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Development of Performance Prediction 
Models for Illinois Continuously 
Reinforced Concrete Pavements 

YING-HAUR LEE AND MICHAEL I. DARTER 

A new predictive modeling approach is presented and the approach for 
localized failures in Illinois continuously reinforced concrete pave
ments (CRCP) is demonstrated. Some data retrieval guidelines from the 
Illinois Pavement Feedback System data base is first presented. A pre
liminary data analysis was conducted to assist in data cleaning and 
assessing the variability of the data before the analysis was performed. 
Several modern regression techniques ("robust" and "nonparametric" 
regressions) were introduced in a proposed new predictive modeling 
approach. The proposed modeling approach was used to develop an 
improved model for localized failures in CRCP. The resulting model 
includes several variables such as cumulative ESALs, slab thickness, 
content and methods of the steel reinforcement, and base type for the 
prediction of CRCP failures. A sensitivity analysis was also performed 
to illustrate the effect of these variables on failures. Slab thickness and 
steel content are by far the most significant variables affecting failures. 
Crack spacing had no effect. 

Continuously reinforced concrete pavements (CRC pavements or 
CRCP) have been extensively constructed throughout the 1960s and 
1970s in Illinois. Approximately 60 percent of the Illinois Interstate 
highways (the third largest mileage in the nation) was originally con
structed as CRC pavements. The main incentive for constructing 
CRC pavements was the elimination of contraction joints to mini
mize joint-related distresses. The structural integrity of the concrete 
slab is maintained by allowing the pavement to crack randomly while 
providing reinforcement to hold the cracks tightly. The major distress 
types that occurred in CRCP are localized failures (including punch
outs and steel ruptures) and major spalling of transverse cracks. 

The causes and factors relating to localized failures in CRC pave
ments have been a topic among many investigators in past years 
(J-3). Various algorithms and numerical models have been devel
oped in an attempt to describe the behavior of a CRC pavement 
under contraction restraints. The main focus points of these algo
rithms and models are the prediction of crack spacing, crack width, 
concrete stress, and steel stress due to environmental changes and 
external wheel load. The cracking behavior due to the percentage of 
longitudinal steel reinforcement, concrete strength, aggregate type, 
and other environmental factors has also been analyzed in a work 
by Zollinger (4). 

Most of the maintenance activities on CRC pavements are 
directly related to localized failures (i.e., punchouts and steel rup
tures.) It is often necessary to estimate these distress quantities for 
preventive design and pavement rehabilitation planning. In an 
attempt to relate the total number of failures to traffic loading, slab 
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thickness, percent steel reinforcement, and subbase types, the first 
known predictive model based on actual CRCP performance data 
was developed using the Illinois CRCP data base compiled during 
the research project IHR-901 (2). 

As part of the project Implementation of Pavement Feedback 
System, a study of the effect of different placement methods of rein
forcing steel (i.e., tubes versus chairs) on the performance of CRCP 
in Illinois was conducted (5). 

DA TA PREPARATION 

The Illinois Pavement Feedback System (IPFS) data base 
(1977-1991), containing the most complete source of pavement
related information for Illinois Interstate highways, is the main 
source of data used for this study. It contains detailed information 
about original and rehabilitation construction contracts, pavement 
inventory data, materials, historical traffic data, distress survey, 
condition rating surveys, and maintenance and rehabilitation 
records. The IPFS data base is currently implemented in the Illinois 
Department of Transportation (IDOT) mainframe system (VM "I" 
system) using the NOMAD2 data base management program. 
Automatic summary reports of the pavement information may eas
ily be generated. For the purpose of this study, it was decided, how
ever, to download all the summary section information, traffic his
tory, distress records, and rehabilitation history to a PC and store in 
several PC-SAS datasets for further analysis. The PC-SAS SUM
MARY, TRANSPOSE, and TABULATE procedures (6) were used 
heavily to summarize the information of interest and to provide 
more reliable data for this study. 

Design and Climatic Variables 

The IPFS section summary data base includes codes for storing 
CRCP reinforcement data; however, few data on the type of steel 
reinforcement, diameter, spacing, and content are currently recorded 
in the data base. Fortunately, there exists some steel information, 
which was obtained from the IDOT district offices (2). This infor
mation was manually entered into the data base. In addition, IDOT's 
standard CRCP reinforcement designs (Standard 2225 and Stan
dards 2225-1 to 2225-6) over the years were obtained for the rest of 
the CRC pavements for which no steel information was reported 
elsewhere. Generally speaking, the standard design of a given year 
was used to provide reinforcement data. The reinforcement type for 
these pavements was assumed to be deformed #5 and #6 bars for 
pavements constructed before and after 1981, respectively. 
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Different steel placement methods may affect the performance of 
CRCP pavements. Even though the IPFS data base includes a code 
for storing this information, very few data are recorded in the IPFS 
data base. Neverth.eless, it is known that Illinois CRC pavements con
structed before September 17, 1970, were mostly constructed using 
"chairs" with a few exceptions of "two-layer construction" for the 
steel placement. After this date pavements were constructed using 
"tubes" for placing reinforcement steels unless they were constructed 
in District 1, where chair placement was required. Therefore, this 
date was used as the cutoff point to determine whether the "chairs" 
or "tubes" placement method was used for a given CRC pavement. 

Some additional construction data about drainage system, base 
type, and environmental data were also obtained. In addition, data 
on various subbase types, including granular, crushed stone, 
bituminous-aggregate mixture (BAM), and cement-aggregate 
mixture (CAM), were directly retrieved from the IPFS data base. 
Climatic data such as freezing index, average annual temperature, 
and average annual precipitation were also obtained. 

Traffic Calculation and Estimation 

Traffic maps for average daily traffic, heavy commercial traffic, and 
multiple unit traffic volumes are published approximately every 
four years by the IDOT Office of Planning and Programming. The 
yearly traffic history recorded in the IPFS data base was determined 
by interpolating between those four-year periods. 

Because the IPFS data base contains traffic information only up 
to 1987, it is necessary to estimate the traffic growth rate for each 
pavement section. A NOMAD2 program was written to perform 
automatically a huge array of regression analyses assuming that the 
traffic was increasing yeady with constant compound growth rates. 
With the estimated average daily traffic and ESAL traffic growth 
rates, the latest 1987 traffic data were then used as a starting point 
to predict the traffic into the future. 

Distress Quantities 

The CRCP failures were recorded in various visible distress types, 
severities, amounts, and repairs in the distress data base. For exam
ple, a certain amount of medium-severity transverse cracking 
became high severity after a certain period of time; at the same time, 
some of the high-severity transverse cracking was corrected by full
depth repairs. To obtain a good single indicator of CRCP failures in 
each survey year, special efforts were conducted in deciding what 
distress types and severities should be included. After a consider
able amount of effort and reexamination, the total number of CRCP 
failures (FAIL) per mile was defined as follows: 

FAIL= 8.8 PATCH+ PUNCH+ MHPOT + HTCRK (1) 

where 

PATCH = all severities of permanent patches, percent area; 
PUNCH = all severities of punchouts, #/mi; 
HTCRK = high-severity transverse cracking, #/mi; and 
MHPOT = medium- and high-severity of potholes and localized 

distresses, #/mi. 

Because permanent patch deterioration was recorded in percent 
area of pavement surface, it was necessary to convert into number 
of patches per mile by assuming a 6 * 12 ft2 per patch. In addition, 
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high-severity transverse -cracking was included and treated as an 
indication of steel rupture. Medium-severity transverse cracking 
was not included here because there were good chances that differ
ent surveyors rated low severity and medium severity inconsistently. 

In this study, if the pavement was surveyed but without the afore
mentioned distress types recorded in the data base, the total number 
of failures was assigned to zero for later analysis. On the other hand, 
those unsurveyed pavement sections were excluded from the con
sideration, for example, pavements located in Chicago area (District 
1) where detailed surveys were not possible because of the heavy 
traffic conditions. 

Additional Data from Old Vandalia 
Experimental Study 

The longitudinal reinforcing steel content is known to have a very 
strong effect on the performance of CRCP pavements. Inadequate 
steel content often results in longer crack spacings, wider crack 
widths, and thus more punchout failures. To extend the range of 
analysis" several sections from the Vandalia CRCP experiment 
study (7) were also included in this study. 

Eight sections of 7-in. and 8-in. experimental CRCP with 0.3, 
0.5, 0.7, and 1.0 percent of longitudinal reinforcement constructed 
in 1947 to 1948 on US 40 west of Vandalia, Illinois, were studied 
over a 20-year service period (7). These pavements were placed 
directly on natural fine-grained soil and carried 4.27 million ESALs 
in 20 years. Many failures occurred in the 0.3 and 0.5 percent rein
forcement sections in the 7-in. pavements. 

Two major distress quantities, namely cracking (Jin. ft/1000 ft2) 

and patching (ft2/l 000 ft2) were of particular interest (7) to quantify 
the equivalent total number of CRCP failures in these pavements. 
The reported cracking was defined as "cracks that are open or 
spalled at the surface to a width of 1/4in. or more for at least half 
the crack length, and sealed cracks" (7). Because most of them were 
still in a workable condition even after 20 years of service, only 
patching quantities were converted into total number of failures per 
mile for this study. 

PRELIMINARY DATA ANALYSIS 

Distress History and Additional Codes 

A data cleaning process must be conducted before any regression 
analysis can be performed. With the help of graphical representa
tion, failures were plotted against surveyed years for each section in 
the data base with .additional information about route, direction, 
mileposts, D-cracking, slab thickness, and constructed year dis
played. For example, a plot as shown in Figure 1 was used to exam
ine the distress trends to eliminate possible data errors. The upper 
left-hand corner plot labeled '55-N-33.67-39.13-N-9"CRCP, 
conyr=75' indicated that a pavement located on I-55, northbound, 
mileposts 33.67 to 39.13, non-D-cracked, 9-in. CRCP, and con
structed in 1975 was surveyed in 1985, 1987, and 1989 with approx
imate failures of 7, 6, and 15, respectively. 

Each section was carefully examined. Two additional codes were 
assigned to each section to indicate the findings of the examination. 
The first code was used to indicate whether the total number of fail
ures is reasonable according to the distress history. The second code 
supplements the first code to indicate which year of data to be 
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FIGURE 1 Sample plots of distress history along 1-55. 

deleted if necessary. Data correction was made in a way that could 
easily be traced back. A third code was also introduced to indicate 
the reliableness of the steel information. By doing so, different sub
sets of the final data base providing more reliable data might be ana
lyzed for different purposes. 

Final Data Base with Non-D-Cracked CRC Pavements 

D-cracking is a serious problem in Illinois Interstate concrete pave
ments. The presence of this type of distress causes the pavement to 
deteriorate prematurely. The number of sections with and without 
D-cracking based on different slab thicknesses was summarized 
after deleting those sections having unrealistic distress history, a 
particular suspicious data point, or unreliable calculated crack spac
ings. The results showed that approximately 60 percent of 7-in. 
IPFS sections were D-cracked whereas 40 percent for 8-in. and 20 
percent for 9-in. pavements were D-cracked. No 10-in. CRCP pave
ments were recorded as D-cracked pavements. After carefully 
cross-examining the data, excluding all D-cracked pavements, and 
deleting seven IPFS data points with extremely large numbers of 
failures (greater than 100 failures per mile) a data base with 586 data 
points was finally created for later analysis. 

Correlation of Variables 

A matrix plot containing the most important variables considered in 
this study are given in Figure 2. The variable correlations can be 
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visually inspected through these plots. In addition, trimmed corre
lation matrixes showing the variable correlations after a certain por
tion of influential data points or possible outliers are eliminated 
were also obtained. 

CRCP failures (indicated as "distr") were strongly correlated 
with age and cumulative ESAL (cesal) as expected even after 20 
percent of data was trimmed. However, the correlations of slab 
thickness (pavthk), steel content (percent reinforcement, area of 
longitudinal reinforcement, and bonded area) to CRCP failures 
change dramatically. These are good indications of having influen
tial data points in these variables, which should be used with 
extreme caution in later analysis. 

The interrelationship between age and cumulative ESAL is also 
evident. The strong correlation between slab thickness and area of 
reinforcement almost guarantees the presence of one or the other in 
the later CRCP failure model development, but never both together 
to avoid strong collinearity in the model. This is also true for bonded 
area and percentage of reinforcement. Among these most important 
variables to CRCP failures, slab thickness, percent of reinforcement, 
and cumulative ESAL were chosen in the final CRCP failure model. 

Factor Space and Limitations 

The final data base was mainly constructed from the in-service 
pavements, which satisfies certain design guidelines. Thicker pave
ments were designed to carry heavy traffic loadings. A relatively 
constant percentage of longitudinal reinforcement was often used. 
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FIGURE 2 Matrix plot with most important variables to CRCP failures (distr =failures/mi). 

For example, there was limited range of reinforcement content in 
the data except for the Vandalia experimental sections. Vandalia 
experimental sections provided some very low and very high steel 
contents for 7- and 8-in. pavements. However, there existed no such 
steel contents for 9- and 10-in. in-service pavements. Most of the 
final data base was 8- and 9-in. pavements, which had a fixed rein
forcement content of approximately 0.60 to 0.62 percent. 

In addition, the Vandalia experimental data were obtained under 
very low traffic (i.e., up to 4.3 million ESALs in 20 years). There 
existed no very low or very high steel contents under very high traf-

fie loading conditions. Knowing that the deficiencies of the unbal
anced factor space of the final data base exist, extreme care should 
be used during the modeling process as well as deriving conclusions 
beyond the range of data. 

Variability of Data 

Because most of the final data base was 8-and 9-in. pavements with 
constant reinforcement contents of approximately 0.60 to 0.62 per-
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cent, a preliminary examination of the relationships among CRCP 
failures, age, and cumulative ESALs was performed. Under similar 
design conditions (BAM subbase, drainage system, and "tubes" 
reinforcement placement method), the performance of these two 
groups of 8- and 9-in. pavements showed high variation. 

This high variation might be the result of some other hidden vari
ables not considered in this study. However, it is also believed that 
the current practice of sampling only 10 percent of the entire 
project may be the major source of these variations. For example, 
three identical I-mi pavement sections when surveyed in their first 
0.1 mi and recorded to have 0, 1, and 2 failures might end up with 
0, 5.3, and 10.5 failures per mile. 

It is recommended that a full-length survey might be the best 
solution to minimize this high variability in the total number of fail
ures counted. If this is not possible, a much higher portion of the 
project such as 20 to 30 percent should be surveyed instead so that 
the accuracy of the IPFS data base can be improved. 

PROPOSED NEW PREDICTIVE 
MODELING APPROACH 

The proper selection of regression techniques is one of the most 
important factors to the success of prediction modeling. Traditional 
"parametric" regression techniques such as linear and nonlinear 
regressions require imposing a parametric form on the functions and 
then obtaining the parameter estimates. With the multi-dimensional 
pavement engineering problems in mind, several unresolved defi
ciencies were frequently identified in the use of traditional stepwise 
regression and nonlinear regression. These include problems in the 
selection of correct functional form, large in ft uence of potential out
liers, violations of the embedded statistical assumptions, and failure 
to satisfy some engineering boundary conditions. 

Because of the innovation of computers and the almost unlimited 
computing power, several ingenious iterative regression techniques 
in the area of "robust" and "nonparametric" regressions have been 
developed in the past 10 years and have gradually gained popular
ity. They are useful especially in situations in which large data con
tamination and little knowledge about the shape and the form of a 
function exist. For this study, particular attention is focused on the 
following advanced modern regression techniques (8): 

1. Least median squared (LMS or "Robust") regression (9,10): a 
robust regression technique, extremely powerful in detecting out
liers in either response variable or predictor variables; 

2. Alternating conditional expectations (ACE or "Expectation") 
(J J): a nonparametric regression technique, providing optional vari
able transformations to maximize the squared multiple correlation 
(R2); and 

3. Additivity and variance stabilization (A VAS or "Stabiliza
tion") (12): a nonparametric regression technique, transforming 
both sides of the additive model to achieve constant error variance 
assumption. 

Without imposing an unjustified parametric assumption, non
parametric regression techniques strive to estimate the actual func
tional form that best fits the data through the use of scatter plot 
smoothers. They can be excellent supplements to traditional para
m~tric regression techniques, especially in suggesting proper trans
formations of the response variable and the predictor variables to 
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help uncover the underlying relationships and to satisfy some 
applicable boundary conditions. 

A new statistical package named S-PLUS, which has been widely 
used by statisticians for data analysis, was selected because of the 
availability of these new regression techniques. 

Multiple Linear Regression 

Multiple linear regression is one of the most time-honored and 
widely used regression techniques for the study of linear relation
ships among a group of measurable variables. Suppose there exists 
a true model to describe the relationship between response variables 
(ys) and explanatory variables (or predictors, xs) (13): 

Yi= xTl3 + Ei i = 1, ... , n (2) 

where xr is the ith row of the (n x p) matrix x of the column of 
Is if including an intercept and the explanatory variables. The 
superscript T denoting the transpose of the column vector xi is 
required because of the usual convention that all vectors are repre
sented by column vectors. 13 is a (p X I) vector of unknown regres
sion coefficients and p and n are the number of parameter estimates 
in the model and the total number of observations, respectively. 

The basic assumptions are usually that the random errors (Es) are 
mutually uncorrelated and normally distributed with zero mean and 
constant variance, and additive and ind:_pendent of the expectation 
function. For any arbitrary 13 value of f3, the residuals ri(l3) can be 
determined by the following expression: 

A A 

ri(l3) = Yi - xf 13 i = I, ... , n (3) 

Based on those assumptions, multiple regression tries to find a set 
of parameters 13 such that the sum of the squared residuals given in 
Equation 4 is minimized, which is also best known as the least 
squares (LS) method. 

RSS(~) =I [r7(13)] = rT (~) + ri (~) + ... + r,7 (~) (4) 
i=I 

Nonlinear Regression 

Practical real-world problems are often found to be nonlinear in 
nature. Because of its favorable feature of handling a complicated 
nonlinear model, nonlinear regression has been widely used as a 
modeling technique. However, nonlinear models are more difficult 
to specify and develop than linear regression models. "Some mod
els are difficult to fit, and there is no guarantee that the procedure 
will be able to fit the model successfully" (14). 

Suppose there exists a true model that best describes the rela
tionship between response variables (ys) and explanatory variables 
(xs), (14,15): 

Yi = F(l3, xi) + Ei i = I, ... , n (5) 

where 

F(13, x;) = nonlinear function based on the predictors, 
13 = (p X 1) vector of unknown regression coefficients to 

be estimated, 
and n = total number of observations. 
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Similar to linear regressions, the disturbance (or error) term is 
usually assumed to be additive, mutually uncorrelated, and nor
mally distributed with zero mean and constant variance. For any 
arbitrary ~value of~' the residuals r;(~) are 

A A 

r;(~) = y; - F(j3, X;) i = 1, ... , n (6) 

Unlike linear regressions whose parameters can be explicitly esti
mated by a closed-form expression, nonlinear regressio'!.s must use 
an iterative routine to find the best parameter estimates (~) such that 
the sum of the squared residuals as given in Equation 4 is minimized. 

LMS or "Robust" Regression 

Recently, new robust statistical techniques have been developed to 
avoid the large influence of outliers. The results of these methods 
are still trustworthy even if a large amount of data is contaminated. 
They are extremely useful in identifying a group of potential out
liers in a single attempt. Of many robust regression techniques, the 
least median of squares estimator introduced by Rousseeuw (9) and 
Rousseeuw and Leroy (JO) is the most robust with respect to out
liers in the dependent variable as well as outliers in the independent 
variables or predictors. 

It is assumed that the true model and the residuals are the same 
as thos~ given in Equations 1 and 2, respectively. The LMS esti
mator (~) attempts to minimize the median instead of the sum of the 
squared residuals defined as follows: 

RMS(~) = ~~d {rr (~)} = med [rT(~), d (~), ... , r,7 (~)] (7) 
I =I 

As Rousseeuw stated, LMS regression first tries to fit most ofthe 
data and then discover the potential outliers. The LMS method has 
a breakdown point of 50 percent, which is the largest possible value, 
whereas the LS method has a breakdown point of 0 percent. The 
breakdown point of a regression estimate is defined as the largest 
fraction of data that may be replaced by any arbitrary values with
out causing arbitrary parameter estimates. This means that the LMS 
estimates still continue to follow the trend of most of the data even 
when almost half is arbitrarily corrupted. Geometrically, it corre
sponds to finding the narrowest band that covers at least half of the 
observations such that potential outliers are discovered (J 0). 

The advantages of LMS regression are obvious especially when 
analyzing field-collected pavement data that may contain as much 
as 10 to 20 percent contaminated data. "Robust" regression pro
vides a more objective way to help identify some potential data and 
model problems. These problems include actual data errors, data 
from a different population, and the inadequacy of the regression 
model due to missing some important variables. 

Thus, once these trouble data points are identified, more detailed 
investigations should be conducted to find out why and how they 
are different from the other tentative good ones. Some trouble data 
points may possibly be identified as errors and subsequently be cor
rected or excluded from the analysis. The possibility to include 
other explanatory variables or other model forms in the model 
should also be fully investigated to improve the fit including all the 
data points. It should be emphasized, however, that no data should 
be deleted without having justifiable reasons to do so. By conduct
ing these analyses in an iterative manner, it is strongly believed that 
more reliable predictive models may be developed. 
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ACE or "Expectation" Algorithm 

An algorithm to find the optimal transformations of the response 
variable and the predictor variables such that the R-square of a mul
tiple regression is maximized was introduceful. Suppose that there 
exists a true additive model given as follows: 

where 

y = response variable, 
Xi. x 2, ... , xP = predictor variables, 

(8) 

0(y), <!> 1(x1), <!>2(x2), ••• , <!>p(x,,) = unknown nonparametric trans
formation functions of each 
variable to be estimated, and 

e = random error. 

The proposed algorithm uses a sophisticated supersmoother 
while it alternatively changes the conditional expectation functions 
to minimize the fraction of variance (e2) not explained by regress
ing 0(y) on <!> 1(x1), ••• , <!>1,(x,,). This algorithm is often called alter
nating conditional expectations algorithm. The e2 given in the fol
lowing expression is also called the goodness-of-fit measure (8). 

(9) 

This "nonparametric" algorithm will only give back data
dependent estimates of variable transformations that are not 
restricted to any particular functional form. However, the data ana
lyst might be able to estimate particular parametric transformation 
for each variable by plotting the suggested transformed variables 
versus the original ones. The traditional Box-Cox transformation 
technique can be used for this purpose. If the suggested transfor
mations are so desirable that a single family of power transforma
tion is not adequate, polynomial regression, nonlinear regression, or 
any other curve fitting techniques can also be applied separately for 
the transformation of each variable. Thus, the R-square of the final 
additive model is optimally maximized. 

The "Expectation" algorithm provides a fully automated routine 
to assist in selecting the optimal form of transformations for re
sponse and predictor variables. However, it should be used with 
caution, especially in the presence of outliers. Furthermore, because 
a smoothing technique often requires a certain number of degrees 
of freedom, the transformed vectors might be highly unstable if the 
number of observations is not large enough. The ACE algorithm 
may still produce strong looking transformations when there is lit
tle or no relationship between the predictors and the response vari
able. This problem may be detected by the resulting relatively small 
R2. More detailed discussions of its applications and limitations are 
given elsewhere, (8,J J,16). 

AV AS or "Stabilization" Algorithm 

In 1987, Tibshirani (J 2) successfully introduced the additivity and 
variance stabilization algorithm by applying the same alternatively 
backfitting techniques used in the Expectation algorithm. In contrast 
to the ACE algorithm that tries to maximize the squared multiple 
correlation (R2), the Stabilization algorithm strives to achieve the 
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constant error variance assumption of regression and also improve 
the model fit. 

Assuming that there exists an additive model of the same form 
given in Equation 8, the AV AS algorithm tries to achieve the fol
lowing two goals simultaneously (8): 

p 

£[0(y) lx1> X2, ... , xp] = I <f>;(X); 
i=I 

p 

VAR[0(y) I I <!> ;(x;)] = Constant 
i=l 

(10) 

(11) 

where E[z I w] and VAR[ z I w] stand for the conditional expecta
tion function and the conditional variance function of z given w, 
respectively. 

The AV AS transformation is more flexible than the traditional 
Box-Cox method and is often better suited to regression problems 
than the ACE algorithm (8,12). Because the objective functions that 
they attempt to optimize are different, the ACE and the AV AS 
transformations behave differently for different situations. It is too 
early to say which one is better. In general, some evidence shows 
that the AV AS algorithm is better behaved than the ACE algorithm 
when there is little or no relationship between the predictors and the 
response variable. 

Proposed New Predictive Modeling Approach 

For practical engineering problems, often little knowledge about the 
true functional form is available and the data collected are also con
founded with substantial errors. So far there exists no regression 
algorithm that can perform outlier detections and variable transfor
mations simultaneously to minimize these problems. To develop a 
more reliable predictive model for such complicated problems, it is 
proposed to incorporate the Robust regression, Expectation, and 
Stabilization algorithms into the modeling process. 

The Robust regression is proposed because of its favorable fea
ture of analyzing highly contaminated data by detecting outliers 
from dependent and independent variables. Through the iterative 
use of the combination of these outlier detection and nonparametric 
transformation techniques, it is believed that some potential outliers 
and proper functional forms may be identified. Subsequently, tradi
tional regression techniques can be used more easily to develop the 
final predictive model. 

The basic procedures and concepts behind the proposed model
ing approach are briefly discussed. First, assume a plausible linear 
model relating the response variable to the explanatory variables. 
Then, apply Robust regression to delete some potential outliers 
based on the assumed model form. Subsequently, apply the Excep
tion and Stabilization algorithms to find possible variable transfor
mations that best fit the remaining data. The transformed vectors are 
then plotted against each original variable. In addition, a plot of the 
predicted versus the actual values and a plot of the residual versus 
the predicted values are also provided. 

Through visual inspections, the reasonableness of the suggested 
transformations and the goodness of the fit can be easily accessed. 
Because the suggested transformations for each variable are dis
played in two-dimensional plots, they can be properly formulated 
using traditional Box-Cox transformation, linear (or polynomial) 
regression, and nonlinear regression. These tasks are relatively 
easy, because they involve only one variable at a time. 
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Then, revise the assumed linear model using the suggested trans
formations and repeat the entire process until the detected outliers 
and the suggested transformations are acceptable. Finally, tradi
tional linear regression is used to get the final regression statistics 
and diagnostics of the additive model using the transformed vari
ables. Step-by-step procedures for the proposed new predictive 
modeling approach are summarized in Figure 3. 

The potential outliers detected by Robust regression are tem
porarily excluded from the subsequent Expectation and Stabiliza
tion trials to minimize the influence of possible data errors. How
ever, these data points should be added back to the original data 
base when analyzing the next trial linear model form. This is 
because the potential outliers detected by Robust regression may be 
affected by the assumed trial linear model form, but they may not 
be actually bad data points. The resulting transformations suggested 
by the Expectation and Stabilization algorithms may also be 
affected by excluding those data points. During each iteration, how
ever, some erroneous data may be identified and subsequently elim
inated form the analysis. These procedures can be routinely per
formed until an acceptable model is obtained. 

Pavement Data, 
Preliminary Data Analysis 

Variable Selection, Assume a 
a Plausible Additive Model 

LMS ("Robust") Reg. 
to Delete Some Outliers 

ACE(" Expectation"), AVAS 

("Stabilization") Algorithms 

Box-Cox Transformation, 
Linear and Nonlinear Reg. 

for Each Variable 

No 

Linear Reg. to Obtain No 
Final Reg. Statistics, etc. 
Sensitivity Analysis, .OK? 

Yes 

Mechanistic-Empirical 
Model 

FIGURE 3 Proposed modeling procedures for outlier 
detection and selection of proper functional forms. 
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PROPOSED CRCP PERFORMANCE 
PREDICTION MODELS 

As expected, developing a predictive model to adequately fit this 
type of data is not an easy task. Some preliminary trials using the 
traditional linear and nonlinear regression techniques have had dif
ficulty in achieving a satisfactory model for the data. 

The proposed new predictive modeling approach as described in 
the previous section was followed closely and used routinely to 
develop an improved model. This approach proved to have sub
stantial improvement over the use of traditional regression tech
niques alone in an attempt to uncover the underlying relationships 
together with the consideration of the possible influence of outliers. 

The results of many LMS regression trials indicate that a large 
portion of the zero failures in the data is questionable in spite of dif
ferent model forms analyzed. Most of these zero failures were 
forced into the final data base because of some evidence showing 
that the given pavement section was surveyed but did not have any 
of these failures recorded in the original IPFS data base. By exclud
ing these forced-in data points, a better model with more reasonable 
predictions could be developed, although very high variations were 
still present. 

Several dozen predictive models using different model forms 
were developed with similar prediction accuracy. The final pro
posed model for predicting the number of CRCP failures on a per 
mile basis is given as follows: 

loge (FAIL)= 6.8004 - 0.0334 * PAVTHK2 - 6.5858 *PSTEEL 
+ 1.2875 *loge (CESAL) - 1.1408 *BAM 
- 0.9367 * CAM - 0.8908 * GRAN 
- 0.1258 *CHAIRS statistics: R2 = 0.44, 
SEE = 1.06, N = 408 (12) 

0 
0 
N 

0 

Reinf. Content(%)= 0.3 

R.e.i.nt--·G6nte ~t (0/0}··::; .. _ o. 7 
<::.-.. ! ········ ..... ,l 

TRANSPORTATION RESEARCH RECORD 1505 

where 

FAIL= total number of failures in outer lane, #/mil; 
THICK= CRCP slab thickness, in.; 

PSTEEL = longitudinal reinforcement, percent; 
CESAL =cumulative ESALs, millions; 

BAM = 1 if subbase material is bituminous-aggregate mix
ture, 0 otherwise; 

CAM = 1 if subbase material is cement-aggregate mixture, 
0 otherwise; 

GRAN = 1 if subbase material is granular, 0 otherwise; and 
CHAIRS = 1 if chairs used for reinforcement placement, 0 if 

tubes used. 

The regression summary outputs and the goodness-of-fit of the 
proposed model were presented elsewhere (5). Notice that a small 
number of 0.1 is added to the actual total failures ("distr") to avoid 
numerical difficulties. This model also satisfies the boundary con
dition of resulting zero failures when no traffic exists. 

Some plots showing the sensitivity of the various factors in the 
proposed model are presented in Figures 4 and 5. Figure 4 shows the 
relationships among cumulative ESALs, slab thickness, reinforce
ment content, and total number of failures per mile (fit). Figure 5 
shows the effects of reinforcement placements and different base 
types. The general trends of the effects appear to be reasonable. Note 
that the plots are extended a bit beyond the range of the actual data 
to show how the model performs. The reinforcement content of a 
given CRC pavement has a large effect on the occurrence of failures. 

The proposed model also includes the type of reinforcement 
placement (CHAIRS). The use of chairs results in fewer total fail
ures; however, the difference is not significant. Even though the 
analysis does not provide a lot of support for the placement method 

0 
0 
N 

0 

Re inf. Content(%) = 0.5 

.Heint·C()°nterlt(0J~} .. = .... .Q.9 
······...... l,,· ··· ..... ::l 

······· 

FIGURE 4 Three-dimensional sensitivity analysis for reinforcement contents (plot 
truncated at 200 failures/mi). 
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CRCP Pavements (0.6% Steel, BAM subbase) 
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FIGURE 5 Two-dimensional sensitivity analysis; reinforcement 
placements and base types. 

having a significant effect on the development of CRCP failures, 
this does not necessarily prove that this is the case. As previously 
discussed, the data base does not provide a clean separation of two 
identical groups of CRC pavements (i.e., one with tube placement 
and the other with chair placement). Many factors may be interact
ing with thickness, traffic loading, or other factors to cause the true 
effect of placement type to be hidden. 

Some research performed in Illinois on I-70 has clearly shown 
that the depth ofreinforcing steel greatly affects the crack width and 
thus the breakdown of cracks and development of CRCP failures. 
Thus, if the tube placement method results in a greater variation in 
depth of steel, there would likely be a greater chance for more fail
ures. This may be the case even though the data did not clearly show 
this to be true. 

The effects of different base materials were also investigated. A 
CRC pavement with BAM base has the best overall performance, 
which also agrees with previous findings (Fl). On the other hand, a 
conclusion different from the previous literature (17) is derived 
from this analysis that CAM base has about the same effect on the 
development of CRCP failures as granular base. 

SUMMARY AND CONCLUSIONS 

A study of the factors affecting the performance of CRCP was con
ducted using the in-service IPFS data base. Detailed guidelines for 
data preparation are provided. The entire performance records of 
bare CRC pavements in Illinois were retrieved. In addition, some of 
the old Vandalia experimental sections were included in this study 
because they provided additional ranges in steel content (0.3 to 1.0 
percent). The data were cleaned carefully to remove sections that had 
D-cracking, questionable data (high failures), very short sections, 
and so forth because these would only increase the potential errors. 

A preliminary data analysis was conducted to assist in data clean
ing, assess the variability of the data, and understand the interrela
tionships between variables before actually performing the regres
sion analysis. Very high variations of the data are evident, 
suggesting that the current practice of surveying l 0 percent of the 
entire pavement network may be inadequate. 

Several modern regression techniques (robust and nonparametric 
regressions) were introduced in a proposed new predictive model
ing approach with detailed step-by-step guidelines. The proposed 
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modeling approach was routinely used to derive a more reliable pre
dictive model. The resulting model includes several variables such 
as cumulative ESALs, slab thickness, content and methods of the 
steel reinforcement, and base type for the prediction of CRCP fail
ures. A sensitivity analysis was also performed to illustrate the 
effect of various factors in the model, which also appeared to be rea
sonable. 
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