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Algorithms for Pavement Distress 
Classification by Video Image Analysis 

J. ADOLFO ACOSTA, J. LUDWIG FIGUEROA, AND ROBERT L. MULLEN 

A fundamental component of computer-based video image analysis for 
pavement distress evaluation is identification of the type of distress 
from geometric and textural properties of an area of interest identified 
during image analysis. This study describes the algorithms used to iden
ti_fy and classify the most common pavement distress types once a pos
sible distress region is identified on an image. The classification is 
accomplished in three steps. First, geometric and textural features are 
calculated for a region of interest. Next, the features of that region are 
used to determine whether any other regions in an image are actually 
part of the same pavement distress. Finally, the extracted image features 
are used with a decision tree to identify the specific pavement distress 
type, its severity, and its extent. The features and decision trees have 
been tested on several thousand pavement images and the system that 
contains the decision tree has been used successfully by the Ohio 
Department of Transportation since May 1994. 

Computer-based image analysis has become a major topic of 
research due to its broad application in almost all sciences, includ
ing pavement engineering. Identification and quantification of dis
tress that can be measured by width, length, area, and in some cases 
by depth is made possible by automatic analysis of images captured 
by a computer from video or film recordings. Analysis of images to 
obtain a pavement rating based on the amount of distress is being 
developed at several universities and private companies. 

Acosta (1) and Figueroa et al. (2) investigated different tech
niques for the automatic segmentation of concrete, asphalt concrete, 
and composite pavement images; thresholding of gray-level pic
tures using one- and two-dimensional entropy; and innovative tech
niques for the identification of cracks in textured media. In addition, 
they developed and evaluated another method, the vertical region 
segmentation (VRS), and they performed a preliminary cluster 
classification using several geometrical and statistical features com
puted for each cluster and extracted from the background. The reli
ability and accuracy of the methods employed in automatic seg
mentation and the distress classification were assessed. 

A fundamental component of computer-based video image analy
sis for pavement distress evaluation is the identification of the type 
of distress from geometric and textural properties of the area of 
interest, which was identified during image analysis. This study 
describes the algorithms used in the identification and classification 
of the most common pavement distress types once a possible dis
tress region is identified on an image. The classification is accom
plished in three steps. First, geometric and textural features are cal
culated for a region of interest. Next, the features of a region are used 
to determine whether any other regions of an image are actually part 
of the same pavement distress. Finally, the extracted image features 
are used with a decision tree to identify the specific pavement dis-
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tress type. In the following section a brief review of image process
ing is given first. Following this review, the definition of 19 features 
that were found to be required for identification of pavement distress 
types are defined. The procedure for making connections between 
neighboring clusters and the decision tree for determining the type, 
severity, and extent of pavement distress are presented. 

IMAGE PROCESSING OVERVIEW 

Computer-based image analysis was originally developed as a pow
erful tool in the medical sciences (3,4). Since then, its use has been 
extended to a variety of disciplines, as shown by several texts on 
digital image processing (5,6). 

The general concept behind the image-processing approach of 
this study can be illustrated by explaining the five steps needed for 
image analysis: image digitization, image filtering or segmentation, 
clustering, feature extraction, and cluster classification. 

The image digitization is accomplished through an image cap
turing board residing in the computer. The analog signal from a 
videotape player is transformed into a two-dimensional array of 
pixel elements in which each element has a value proportional to its 
brightness. The range of values of the array (the gray-level) typi
cally varies from 0 (black) to 255 (white). 

The image filtering is done by adaptive techniques using convo
lution, histogram, and primal sketch methods (7-10). It consists of 
separating the pixels belonging to the foreground (objects of inter
est) from those of the background. 

The VRS method developed by Acosta (1) and Acosta et al. 
(11,12) is a statistical approach to image segmentation that is 
applied to pavement images, based on thresholds calculated by 
regression analysis. This method divides the image in narrow lon
gitudinal (vertical) regions; each region is analyzed separately to 
minimize problems caused by a nonhomogeneous background or 
nonuniform illumination. The gray-level histogram is obtained to 
extract the gray-level average and the gray-level standard deviation 
(SD), taking into account only the gray levels with significant 
occurrences in the frequency distribution. Three zones are delim
ited: background, connective (possible), and foreground. The zones 
are distinguished based on two thresholds, s and t, obtained by 
regression analysis (Figure 1): 

Q1: True-foreground zone 
Qz: Possible-foreground zone 
Q3: True-background zone 

An extension of this method was developed by Acosta (13) and 
Acosta et al. (14) that improves the detection of longitudinal cracks 
by also applying horizontal region segmentation (HRS). The 
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FIGURE 1 VRS zones. 

improved method consists of tracing horizontal regions across the 
vertical regions described above, and analyzing each region sepa
rately, similar to the analysis of the vertical regions. Thresholds sH 

and tH are obtained and the pixels in the region are assigned to zones 
Q~, Q1, or Q'j, depending on their gray-level value, as follows: 

Q~: True-foreground zone from HRS. 
Q1: Possible-foreground zone from HRS 
Q'j: True-background zone from HRS 

Pixels are pre-identified as background, Qb and foreground, Q1. 

They are designated as pre-identified because in the clustering 
procedure, clusters having a total number of pixels (both true
foreground and possible-foreground) less than a minimum value p 

and those with a number of possible-foreground pixels less than a 
minimum value q are automatically eliminated from further con
sideration. The improvement essentially consists of applying region 
segmentation in both directions, when needed, or combining both 
the YRS and the HRS methods into vertical and horizontal region 
segmentation VHRS. Adjacent areas of interest that were high
lighted by filtering are clustered to and from objects. 

Once an object in the image is found, geometric and statistical 
properties related to shape and gray level are calculated (feature 
extraction). From the information extracted, using appropriate 
guidelines, the object can be classified (cluster classification) as 
pavement distress, pavement feature, or unknown object (litter, 
debris, etc.). Pavement is then rated by applying the dimensional 
guidelines specified by the rating procedure. 

This paper specifically addresses the rules necessary for cluster 
classification applied to pavement distress analysis, using proper
ties obtained during feature extraction. Detailed discussions of other 
aspects required in image processing for pavement distress and con
dition evaluation can be found in Acosta (J 3) and Acosta et al. (J 4). 

FEATURE EXTRACTION 

Feature extraction reduces a region on an image to a limited num
ber of geometric or textural properties. Certain features are selected 
that provide the capability of distinguishing between the different 
classes of pavement distress types. More than 50 preliminary fea
tures were chosen and extracted from a representative sample of 
images. The output values were analyzed and the features that best 
characterized the types of distress were adopted as the final features 
to be used in the pavement distress analysis. 
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A digitized image after contrast enhancement can be defined by: 

I* = {f*(x, y) I (0 ::S x::::; M) /\ (0::::; y::::; N)} (I) 

Zmin $ J *(x, y) $ Zmax (2) 

f *(x, y') = f(x, Y)_- Pmin X (Z · z ) 
max - min 

Pmax Pmin 
(3) 

where: 

f *(x, y) = gray level value (after transformation) of pixel at 
(x,y) coordinates; 

M, N = number of rows and columns in image; 
Pmin• Pmax = maximum and minimum gray level values in image; 

and 
Zmin = 0 and Zmax = 255 (minimum and maximum values in 

gray scale). 

For a situation in which bij is the characteristic function of the clus
ter Ok such that: 

h·· {= 1 if f* (i,j) E Q1/\f*(i, j) E Ok 
'
1 = 0 if otherwise 

Where Q1 is defined as follows: 

The following geometric features are defined: 

• Cluster area: number of pixels forming the cluster. 

i j 

(4) 

(5) 

(6) 

• Aspect ratio: ratio between sides of a bounding box enclosing 
the cluster (Figure 2). 

~\' 
SF=-'

~x 

where ~y = Ymax - Ymin and ~x = Xmax - Xmin (7) 

• Angle of principal moments of inertia: angle of principal 
moment of inertia with respect to the horizontal, obtained from the 
following equations. 

21-rv 
tan2® = --·-

1;: - Ix 

where 

p2 
I~= Ix - -2._ 

A 

p2 
I~=/" - ___[ . . A 

(8) 

(9) 

(10) 



Acosta et al. 

Perimeter 

Background 

Foreground 

FIGURE 2 Foreground, perimeter, and background areas. 

are the second moments of inertia (for both axes) and the product 
moment of inertia, respectively. 

Px =LL Y ·bu (11) 
i j i j 

are the first moments of area about the image coordinate axes, and 

i j 

(12) 
i j 

(13) 
i j 

are the moments of inertia and the product moment of inertia, 
respectively. 

• Coordinates of the center of gravity: 

Pr 
Xcg =A 

pl' 
Ycg =A 

• Inertia ratio is calculated (15) as follows: 

/max 
/R=-

Imin 

where 

f-t+Iv \/ 
/maxJmin = --

2
-· ±(fr - /\.)2 + 4 (/-;, :v)2 

are the principal moments of inertia. 

(14) 

(15) 

(16) 
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• Density: the ratio between the cluster's number of pixels and 
the area of the box enclosing the cluster. 

A 
D=--

Ay x Ax 
(17) 

• Ratio between the number of possible-foreground and true
foreground pixels: 

MTPR= 
Lfi E (Q2 u Qf) 

Lfi E Qr 
(18) 

• Cluster length along the angle 8, L: obtained by scanning the 
cluster in the 0 direction. 

• Average width: 

A 
W=-

L 

• Ratio between length and width: 

L 
LWR= -w 

• Gray-level average: 

i j 
µ= 

A 

• Gray-level standard deviation: 

I(µ;- µ)2 

A 

(19) 

(20) 

(21) 

(22) 

• Perimeter, P, and perimeter area, AP: calculated by scanning 
the cluster and adding up the number of pixels from its perimeter 
(Figure 2). 

• Perimeter gray-level average: average of gray-level values of 
perimeter pixels Ji 

i j 
(23) 

• Background gray-level average: an area around the cluster was 
set as shown in Figure 2, and the gray-level values corresponding 
to pixels residing in this area were averaged. 

i j 
(24) 

• Perimeter foreground ratio: ratio between the perimeter area 
and the foreground area, as follows. 

A 
PFR = p = -1!.. 

A 
(25) 

• Squareness constant, K,,: calculated from above expression, for 
a rectangle as follows. 
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2 (W + L) 
p= WXL (26) 

then 

K. = p WL = 2 
"' W+L 

(27) 

• Roundness constant, K,: from Equation 25, for a circle, if Dis 
the diameter: 

TID 
p = TID2 

then 

4 
D 

K, = pD = pL = 4 

(28) 

(29) 

• Square perimeter factor: obtained as the ratio between the clus
ter perimeter and the perimeter of a rectangle. 

p 
SPF= 2L + 2W {

Rectangle = 1 
Circle= 0.79 

(30) 

• Background-foreground gray-level ratio: ratio between the 
average gray-level of background pixels (Figure 2) and the cluster 
pixels. 

BFGLR = ~ 
µ! 

(31) 

The previously defined 19 features (Equations 4-31) were found to 
be sufficient to identify and quantify the severity and extent of all 
pavement distress types considered. 

CLUSTER CONNECTION AND CLASSIFICATION 

Prior to the final classification of a selected region on an image, a 
neighbor cluster connection was implemented to facilitate the iden
tification of cracks during classification. The cluster is scanned 
along its perimeter to find adjacent clusters. In the event a neigh
boring cluster is detected, some properties (extracted features) are 
compared. If they satisfy the conditions imposed, they are merged 
to form a single cluster. The procedure continues until all clusters 
are scanned and compared with their neighbors. 

For a case in which cluster k is being scanned and cluster l is 
found as a neighbor, 

if (8k = 8 1 = 8kl)/\ (LWRk = LWR1) then clusters k and l are 
merged 

where: 

8b81 =Angle of principal moment of inertia 
8k1 =Average between angles 8k and 8 1 

LWRk. LWR1 = Ratio between cluster length and cluster width 

Following the cluster (neighbor) connection, the features de
scribed above are calculated for the new clusters so that they can be 
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classified as one of the distress types included in the pavement con
dition rating (PCR) manual (16) or discarded from further analysis 
if they are nondistress. 

The classification is performed in five main stages: depth-related 
cluster classification, cluster preliminary identification, cluster 
identification, cluster preclassification, and final classification. A 
description of the stages is given in the following sections, taking 
into account the distresses found in flexible, composite, and jointed 
portland cement concrete pavements. 

Depth-Related Cluster Identification (Figure 3) 

Flexible and Composite Pavements 

The transverse depth is checked every 18 ft to verify the existence 
of rutting. Rutting is considered when it is greater than 0.1 in. The 
existence of corrugations is detected if five consecutive longitudi
nal readings indicating unevenness of pavement surface in the lon
gitudinal profile greater than 0.1 in. are obtained. The readings are 
considered 18 ft apart. 

Jointed Pavements 

The existence of faulting is detected if a longitudinal unevenness 
greater than 0.1 in. is obtained. The readings are considered 18 ft apart. 

Both transverse and longitudinal depth readings are obtained 
from ultrasonic devices that measure for rutting, corrugation, and 
faulting. These readings are directly encoded on the videotape using 
a gray-level scale for easy decoding during the analysis of individ
ual frames, as described by Acosta (13) and Acosta et al. (J 4). Sim
ilarly, the longitudinal length is also continuously encoded on tape 
from readings obtained with a distance measuring instrument. The 
transverse length remains constant because the camera height and 
focus remain constant. 

. Cluster Preliminary Identification (Figure 4) 

Six parameters that are helpful in the preliminary identification of 
the cluster, regardless of the type of pavement, are obtained based 
on the features extracted from the cluster. 

• Longitudinal unevenness: 
Significant 
Not significant 

• Location (Figure 5): 
In road edge zone 
In wheel track zone 

Longitudinal reading> 0.2 in. 
Otherwise 

In corner break zone on left side of Jane or on right side of lane 
• Shape factor: 

Longitudinal shape factor (SF) SF> 2 
Transverse shape factor SF < 0.5 
Normal shape factor 

• Squareness: 
Semi square 
Not semisquare 

• Size: 
Small 
Medium 

Otherwise 

Ks < 3 and K, < 10 
Otherwise 

A< 30 in.2 
A> 30 in.2 and A< 60 in. 2 

Large Otherwise 
• Darkness with respect to background: 

Dark BFGLR < 2. 
Not dark Otherwise 
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[ DEPTH_ C~ASSIFY I 
Routine 

I 
I I I 

FLEXIBLE COMPOSITE JOINTED 

Rutting Rutting Faulting 
Corrugations Corrugations 

FIGURE 3 Depth-related cluster identification. 

Cluster Identification 

The cluster is identified based on the preliminary identification and 
additional features extracted from the object. Figure 6 shows the 
hierarchical top-down rule-based identification performed on the 
cluster. 

Cluster Preclassification 

In this stage, the cluster is preclassified as one of the distress types, 
considering the type of pavement being analyzed. Figures 7, 8, and 
9 present the cluster preclassification for flexible, composite, and 
jointed pavements, respectively. 

Cluster Final Classification 

The distress types preclassified and marked by an asterisk(*) in Fig
ures 8 and 9 are further analyzed in this stage, either to identify new 
distress types or to validate their classification. These figures show 
that only clusters in composite and jointed pavements need to be 
processed. Figures 10 and 11 present the steps followed in the clus
ter final classification for these two types of pavements, respec
tively. Figure 12 shows the scanned areas close to cracks in the final 
classification stage to verify the presence of joints and crack-related 
distress referenced in Figures 10 and 11. 

Corner Break 
On Left 

~ _J 

l'I 2' 11· I 

~ Wheel Track 

2' 2' 

I 

l 

FIGURE 5 Roadway zones. 

,~ ~ Corner Break 
On Right 

L ::::::> 

1
1· I 2' 

1
1· I 

I ~ RoadEdge 

Calculation of Severity and Extent Parameters 
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Once the cluster is classified, its quantification in terms of severity 
and extent has to be determined. Guidelines included in the PCR rat
ing procedure (16) were followed in the implementation. The analy
sis program outputs a file containing the information needed to cal
culate the PCR value. This information corresponds to parameters 
such as average crack width, percentage of occurrence in section 
length, percentage of occurrence in section area, crack spacing, and 
so forth. 

Different factors affect the estimation of the parameters needed 
for the distress quantification. Acosta (13) mentioned that the seg
mentation does not necessarily completely highlight the area 

PRELIMINARY 

CLUSTER 
IDENTIFJCA TION 

I 
I I I 

Longitudinal Unevenness Location Shape Factor 

Significant In Road Edge Zone Long. Shape Factor 

Not Significant Jn Wheel Track Zone Transv .. Shape Factor 

Jn Corner Break Zone on Left 

In Corner Break Zone on Right 

I I 
Squareness Size Darkness w.r.t. 

Semi Square Small Background 

No Semi Square Medium Dark 

Large Not Dark 

FIGURE 4 Preliminary cluster identification. 



32 TRANSPORTA T/ON RESEARCH RECORD 1505 

Cluster Identification 

(Jointed Pavement or It_Is_Not _Dark) & 

( (LWR>4 & L>lO" & W<3" & IR>lO) or 

(Large & LWR>5 & L>lO" & IR>30)) 

YES NO 

(Medium or Small) & MTPR>0.5 & 

(cr> 10 & Normal SF actor) 

YES NO 

Surface Damage Small & Semi Square 

It Is Transv. 

(9<7.5 or 9> 172) & 

IR> 20 

YES NO 

It Is Crack 

Transv. SFactor & 

(0<15 or 9>165) 

YES NO 

YES NO 

Popout None 

Long. SFactor & 

(0>75 and 9<105) 

YES NO 

(9<45 or 9> l 35) 

YES NO 
Maybe Transv Joint None (9>82 and 0<97) & 

IR > 20 & (lnCBZoneL 

or InCBZoneR) 
It Is Semi Transv. None 

YES NO 

Maybe Long. Joint None 

FIGURE 6 Cluster identification. 

affected by the distress, and furthermore, it is necessary to estimate 
parameters spatially related. Consequently, there are two kinds of 
quantification parameters: local (e.g., crack width, crack length, 
etc.) and spatial (e.g., occurrence of single or multiple cracking, 
area affected by distress, etc.). 

The estimation of local parameters is straightforward, whereas 
the estimation of spatial parameters requires additional work. Two 
data structures were implemented: distress information (Distress
Info) and distress region information (Distress-Region-Info) for the 
estimation of the severity and extent parameters. The image is sub
divided into 18 in. X 18 in. regions, and each region is scanned to 

update the variables contained in the data structures that are to be 
used in the estimation of the spatial parameters. 

The data structure variables are presented in the following tables. 

Distress-Info 

Acum. Cluster Area: summation of physical cluster area. 
Acum. Length: summation of physical cluster length. 
Acum. Area Affected: summation of area affected by distress. 
Acum. Section Length Affected: summation of section length 

affected by distress. 



It Is Crack 

YES NO 

It Is Surface. 

YES NO 

Transv. Crack. In Road Edge Raveling Discarded 

YES NO 

Edge Crack. 

Wheel Track Crack 

YES 

Long. Crack. Random Crack. 

FIGURE 7 Cluster preclassification for flexible pavements. 

It Is Crack 

YES NO 

It Is Surface. 

Damage 

YES NO 

Maybe Transv. 

Joint Raveling Discarded 

YES NO 

Press.Damage Not Found 

& Significant Lg. Depth 

YES NO 

Press.Damage* 

Transv. Crack 

Transv. Crack. 

Reflect. Crack.* 

* Distress is further analyzed in the Final-Classification Stage. 

Long. Crack. 

FIGURE 8 Cluster preclassification for composite pavements. 
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It Is Crack 

YES NO 

Maybe Transv. It Is Popout 

YES NO 

YES NO 

Popout It ls Surf. Damage 

Transv. Joint.* 

YES 

Transv. Crack. Maybe Long. Joint 

YES NO 

Long. Joint* 

YES 

Long. Crack. 

YES NO 

Surf. Deterioratio 

(In CBreak Left & 8<80) 
or 

Discarded 

(In CBreak Right &0> 100) 

YES NO 

Corner Break* Is It Semi Transv. 

YES NO 

Transv. Crack. Long. Crack. 

* Distress is further analyzed in the Final-Classification Stage. 

FIGURE 9 Cluster preclassification for jointed pavements. 

Acum. Depth: summation of depth reading (where applicable). 
Acum. Gray-Level Std. Deviation: summation of standard devi

ations of gray-level values in clusters. 
Acum. Number of Distresses: number of distresses identified in 

the section analyzed. 
Acum. No. of Distress Region: summation of number of dis

tresses in the region. 
Number of Regions With Distress: summation of number of 

regions presenting the distress type. 

Distress-Region-Info 

Tot. No. of Pixels: total number of pixels belonging to the dis
tress type. 

No. of Distress Region: number of clusters classified under the 
distress type that is present in the region. 

Note that for each distress type there are separate data structures, 
which contain the information mentioned above. 

In summary, the procedure to estimate the parameters needed for 
the distress quantification follows three stages: local distress quan
tification, region distress quantification, and reporting of results for 
the analyzed section. 

Local Distress Quantification 

After the cluster is classified, the following variables are updated: 
Acum. Cluster Area, Acum. Length, Acum. Number of Distresses, 
Acum. Gray-Level Std. Deviation, and Acum. Depth (for depth
related distresses). 

Region Distress Quantification 

The following steps are performed in this stage: 

• Count number of distress of each type in region, 
• Update number of regions with distress for each type, 
• Obtain area in the region in which each distress type occurs, 
• Update the following equations: 

DistressArea; 
AcumAreaAffected = RegionArea X (32) I DistressArea 

DistressLength; 
AcumLengthAffected=Region LengthX "'"' . (33) 

L D1stressLength 
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(I) Verify existence of Reflection Cracking 

Reflect.Crack 

YES 

- Scan Area Next to Cluster 
- Add Length of clusters -

Transv. Shape or Classified 
as Reflection Crack. too. 

Acum. Length> 30" 

YES 

Reflect. Crack. 

NO 

Change to 
Transv. Crack 

NO 

Change to 
Transv. Crack 

(2) Verify existence of Pressure Damage/Upheaval or Shattered Slab 

Press.Damage 

YES NO 

- Scan Area Next to Cluster 
Do Nothing 

Found Long. Crack 

YES NO 

Shattered Slab Press.Damage 

FIGURE 10 Cluster final classification for composite pavements. 

This operation is performed only once, for regions within the same 
transverse location of the image. 

Report of Results for Analyzed Section 

The parameters needed for distress quantification in terms of sever
ity and extent are obtained based on the values stored in the data 
structure: Distress-Info. They are summarized in the following 
equations. 

• Average number of distresses per region: 

AcumNDisReg 
A veNDisPerReg = ------= 

NRegWithDis 

Useful in determining single or multiple cracking: 

(34) 

• Average distress length: 

A D. L h AcumLength 
ve IS engt = AcumNDistress 

• Average distress area: 

A D
. A AcumArea 

ve IS rea = . 
AcumNDistress 

• Average gray-level SD: 

A S dD 
. . AcumStdDev 

ve t eviat10n = 
AcumNDistress 

Useful in determining texture: 

if A veStdDeviation > 65 surface severely rough. 

35 

(36) 

(37) 

(38) 

if (A veNDisPerReg ::; 1 ), single otherwise, multiple. 
if 65 < A veStdDeviation > 25 open texture, medium roughness. 
if AveStdDeviation < 25 very little coarse aggregate. 

• Average crack width: 

AcumDisArea 
AveCrackWidth = -----

AcumLength 
(35) 

• Percentage of occurrences per section area: 

AcumAreaAffected 
PerOccSecArea = --------

SecArea 
(39) 



(1) Verify existence of Transverse Joints 

Transv. Joint 

YES NO 

Do Nothing 

- Scan Area Next to Cluster 
- Add Length of clusters -

Transv. Shape or Classified 
as Transv. Joint. too. 

Acum. Length> 30" 

YES 

Transv. Joint 

NO 

Change to 
Transv. Crack. 

(3) Verify existence of Corner Breaks 

Comer Break 

YES NO 

9<45 or 0> 135 

YES NO 

Transv. Crack Long. Crack. 

- Scan Area Next to Cluster 

Found Transv. Joint 

YES NO 

Comer Break 0<45 or 0> 135 

YES NO 

Transv. Crack Long. Crack. 

FIGURE 11 Cluster final classification for jointed pavements. 

(2) Verity existence ot Long. Joints 

Long. Joint 

YES NO 

Do Nothing 

- Scan Area Next to Cluster 
- Add Length of clusters -
Long. Shape or Classified 
as Long. Joint. too. 

Acum. Length > 30" 

YES NO 

Long. Joint Change to 
Long. Crack. 

(4) Verify existence of Joint Spalling and Pressure Damage 

Transv. Joint 

YES NO 

Do Nothing 

- Scan Area Next to Cluster 
- Acum. Area of Crack-

Related Clusters & 
Non Crack-Related 
Clusters 

AreaCracks 

TotalArea >.3 

YES NO 

Joint Spalling AreaN onCracks 

· Tota!Area 

YES NO 

>.3 

Press. Damage None 
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(a) Reflection Cracking 
Composite Pavement 

(c) Transverse Joint 
Jointed Pavement 

·--Is" fm Is" 
( e) Comer Break 

Jointed Pavement 

FIGURE 12 Scanned areas in final classification stage. 

where SecArea = area of the section analyzed 

• Percentage of occurrences per section length: 

AcumSecLengthAff ected 
PerOccSecLength = -----~----

SecLength 
(40) 

where SecLength = length of the section analyzed; or, in jointed 
pavements (where applicable): 

P 0 S L h 
AcumNDistress 

er cc ec engt = 
NS labs 

(41) 

where NS labs = number of slabs in the section analyzed. 

(b) Pressure Damage/Up 
Composite Pavemen t 

( d) Longitudinal Joint 
Jointed Pavement 

(t) Joint Spalling & Pressu 
Jointed Pavement 

• Average distress spacing: 

Sec Length 

heaval 

!8" 
8" 

~ 
5" 5" 

re Damage 

i· 8" 

A veDisSpacing = 
AcumNDistre SS 

• Average distress depth (ford epth-related distresses): 

AcumDepth 
AveDisDepth = ----~-

AcumNDistress 

37 

(42) 

(43) 

• Number of distress types per mile (where applicable in jointed 
pavements): 

s AcumNDistres 
AveDisDepth = ------

SecLength [mile s] 
(44) 
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TABLE 1 Comparison Between Manual and Automated PCR Values 

Sectio n 
Lengt h (meters) 
Numb er of images 
Data acquisition time. (min.) 
Data processing time (min.) 
Manu al survey PCR 
Auto mated survey PCR 
% D ifference of automated system 
with respect to manual values 

RESULTS 

The distress classification system described herein was used to 
determine the PCR (16) for four pavement sections that were also 
rated by the Ohio Department of Transportation (ODOT). A sum
mary of the manual and automated PCR is presented in Table 1. The 
images were collected using a vehicle, described by El Sanhouri 
(13), traveling at 80 km/hr (50 mi/hr). The collected video images 
were processed from videotape using a SUN Sparc-2 computer. As 
implemented, processing takes approximately 10 times as long as 
acquisition. The difference between manual and automated PCR is 
less than 5 percent in all test sections. 

SUMMARY 

Several methods have been proposed to identify regions of distress 
using image-processing techniques. The required region properties 
and a decision tree for reducing selected regions of an image to con
ventional type, severity, and extent of pavement distress have been 
presented in this study. The features and decision trees have been 
tested on several thousand pavement images. The system of which 
the decision tree is part has been used successfully by ODOT since 
May 1994. 
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