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Pavement Distress Evaluation Using Fuzzy 
Logic and Moment Invariants 

JACHING CHOU, WENDE A. O'NEILL, AND HENGDA CHENG 

A novel approach of applying the theory of fuzzy sets and moment 
invariants to analyze pavement images is proposed in this paper. By 
applying the theory of fuzzy sets and calculating moment invariants 
from different types of distress, features are obtained. Then, a back
propagation neural network is used to classify these features. The crack 
density is used to obtain extent information. This approach is illustrated 
using randomly selected samples from NCHRP Project 1-27 video 
images of real cracks. Based on these samples, the feasibility of using 
the theory of fuzzy sets and moment invariants to classify different types 
of crack is proven. High accuracy of classification is also obtained. 

Pavement distress surveys are one of the key components in a pave
ment management system (PMS). Currently, most states use man
ual surveys to obtain measurements of pavement distress. Manual 
surveys are inconsistent, costly, tedious, labor intensive, and sub
jective. Several researchers have investigated the use of image pro
cessing and pattern recognition techniques to achieve automated 
pavement distress ratings. 

LITERATURE REVIEW 

Previous Work in Pavement Image Processing 

Baker et al. (J) discussed the use of image processing in pavement 
analysis for the Idaho Transportation Department. Caroff et al. (2) 
developed and validated the use of digital image processing in pave
ment distress to extract, recognize, and quantify longitudinal cracks, 
transverse cracks, and alligator cracks. Fukuhara et al. (3) intro
duced a Komatsu system for pavement condition surveys. Mohajeri 
and Manning ( 4) discussed the ARIA pavement distress image pro
cessing system. Li, Chan, and Lytton (5) proposed an approach to 
detect thin (width < 1/4 inch) cracks. Ritchie, Kaseko, and Bavar
ian (6) applied neural networks to determine (recognition, high 
level processing) the type, severity, and extent of distress from 
video images in real time. Acosta, Figueroa, and Mullen (7) devel
oped image processing procedures with several system compo
nents, such as image digitizing and deblurring, image segmentation 
and clustering, feature extraction and cluster classification, and a 
pavement condition rating routine. Koutsopoulos and Downey (8) 

adopted a primitive-based classification approach to classify 
distress type. Chua and Xu (9) proposed a prototype system 
that consists of an ordinary 8-mm camcorder, an inexpensive 
image-digitizing board, and an algorithm running on an IBM 
486-compatible personal computer to detect pavement distress. 

Departments of Civil and Environmental Engineering and Computer Sci
ence, Utah State University, Logan, Utah 84322. 

In general, previous studies show that the following steps are 
required in pavement image processing: (a) image acquisition, (b) 

image enhancement, (c) image segmentation, and (d) image classi
fication. The following sections will discuss algorithms used in 
research applications of using video image processing. 

Moment Invariants and the Theory of Fuzzy Set 
in Image Analysis 

Pal and King (10) said, "The theory of fuzzy sets provides a suit
able algorithm in analyzing complex systems and decision 
processes when the pattern indeterminacy is due to inherent vari
ability and/or vagueness (fuzziness) rather than randomness." There 
are several reasons that images are fuzzy: (a) images are generally 
ambiguous when represented by pixels because of the varied levels 
of brightness (0 to 255) and the lack of crisp boundaries between 
edges and nonhomogeneous regions; (b) information is lost in 
the transformation from a three-dimensional image to a two
dimensional image; and (c) ambiguity and vagueness in interpret
ing results from low level image processing. So the use of fuzzy set 
theory may be more suitable than ordinal set theory for an image
processing problem. 

Pal (11) introduced an index of fuzziness and entropy as a qual
ity index of enhanced images. In Pal and Ghosh's work (12), fuzzy 
geometry is used in image analysis. Pal and Rosenfeld (13) pro
posed image enhancement and thresholding by optimizing the com
pactness of fuzziness. Linear index of fuzziness, quadratic index of 
fuzziness, entropy, and index of nonfuzziness are also introduced. 
Pal, King, and Hashim (14) used fuzzy sets to describe images and 
to extract primitives. Keller and Carpenter (15) used fuzzy set the
ory to segment images. Zhao, Li, and Cheng (16) applied a fuzzy 
logic approach to image enhancement. Huntsberger, Jacobs, and 
Cannon (17) have developed an iterative fuzzy clustering technique 
based on a fuzzy c-means algorithm for image segmentation. 

Moments and functions of moments have been applied as pattern 
features in several applications to recognize objects. Hu (18) intro
duced moment invariants based on algebraic invariants. Noll (19) 
discussed some general properties of Zernike polynomials, such as 
their Fourier transforms, integral representations, and derivatives. 
Reddi (20) introduced radial and angular moments, which are more 
general in moment functions compared with Hu's moment invaij
ants. Teague (21) introduced Zernike moments based on the theory 
of orthogonal polynomials and Legendre moments based on 
Legendre polynomials. In Teague's research (22), moments with 
arbitrarily high orders were developed. In 1984 (23) and 1985 (24), 

Abu-Mostafa and Psaltis introduced complex moments as a simple 
and straightforward way to derive moment invariants. Maitra (25) 
found that moments are not contrast invariant between two images. 



40 

Hsia (26) discussed moment variations due to numerical integration 
and interpolation in digital images. 

Previous efforts show that moment invariants and the theory of 
fuzzy sets have been successfully applied to image processing and 
analysis for a variety of applications. These applications include 
recognition of hand-printed characters, aircraft identification, inter
pretation of ship photos, recognition of vehicle images, and others. 
Preliminary results from Chou's work (27,28) show that: (a) fuzzy 
image-processing techniques can provide a better approach to 
process pavement images; and (b) by the properties of moment 
invariants under change of size (scale), change of position (transla
tion), change of orientation (rotation), and reflection, cracks' fea
tures can be extracted, and cracks can be correctly classified. 

This paper focuses on models and algorithms for automated 
asphalt pavement image processing. Algorithms of image prepro
cessing, image enhancement, image segmentation, distress feature 
extraction and classification, and obtaining extent information are 
presented. 

METHODOLOGY 

Pavement Image Acquisition and Digitization 

Sample images for this work were provided by the NCHRP, Project 
1-27. Images were digitized using a Panasonic S-VHS AG-7500 
editing machine controlled by a DIA QUEST board in an IBM com
patible personal computer and a TARGA+ image-digitizing board. 
The image size for each frame is 482 X 512 pixels, and the gray 
scale is from 0 to 255. 

Pavement Image Preprocessing 

Because of the nonuniform illumination, some images' right and 
left portions are darker than their central area. Figure 1 shows this 
situation in a nondistress image. In this case, a nonlinear equation 
is used to adjust the image histogram. This equation is 

average gray 
value I row 

NON-DISTRESS 

PAVEMENT IMAGE 

FIGURE 1 Nonuniform illumination in a 
nondistress pavement image. 
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p, X Yx1, - X; 

f(x,y) = f(x,y) + _ 0 

P2X~ 

where 

X; = current x-position, 

0:::; X;:::; Xh 

Xb < X;:::; Xe 

Xe < X;:::; 255 

xe = position where the right dark area begins, 
x" = position where the left dark area ends, and 

p,, P2 = parameters. 

(1) 

The values of Xe and xh are derived from 45 sample images. The val
ues of p, and p2 are calibrated from 45 sample images by manually 
examining images. In practical situations, these parameters can be 
calibrated from field images and used for the remaining pavement 
images because the lighting condition is under control. This step is 
only required when images are darker along the edges. 

Pavement Image Rotation 

To generate enough image samples and test moment invariants 
under rotation for pavement distress images, a rotating technique is 
used. This technique is referred to as a geometric transformation. In 
this transformation the relationship between a source image and a 
rotated image is 

[
Xnew] = [ c~se 
Ynew -sm0 

sine] X [Xo1d] 
cos0 Yo1ct 

(2) 

According to Lindley (29), to guarantee one-to-one mapping of 
source to rotated pixels, reverse mapping is used. Interpolation is 
used to calculate the coordinates for the pixels whose locations are 
fractional during the rotating process. Bi-linear interpolation is used 
here. 

The relationship between f(x,y} and the four surrounding points 
is described in Figure 2 as follows. 

j =INT [x] 
k =INT [y] 

a=x-y 
13=y-k 

where INT[] is an integer function. 

In Y-direction, 

A = (1 - 13) * f(j, k) + 13 * f(j, k + 1) 
B = (1 - 13) * f (I, k) + 13 * f (j + l, k + I) 

f0,k) f0+1,k) ' 

I .o 
A,_ .. -.... --- it_ ~.1. . . B 

: f{x,y) 

fQ,k+1) f(j+1,k+1 

FIGURE 2 Bilinear interpolation in 
image rotation. 

(3) 

(4) 



Chou et al. 

In X-direction, 

f(x,y) = a * ~ + (1 - a) *A 

Finally, 

f(x,y) =(I - o:)(l - ~) * f(j, k) + o:(l - ~)f(j+ 1, k) 

+ ~ (1 - a)* f(j, k + I) + a~f(j + 1, k + I) 

when a = ~ = O,f(x, y) = f(j, k). 

Pavement Image Enhancement 

(5) 

(6) 

Zhao et al. (16) used a fuzzy algorithm to enhance images. In this 
research, a Z-function is used instead of S-function because the 
S-function is typically used for bright objects, and pavement cracks 
are dark. First, a function complementary to the S-function [i.e., 
(1-S)-function] is used. The Z-function is defined as 

x<a 

Z(x,a,b,c) = µx(x) = 

1 - (x-a)2 
(b-a)(c- a) 

a$x<b 
(7) 

(x-c) 2 

(c-b)(c- a) 

0 x;:::::: c 

where 

a and c = parameters determining the fuzzy region and associ
ated with the histogram of the gray scale of the image, 

b = (a + c)/2, and 
X = pixel value. 

Second, an averaging filter is used to remove noise, thus smooth
ing the image. And the output is v(m,n). The definition of v(m,n) is 

v(m,n) = average [µ_,{m - k, n - l), (k,l) E W)] (8) 

where Wis the averaging filter window, and its size is 3 X 3. Third, 
a transformation function (T) is used to enhance the image in the 
fuzzy domain. The transformation function is 

µ',.(x11111 ) = T[ v(m,n)] 

{ 
2 X [v(m,n)]2 

= I - 2 X (1 - v[m,n)]2 
0.0 $ v(m,n) < 0.5, 
0.5 $ v(m,n) < 1.0 (9) 

Finally, fuzzy membership values are converted to gray-level 
values. 

Pavement Image Thresholding 

A fuzzy thresholding technique based on the principle of maximum 
fuzzy entropy is used. The degree of ambiguity of an image can be 
measured by the entropy of a fuzzy set. A threshold is obtained by 
maximizing the fuzzy entropy of an image. The fuzzy entropy is 
defined as 
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-I Lmax 

H(x;) = MN (ln2) I {µx(x;) ln[µ..(x;)] 
x=Lmin 

+ [I - µ...(x;)] ln[l - µ...(x;)]} X h(x;) (10) 

where h(x) is the histogram. After thresholding, a binary image is 
obtained. 

Pavement Image Feature Extraction 

There are seven types of distress that are considered in this research. 
These distresses are longitudinal cracks, transverse cracks, com
bined longitudinal and transverse cracks, right and left diagonal 
cracks, alligator (fatigue) cracks, and nondistress. Letflm,n) be the 
function of distress in a segmented image R containing M by N pix
els and first order moments of the centroid of the shape, 

Mp,q =I I mP n"f(m,n) 
m n 

- M1.o I ~ ~ mf(m,n) 
m= Moo= M*N LL 

n= ~::~ = M:NI I nf(m,n) (11) 

where f(m,n) = I for binary images. The moment-based features 
include the following. 

Hu Moments 

Hu' s approach was proposed in 1962 (18). The seven moments up 
to three orders are 

HM1 = 112.0 + 110.2 
HM2 = (112.0 + 110.2)2 + 41111 2 

HM3 = (113.o + 311u)2 + (3YJ2.1 - 11u)2 

HM4 = (113.o + 11d2 + (112.1 + 11o.3)2 

HMs = (Y)3,o - 3111.2)(113.0 + 111.2)[(113.o + 11d2 - 3(112.1 + 110,3)2] 
+ (3112.1 - 110,3)(112.1 + 11d[3(113.0 + 111.2>2 - (112.1 + 11o.3)2] 

HM6 = (112.0 - 110.2)[(113.0 + 111.2)2 - (112.1 - 1103)2] 
+ 4111.1 ( 113,0 + 11 I .2) + ( 112. I + 110.3) 

HM1 = (3112.1 - 113.0)(113.0 + 11u)[(113.o + 11d2 

- 3(112.1 + 11o.3)2] + (3YJ1.2 
- 113.0)(112.1 + 11d[3(113.0 + 11d2 - (112.1 + 11d2] (12) 

where n"·" =I I cm - m)" en - n)" 1cm,n) 
m 11 

Bamieh Moments 

The Bamieh moment (30) can be expressed by using central 
moments as shown 

BM1 = 11021120 - 1111 2 

BM2 = (11031130 - 11211112)2 - 4(11031112 - 11~1)(11211130 - 11T2) 
BM3 = 11401104 - 411311113 + 311~2 
BM4 = 114011221104 - 2113111221113 - 114o11T3 - 110411~1 - 11~2 (13) 
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Zernike (Teague) Moments 

The Zernike moments (21) expressed in terms of usual moments 
are: 

13824 ? 
ZMs = ~ [(1103 - 31121)(1103 + 1121) X [(1103 + 1121)-

- 3(1130 + 1112)2] - (1130 - 31112)(1130 + 1112) 
x [(1130 + 1112)2 - 3(1103 + 1121)2]} 

ZM6 = 
8
;; {(1102 - 1120)((1130 + 1112)2 - [(1130 + 1121)2] 

+ 41111(1103 + 1121) x (1130 + 1112)} 

Pavement Image Classification 

(14) 

A backpropagation neural network is used to classify the type of 
distress based on Hu's seven moment invariants (HM), Zernike's 
six moment invariants (ZM), and Bamieh's four moment invariants 
(BM). There are 18 nodes: 4 for BM, 7 for HM, 6 for ZM, and 1 for 
bias in the input layer, 17 nodes in the hidden layer, and 7 nodes in 
the output layer to represent seven different types of cracks. 

Extent of Pavement Distress 

Crack density (Dp) is used as an index of extent in this paper. Orig
inally, the crack density is defined as 

. PM 
Dp(crack density) = PN (15) 

where PM is the number of distress pixels, and P N is the total num
ber of image pixels. For example, if the number of distress pixels is 
20,000, and the number of total image pixels is 246, 784 ( 482 X 

512), then the crack density is 8.1 percent (20,000/246, 784 · 100 
percent). 

Simply using the number of pixels to calculate the crack density 
causes errors. For example, in a longitudinal crack with broken line 
segments some pixels are missing in the crack density calculation, 
and the calculated crack density will be smaller than the actual one. 
In this paper a modified crack density is used. By assuming that 
there are BN numbers of total image blocks in an image and BM num
bers of image blocks containing distress, the crack density (D8 ) is 
defined as 

Ds(crack density) = ~: (16) 

The modified crack density can prevent problems associated with 
missing pixels due to image processing. 
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Image blocks are generated by partitioning a binary pavement 
image into certain regions. The mean and the variance of the pixel 
values within each image block are used to determine the existence 
of distress in that block. For example, if the size of image and image 
block is 482 X 512 and 48 X 48, respectively, then there are 121 
blocks in an image. The crack density is 9.1 percent (11/121 · 100 
percent) if there are 11 blocks containing distress. 

The relationship between the crack density and a density rating 
(extent) is shown on Table 1. From this table, an image with crack 
density between 41 and 80 percent will receive an integer rating of 
5 (Table 1). 

To reasonably interpret extent of pavement distress using the 
crack density, the crack density of alligator cracks are treated dif
ferently from the other types of distress. With the same crack den
sity value alligator cracks should have a higher extent rating. Alli
gator cracks are "area" (two-dimensions) types of cracks, and 
longitudinal and transverse cracks are linear. 

There are two ways to handle this problem. Different criteria may 
be used to select distress image blocks. Otherwise, different density 
rating tables may be used for alligator cracks but the same criteria 
in deciding distress image blocks. In this paper, the former approach 
is used. 

RESULTS 

Pavement Image Preprocessing 

This step is only required when images are darker in the edges. The 
values of Xe and xb are derived from 45 sample images. The values 
of p 1 and p 2 are calibrated from 45 sample images by "trial and 
error." The results are: p 1 is 2.0, p 2 is 4.0, Xe is 430, and xb is 100. 

Pavement Image Enhancement and Thresholding 

Originally 18 combinations of transverse and longitudinal crack 
images, 14 longitudinal crack images, 13 alligator crack images, 7 
transverse crack images, and 7 nondistress images were used. Left 
and right diagonal cracks were generated by rotating longitudinal . 
and transverse cracks with 45 degrees and 135 degrees, respectively. 
These original images were rotated by 0.5, 1.0, 1.5, 2.0, 358.0, 
358.5, 359.0, and 359.5 degrees to generate more test samples. 

Because of nonuniform illumination and background noise in 
NCHRP images, different a, b, and c values in the Z-membership 
function are related to the histogram of the images and can be deter
mined by experimentation. In thresholding, the maximum entropy 

TABLE 1 The Density Rating 

Rate Density range 

0 less than 1% 

1 1% to 5% 

2 6% to 10% 

3 11% to 20% 

4 21% to 40% 

5 41% to 80% 

6 81% to 100% 
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approach is used to determine thre hold value for adaptively 
thresholding subimages. Two subimage of256 X 256 and two sub
images of 226 X 256 are proce ed. 

Pavement Image Feature Extraction 

Moment features based on Bamieh's, Hu's, and Zernike' s moments 
were calculated. Moment values were computed in the format of 
logarithms with base I 0, and then they were normalized and input 
to the neural network. Figures 3-7 show the result of image pro
cessing for longitudinal cracks, transverse cracks, combined longi
tudinal and transverse cracks, alligator cracks, and nondistress, 
respectively. 

Pavement Image Classification 

A backpropagation neural network was used to classify different 
types of cracks. Figure 8 hows the structure of this neural network. 

FIGURE 3 Results of longitudinal cracks after image processing 
(top left: original image; top right: preprocessed image; bottom 
left: enhanced image; bottom right: binary image). 

FIGURE 4 Results of transverse cracks after image processing 
(This image does not require preprocessing) (top: original image; 
bottom left: enhanced image; bottom right: binary image). 

FIGURE 5 Results of combined longitudinal and transverse 
cracks after image processing (top left: original image; top right: 
preprocessed image; bottom left: enhanced image; bottom right: 
binary image). 

FIGURE 6 Results of alligator after image processing (top left: 
original image; top right: preprocessed image; bottom left: 
enhanced image; bottom right: binary image). 

FIGURE 7 Results of nondistress after image processing (top 
left: original image; top right: preprocessed image; bottom left: 
enhanced image; bottom right: binary image). 
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PavaMent Distress Classification Using BP Heural l'tetwork in Ordinal Domain 

Bamiah 
Moment 

Invariants 

Hu 
Moment 
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Mom~m 

lnvmitm.ts 

FIGURE 8 The structure of a backpropagation neural network (this figure 
is generated from NeuralWork's NeuralWare software simulator). 

TABLE 2 Comparison of Classification Accuracy 

Chua 

Transverse 100% 

Longitudinal 100% 

Diagonal 

Alligator 

Block 

Comhii1ed 
of 
longitudinal 
and 
transverse 

Non
Distress 

Combined 
distress 

93% 

80% 

67% 

75% 

Lee Ritchie 

50%" 93% 

100% 96% 

67% 

99% 

60% 

Acosta Mohajeri Koutsopoulos 

100%· 

100% 

73% 

33% 

a Two transverse cracks in an image were considered as transverse cracks here. 

This 
Research 

100% 

100% 

100% 

100% 

100% 

100% 

h These were combinations of longitudinal and transverse cracks. Since there was no template for this type in 
this paper, it will not be counted here. 
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TABLE 3 Computation Time Required in Each Step for 
the Same Image 

I Procedures I Time required 

Image preprocessing 1.5 sec 

Image enhancement 9.8 sec 

Image segmentation 6.2 sec 

Moment calculation 7.8 sec 

Neural network classifier < J sec 

I Total time required I 35.3 sec 

I 

I 

A total of 126 longitudinal cracks (Class 1 ), 162 combined longitu
dinal and transverse cracks (Class 2), 78 transverse cracks (Class 3), 
126 right diagonal cracks (Class 4 ), 126 left diagonal cracks (Class 
5), 117 alligator cracks (Class 6), and 42 nondistress (Class 7) were 
generated. During the learning process, 108 Class I samples, 135 
Class 2 samples, 68 Class 3 samples, 108 Class 4 samples, I 08 
Class 5 samples, 99 Class 6 samples, and 36 Class 7 samples were 
used. The remaining samples were used as the test data. The com-

TABLE 4 The Result of Severity Rating 

Longitudinal Combined of 
Image longitudinal and 

# transverse 

Density Extent Density Extent 
(%) Rating (%) Rating 

l 11 3 25 4 

2 17 3 21 4 

3 11 3 21 4 

4 12 4 22 4 

5 14 3 17 3 

6 12 3 26 4 

7 12 3 20 3 

8 8 2 21 4 

9 9 2 17 3 

10 10 2 18 3 

11 8 2 17 3 

12 7 2 17 3 

13 7 2 21 4 

14 9 2 28 4 

15 23 4 

16 24 4 

17 19 3 

18 20 3 

45 

petition approach (win-and-take) was applied, which means the 
largest output value in the seven neural output nodes determines the 
type of distress. For example, a sample is classified as an alligator 
crack if Node 6 has the largest value. 

Table 2 shows the classification result. Every type of distress is 
classified correctly for these test images used in this research. In 
terms of computational efforts, Table 3 shows the average compu
tation time required for each step for a single image. This algorithm 
was implemented using the C language in IBM RS-6000 machine. 

Extent of Pavement Distress 

The mean and the variance of the pixels within each image block 
are used to determine the extent of distress in an image block. The 
size of the image block used in this experiment was 48 X 48 pixels. 
In alligator cracks distress is evaluated if the mean is smaller than 
245 and the variance is greater than 0. For other types of distress, 
distress extent is evaluated if the mean is smaller than 245 and the 
variance is greater than l (Table 2). Values of the mean (245) and 
the variance (0 and 1) are found by "trial and error" in this experi
ment. Table 4 shows results of the density rating. From Table 3, an 
alligator crack image with a crack density of 65 percent (Image I) 

Transverse Alligator 

Density Extent Density Extent 
(%) Rating (%) Rating 

12 3 65 5 

22 4 39 4 

26 4 31 4 

22 4 40 4 

22 4 86 6 

25 4 74 5 

17 3 69 5 

26 4 69 5 

52 5 

89 6 

71 5 

41 5 

64 5 
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will have an extent rating of 5, and a combined longitudinal and 
transverse crack with a crack density of 17 percent (Image 2) will 
have an extent rating of 3. 

CONCLUSIONS 

A fuzzy enhancement algorithm, moment invariant features, and 
neural networks were used to classify pavement cracks (alligator 
cracks, longitudinal cracks, transverse cracks, combinations of lon
gitudinal and transverse cracks, diagonal cracks, and nondistress). 
Moment invariants are shown to be feasible for pavement crack 
classification. Although the shape of pavement crack is irregular 
and fuzzy, which results in the loss of invariant properties, moment 
invariants still perform well. The extracted features are input to the 
neural network, and the classification accuracy is quite satisfactory. 
Using different criteria in the crack density to determine severity 
between alligator and other types of cracks provides more reason
able results. 

REFERENCES 

1. Baker, J., B. Dahlstrom, K. Longenecker, and T. Buu. Video Image Dis
tress Analysis Technique for Idaho Transportation Department Pave
ment Management System. Transportation Research Record 1II7, 
TRB, National Research Council, Washington, D.C., 1987, pp. 
159-163. 

2. Caroff, G., P. Joubert, F. Prudhomme, and G. Soussain. Classification 
of Pavement Distress by Image Processing. Proc., First International 
Conference on Applications of Advanced Technologies in Transporta
tion Engineering, ASCE, San Diego, Calif., 1989, pp. 46-51. 

3. Fukuhara, T., K. Terada, M. Nagao, A. Kasahara, and S. Ichihashi. 
Automatic Pavement-Distress-Survey System. Journal of Transporta
tion Engineering, ASCE Vol. 116, No. 3, 1990, pp. 280-286. 

4. Mohajeri, M. H., and Patrick J. Manning, ARIA: An Operating System 
of Pavement Distress Diagnosis by Image Processing. Transportation 
Research Record 1311, TRB, National Research Council, Washington, 
D.C., 1991, pp. 120-130. 

5. Li, L., P. Chan, and R. L. Lytton. Detection of Thin Cracks on Noisy 
Pavement Images. Transportation Research Record I 311, TRB, 
National Research Council, Washington, D.C., 1991, pp. 131-135. 

6. Ritchie, S. G., M. Kaseko, and B. Bavarian. Development of an Intelli
gent System for Automated Pavement Evaluation. Transportation 
Research Record 1311, National Research Council, Washington, D.C., 
1991, pp. 120-130. 

7. Acosta, J. J. Adolfo, L. Figueroa, and R. L. Mullen. Low-Cost Video 
Image Processing System for Evaluating Pavement Surface Distress. 
Transportation Research Record I 348, TRB, National Research Coun
cil, Washington, D.C., 1992, pp. 63-72. 

8. Koutsopoulos, H. N., and A. B. Downey. Primitive-Based Classifica
tion of Pavement Cracking Images. Joumal of Transportation Engi
neering, ASCE, Vol. 119, No. 3, pp. 402-418, 1993. 

9. Chua, K.-M., and L. Xu. Simple Procedure for Identifying Pavement 
Distress from Video Images. Journal of Transportation Engineering, 
ASCE, Vol. 120, No. 3, pp. 412-431. . 

TRANSPORTATION RESEARCH RECORD 1505 

10. Pal, S. K., and R. A. King. Image Enhancement Using Smoothing with 
Fuzzy Sets. IEEE Transactions on Systems, Man, and Cybemetics, Vol. 
11, No. 7, 1981, pp. 494-501. 

11. Pal, S. K. A Note on the Quantitative Measure of Image Enhancement 
Through Fuzziness. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 4, No. 2, 1982, pp. 204-208. 

12. Pal, S. K., and A. Ghosh. Fuzzy Geometry in Image Analysis. Fuzzy 
Sets and Svstems, Vol. 48, 1992, pp. 23-40. 

13. Pal, S. K.:and A. Rosenfeld. Image Enhancement and Thresholding by 
Optimization of Fuzzy Compactness. Pattern Recognition Letter, Vol. 
7, 1988, pp. 77-86. 

14. Pal, S. K., R. A. King, and A. A. Hashim. Image Description and Prim
itive Extraction Using Fuzzy Sets. IEEE Transactions on Systems, Man, 
and Cybernetics, Vol. 13, No. 1, 1983, pp. 94-100. 

15. Keller, J.M., and C. L. Carpenter. Image Segmentation in the Presence 
of Uncertainty. International Journal of Intelligent Systems, Vol. 5, 
1990, pp. J 93-208. 

16. Zhao, Z., X. Li, and H.D. Cheng. An Effective Fuzzy Logic Approach 
to Image Enhancement. SPIE Visual Communication and Image Pro
cessing, Vol. 2094, 1993, pp. 244-251. 

17. Huntsberger, T. L., C. L. Jacobs, and R. L. Cannon. Iterative Fuzzy 
Image Segmentation. Pattern Recognition, Vol. 18, No. 2, 1985, pp. 
131-138. 

18. Hu, M.-K. Visual Pattern Recognition by Moment Invariants. IRE 
Transactions on Information Theory, Vol. 8, 1962, pp. 179-187. 

19. Noll, R. J. Zernike Polynomials and Atmospheric Turbulence. Optical 
Society American Journal, Vol. 66, No. 3, 1976, pp. 207-211. 

20. Reddi, S. S. Radial and Angular Moment Invariants for Image Identifi
cation. IEEE Transactions on Pattern Analysis and Machine Intelli
gence, Vol. 3, No. 2, 1981, pp. 240-242. 

21. Teague, M. R. Image Analysis via the General Theory of Moments. 
Optical Society American Journal, Vol. 70, No. 8, l 980a, pp. 920-930. 

22. Teague, M. R. Optical Calculation of Irradiance Moments. Applied 
Optics, Vol. 19, No. 8, 1980b, pp. 1353-1356. 

23. Abu-Mostafa, Y. S., and D. Psaltis. Recognitive Aspective of Moment 
Invariants. IEEE Transactions on Pattern Recognition and Machine 
Intelligence, Vol. 6, No. 6, 1984, pp. 698-706. 

24. Abu-Mostafa, Y. S., and D. Psaltis. Image Normalization by Complex 
Moments. IEEE Transactions on Pattern Recognition and Machine 
Intelligence, Vol. 7, No. 1, 1985, pp. 46-55. 

25. Maitra, S. Moment Invariants. Proceedings of the IEEE, Vol. 67, No. 4, 
1979, pp. 697-699. 

26. Hsia, T. C. A Note on Invariant Moments in Image Processing. IEEE 
Transactions on System, Man, and Cybernetics, Vol. 11, No. 12, 1981, 
pp. 831-834. 

27. Chou, J., W. A. O'Neill, and H. D. Cheng. Evaluation of Pavement Dis
tress Image Using Artificial Neural Networks. accepted by 27th inter
national Symposium on Advance Transportation Applications, Oct. 
31-Nov. 4, 1994a, Aachen, Germany. 

28. Chou, JaChing, W. A. O'Neill, and H. D. Cheng. Pavement Distress 
Classification Using Neural Networks. Presented at IEEE International 
Conference on Systems, Man, and Cybernetics, San Antonio, Tex., 
1994. 

29. Lindley, C. A., Practical Image Processing in C. John Wiley & Sons, 
Inc., New York, 1991. 

30. Belkasim, S. 0., M. Shridhar, and M. Ahmadi. Pattern Recognition with 
Moment Invariants: A Comparative Study and New Results. Pattern 
Recognition, Vol. 24, No. 12, 1991, pp. 1117-1138. 

Publication of this report sponsored by Committee on Pavement Monitor
ing, Evaluation. and Data Storage. 


