
FWD loading: (a) and (b) transfer functions at recording Stations 1 and 7, (c) and (d) 
displacement-time histories for depth to bedrock of 6.1 m and infinity, (e) static displacements 
and (f) measured deflection basins. 

Parametric Studies 

The sensitivity of the deflection basins and dispersion curves to 
variations in the stiffnesses of the pavement layers was investigated 
next. The flexible pavement given in Table l with a subgrade 
extending to infinity was analyzed first. The stiffness of each layer 
was varied independently. Figures 7(a) and 7(b) show the deflection 
basins and dispersion curves for shear wave velocities of the surface 
layer of 381, 762, and 1,143 m/sec (1,250, 2,500, and 3,750 ft/sec), 
which correspond to soft, medium, and stiff pavement surface lay
ers, respectively. Figure 7(a) indicates that the displacement under 
the load is influenced by the properties of ~he surface layer, but this 

influence becomes negligible at the outer stations. Figure 7(b) 
shows that the dispersion curves are very sensitive to the.properties 
of the surface layer for short wavelengths. 

The deflection basins and dispersion curves when the shear wave 
velocities of the base are 152.4, 304.8, and 457 .2 m/sec (500, 1,000, 
and 1,500 ft/sec) (corresponding to soft, medium, and stiff bases, 
respectively), are shown in Figures 7(c) and 7(d). Changes in the 
properties of the base affect the displacements under the load and at 
the next two stations, but have a negligible effect on the displace
ments at the last three stations. The dispersion curves are affected 
to some degree, but those effects are difficult to evaluate. Changes 
in the properties of the subgrade lay~r, on the other hand, affect the 
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FIGURE 4 Dynamic response of a rigid pavement with different depths to bedrock to FWD 
loading: (a) and (b) transfer functions at recording Stations 1 and 7, (c) and (d) displacement
time histories for depth to bedrock of 6.1 m and infinity, (e) static displacement and (f) 
measured deflection basins. 

displacements at all stations to about the same degree as shown in 
Figure 7(e). The dispersion curves for this case [Figure 7(/)] are 
very sensitive to the properties of the subgrade for long wave
lengths. For the deflection basins, the displacements at the outer sta
tions (particularly Station 7) are governed almost entirely by the 
properties of the subgrade layer; and for the dispersion curves, the 
phase velocity for short wavelengths is governed by the surface 
layer. The deflection basins computed with a finite depth to bedrock 
[6.1 m (20 ft)] were almost identical to those of Figures 7(a), (c), 
and (e). 

The same type of parametric studies were performed for the rigid 
pavement. The results are qualitatively the same as those for the 

flexible pavement and therefore are not shown because of space lim
itations. 

The sensitivity of the deflection basins and dispersion curves to 
changes in the thicknesses of the surface and base layers was also 
considered. The results indicate that the deflection basins are sensi
tive to these changes under the load and at the near stations, but that 
the effect is negligible at the outer stations. The dispersion curves 
are sensitive to the thickness of the surface layer, but they are quite 
insensitive to the thickness of the base layer (within the range of 
logical values). 

Finally, the strains were computed at various depths below the 
load. The results indicate that the dynamic strains are almost iden-
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FIGURE 5 Ratio of dynamic to static displacement: static displacements with a finite depth to bedrock for 
(a) flexible and (b) rigid pavements; static displacements with an infinite subgrade depth for (c) flexible and 
(d) rigid pavements. 

ti cal to the static ones over the top part of the pavement system and 
are insensitive to the depth of bedrock over this section. As the 
depth increases, the strains in the subgrade show more pronounced 
dynamic effects and a greater effect of the depth to bedrock. 

ADDITIONAL CONSIDERATIONS 

Two of the main assumptions in the dynamic modeling of the pave
ment system were that the layers extend to infinity in both horizon
tal directions and that they are linear elastic. An accurate solution 
requires consideration of the finite width of the pavement and pos
sible nonlinear behavior. These two effects were investigated in 
several studies conducted under the supervision of Roesser and 
Stokoe. Kang et al. (18) studied the effect of the finite width on the 
dynamic deflections of pavements and concluded that the loading 
position with respect to the edge of the pavement can influence (a) 
the amplitude of the deflections and (b) the shape of the deflection 

basin obtained with the FWD test. They also showed that finite 
pavement width can cause some fluctuations in the dispersion 
curves obtained with the SASW test. However, they found that for 
most pavements the error committed by assuming that the pavement 
extends to infinity will not be serious if the load is placed more than 
0.6 m (2 ft) from the edge of pavements at level sites, or 1.2 m (4 
ft) from the edge when the pavement is on an embankment or a 
ramp with concrete retaining walls. 

Chang et al. (19) studied nonlinear effects in FWD testing using 
an approximate nonlinear analysis procedure (a linear iterative 
approach in the frequency domain) and a true nonlinear incremen
tal analysis with a generalized cap model to reproduce the nonlin
ear material behavior. They showed that nonlinear behavior can be 
significant and localized around the loaded area if testing is per
formed on a flexible pavement with a rather thin surface layer and 
a soft subgrade. However, they also showed that nonlinear effects 
can be neglected for small to intermediate loads for many pavement 
systems and that very little nonlinearity will normally be generated 
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FIGURE 6 Effect of depth to bedrock on the dispersion curves measured in SASW testing of a flexible 
pavement. 

in thick, rigid pavements. They did not study the SASW test 
because the small magnitude of the applied load creates only linear 
behavior in the pavement system. 

CONCLUSIONS 

The results confirm that the dynamic response of the pavement sys
tem affects the magnitude and shape of the deflection basins 
obtained with the FWD test, and that these basins can be substan
tially different from those obtained under static conditions. When 
the dynamic deflection basins are compared with the static ones as 
a function of the assumed depth to bedrock, significant dynamic 
amplification is found for some range of depths to bedrock [typi
cally less than 6.1 m (20 ft)]. However, dynamic deflections also can 
be smaller than the static ones over a wide range of depths to 
bedrock [typically depths greater than 15 m (50 ft)]. The use of a 
static back-calculation procedure with the known bedrock depth 
will result in an underestimation of the stiffness of the subgrade 
layer in the first case and an overestimation in the second case. The 

stiffnesses evaluated for the other layers will be complicated by the 
errors in the subgrade layer. On the other hand, current static back
calculation practice is to consider that the subgrade extends to infin
ity (because the depth to bedrock is not normally known). In this 
case, the static back-calculation procedure will result in a general 
overestimation of the stiffness of the pavement system. 

The current method for interpreting FWD test results fails to uti
lize the test's true potential because the method does not consider 
the dynamic nature of the pavement response. Recording a longer 
time history of the dynamic response of the pavement system would 
yield a simpler and faster estimation of the subgrade stiffness from 
the offset times. The depth to bedrock also could be estimated from 
the period of the pavement's free vibrations, which follow the pas
sage of the FWD pulse. This information and the history of the force 
are needed if a dynamic back-calculation procedure is to be used for 
system identification. 

Computation of strains under the axis of the FWD load reveals that 
the static and dynamic strains are almost the same in the upper lay
ers and that the effect of depth to bedrock is negligible for the strains 
in the top part [the upper 0.6 m (2 ft)] of the pavement. The dynamic 
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layers: (a) and (b) surface layer, (c) and (d) base layer, (e) and (0 subgrade layer. 

effect on the strains increases with depth. The parametric studies 
clearly indicate that the dynamic deflections at the outer receivers are 
governed almost exclusively by the subgrade properties. 

The SASW test, on the other hand, is particularly efficient in 
determining the properties of the top layer (stiffness and thickness). 
For long wavelengths, the phase velocity approaches the Rayleigh 
wave velocity of the subgrade. If there is a rocklike material at some 
depth, the dispersion curve starts bending upward at a wavelength 
of the order of the depth of the bedrock, and its presence is clearly 
seen in the dispersion curve. Unfortunately, SASW disper
sion curves are relatively insensitive to the properties of the base 
material. 

Using both the FWD and SASW tests is advised, since the 
research shows that the two tests complement each other. 

ACKNOWLEDGMENTS 

The work described has been conducted at the University of Texas 
at Austin, supported for a number of years by the Texas Department 
of Transportation. The authors wish to express their appreciation for 
this support. 

REFERENCES 

1. Uddin, W. A Structural Evaluation Methodology for Pavements Based 
on Dynamic Deflections. Ph.D. dissertation. The University of Texas at 
Austin, Austin, Texas, 1984. 

2. Nazarian, S. and K. H. Stakoe II. Use of Surface Waves in Pavement 
Evaluation. Transportation Research Record 1070, 1986, pp. 132-144. 



Foinquinos et al. 

3. Lamb, H. On the Propagation of Tremors over the Surface of an Elas
tic Solid. Phil. Transactions Royal Society of London, Series A, Vol. 
203, 1904,pp. 1-42. 

4. Pekeris, C. The Seismic Surface Pulse. Proc., National Academy of Sci
ence, 1955, p. 41. 

5. Mooney, H. M. Some Numerical Solutions for Lamb's Problems: Bul
letin of the Seismological Society of America, Vol. 64, No. 2, 1974. 

6. Eringen, A. C., and S. Suhubi. Elastodynamics, Vol. 2, Academic Press, 
New York, N.Y., 1975. 

7. Miller, G. F., and H. Pursey. The Field and Radiation Impedance of 
Mechanical Radiators on the Free Surface of a Semi-Infinite Isotropic 
Solid. Proc. Royal Society of London A223, 1954. 

8. Thomson, W. T. Transmission of Elastic Waves Through a Stratified 
Soil Medium. Journal of Applied Physics, Vol. 21, 1950. 

9. Haskell, N. A. The Dispersion of Surface Waves on Multilayered Media. 
Bulletin of the Seismological Society of America, Vol. 43, No. 1, 1953. 

I 0. Kausel, E. and J. M. Roesset. Stiffness Matrices for Layered Soils. Bul
letin of the Seismological Society of America, Vol. 71, No. 6, 1981. 

11. Waas, G. Linear Two-Dimensional Analysis of Soil Dynamics Prob
lems on Semi-Infinite Layered Media. Ph.D. dissertation. University of 
California, Berkeley, Calif., 1972. 

12. Kausel, E. Forced Vibrations of Circular Foundations on Layered 
Media. Research Report R74- l l. Department of Civil Engineering, 
Massachusetts Institute of Technology, Cambridge, 1974. 

67 

13. Kausel, E. An Explicit Solution for the Green Functions for Dynamic 
Loads in Layered Media. Research Report R81-13. Massachusetts Insti
tute of Technology, Cambridge, Mass., 1981. 

14. Roesset, J.M. and K. Shao. Dynamic Interpretation of Dynaflect and 
Falling Weight Deflectometer Tests. Transportation Research Record 
1022, 1985, pp. 7-16. 

15. Foinquinos, R., J.M. Roesset, and K. H. Stokoe II. Dynamic Interpre
tation of FWD Deflection Basins. XII Congreso Mundial de IRF, 
Madrid, Spain, 1993. 

16. Chang, D. W., V. Y. Kang, J.M. Roesset, and K. H. Stokoe II. Effect 
of Depth to Bedrock on Deflection Basins Obtained with Dynaflect and 
FWD Tests. Transportation Research Record 1355, 1992, pp. 8-16. 

17. Seng, C.R. Effect of Depth to Bedrock on the Accuracy of Backcalcu
lated Moduli Obtained with Dynaflect and FWD Tests. M.S. thesis. The 
University of Texas at Austin, Austin, Texas, 1992. 

18. Kang, V. K., J.M. Roesset, and K. H. Stokoe II. Effect of the Finite 
Width of Pavements on Deflection Basins Obtained with Dynaflect and 
FWD Tests. Transportation Research Board, 1990, pp. 1-26. 

19. Chang, D. W., J.M. Roesset, and K. H. Stokoe II. Nonlinear Effects in 
Falling Weight Deflectometer Tests. Transportation Research Record 
1355, 1992, pp. 1-7. 

Publication of this paper sponsored by Committee on Modelling Techniques 
in Geomechanics. 


