
TRANSPORTATION RESEARCH RECORD 1506 61 

Economic Characteristics of Multiple 
Vehicle Delivery Tours Satisfying 
Time Constraints 

MAX K. KIESLING AND MARK M. HANSEN 

Since deregulation of the aviation industry, a substantial body of litera
ture has emerged analyzing the economic structure of passenger carrier 
operations. By comparison, a paucity of literature exists that addresses 
the economics of air freight transportation. This study contributes to fill
ing that void by assessing the economic structure of ground-side freight 
distribution for air express carriers. To do so, we develop an "engineer
ing" cost model of the ground-side distribution process. This circum
vents the problem that appropriate historical performance data is not 
available with which to develop an "economic" cost model and affords 
greater flexibility and accuracy than the more frequently applied econo
metric based cost models. The cost model is developed by first employ
ing a mathematical heuristic to design and locate freight delivery subre
gions employed by freight carriers operating under time constraints. The 
results of the design heuristic are then used to create a model that incor
porates costs of overcoming distance, stopping costs, marginal freight 
distribution costs, and fixed vehicle costs. It is then used to demonstrate 
that ground-side freight distribution operations exhibit significant 
economies of scale and profound economies of density. Furthermore, it 
is indicated that increasing the deli very time constraint decreases distri
bution costs. However, this decrease in costs must be tempered with the 
trade-off that increasing the delivery time constraint could decrease the 
market available to the carrier. 

The air cargo industry was deregulated in November 1977, 1 year 
before deregulation of the passenger airline industry. At that time, 
air cargo was primarily transported in the bellies of passenger air
craft with the notable exception of the cargo transported by Flying 
Tigers, a successful international air freight forwarder. Door-to
door delivery was uncommon, and overnight delivery was the 
exception, not the norm. 

The industry changed dramatically after deregulation, as Federal 
Express Corporation, a small package express carrier, emerged and 
rapidly grew to dominate the air freight industry. Federal Express' 
rapid growth eventually led to their purchase of Flying Tigers [see 
Sigafoos (1) and Trimble (2)). Attracted by Federal Express' rapid 
rise to dominance and success, several other specialized air freight 
carriers emerged including UPS, Airborne Express, and OHL. By 
the mid-1980s the air cargo industry was dominated by these ser
vice oriented carriers, forming the organizational structure that 
exists today in the aviation industry: specialized carriers that focus 
on either cargo or passenger transportation. 

One factor contributing to the rapid rise of dedicated air freight 
carriers was the apathy of passenger carriers toward air cargo fol
lowing deregulation. However, there is reason to believe that the 
passenger carriers' apathy has ended. Shaw (3) reports that five 
major U.S. passenger carriers (American Airlines, Delta Air Lines, 
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Northwest Airlines, United Airlines, and USAir) have joined forces 
with Roadway Package System (RPS), a national ground carrier, to 
provide door-to-door delivery of freight and compete with inte
grated freight carriers. Such an alliance has far-reaching implica
tions. If passenger carriers can effectively compete with dedicated 
freight carriers, there will be a continued need for joint-use airports 
(i.e., both freight and passenger carriers using the same airports). If 
they cannot compete, there will be an increased specialization of 
services (specializing either in freight or passenger transportation) 
and, consequently, an increased need for specialized airports. 

To assess how competitive dedicated freight carriers and combi
nation carriers can be (from an economic perspective), we must be 
able to quantify the operational cost of freight delivery. One 
accepted way to do this is to develop an "economic" cost model 
using industrywide or carrier specific data to calibrate econometric 
cost and/or production functions [Kiesling and Hansen (4)). Unfor
tunately, data are very limited, particularly for dedicated freight car
riers and for specific delivery operations such as ground-side distri
bution, to support such an analysis. As a result, we employ another 
possible approach, which is to develop an "engineering" cost model 
of the more specific operations of air freight carriers. The results 
presented in this paper are the first step in developing such a model. 
(Whereas the final goal is to develop engineering cost models of 
system-wide operations, this study addresses only ground-side 
transportation costs.) 

Ground-side pickup and delivery operations are a crucial battle
ground in the competition between specialized and combination 
freight carriers. One reason is that pickup and delivery operations 
are the interface wherein customers judge the level of service 
received. As delivery deadlines attest, one critical factor in defining 
the level of service is time. Air express customers pay premium 
rates for the timely transport of goods, both in the sense that pickup 
and delivery deadlines are reliably met, and in the more general 
sense that freight can be delivered as early as possible in the busi
ness day and be picked up as late as possible in the business day. 
The determination of pickup and delivery deadlines is one decision 
variable that effects the level of service provided. As will be indi
cated in this report, however, it is also a decision variable that sig
nificantly effects the costs incurred by the freight carrier-shorter 
time constraints raise the operational costs to the carrier. This trade
off will prove to be a crucial element in the competition between 
freight carriers. 

The design and operation of multiple-vehicle delivery systems 
(such as those described above) have been analyzed by numerous 
authors. Daganzo (5) explores the impact that zone shape has on 
tour building strategies and ultimately on tour lengths. Daganzo (6) 
presents a strategy for designing distribution problems in which N 



62 

points must be visited by a fleet of vehicles operating under the con
straint of a maximum of C stops per vehicle. Newell and Daganzo 
(7,8) expand this work further by considering larger delivery areas 
wherein line-haul distances are significantly greater than local travel 
distances. Newell (9) modifies the analysis to consider the move
ment of valuable goods. In all of the above studies, vehicles are con
strained by capacity. Relatively little has been done on the design 
of multiple vehicle delivery systems constrained by time. One such 
study, by Langevin and Soumis (10), does consider this problem, 
but only for ring-radial networks and a centrally located depot. Han 
(11) also focuses primarily on ring-radial networks in developing 
routing strategies for multiple vehicle delivery problems. 

This study explores the design of multiple-vehicle delivery sys
tems constrained by time (not vehicle capacity or dispatch fre
quency), and applies the design process to several different types of 
cities. Section l presents the basic distribution process that is 
employed by air freight carriers, and defines the basic' design prob
lem. Section 2 applies the design process to linear cities and cities 
with Li metrics. Section 3 discusses the impact of "fast roads" on the 
design of delivery subregions, and extends the design process to 
allow for fast roads. Section 4 uses the results from Sections 1-3 to 
estimate the average unit cost of transporting freight on the ground
side distribution system, and demonstrates the crucial role that 
pickup and delivery time constraints play in ground-side distribution. 

MINIMIZING DELIVERY COSTS 

Simply stated, the air freight carrier's goal in designing its ground
side distribution system is to visit all pickup and delivery points in 
the city at minimal cost. Two constraints determine how many vehi
cles are required to accomplish this task. First, vehicle weight and 
volume constraints are likely exceeded before all points in a city can 
be visited, even in small cities. It follows that the next best solution 
is to fully use delivery vehicles by visiting as many points as possi
ble before weighing-out (meeting the vehicle's weight limit) or cub
ing-out (meeting the vehicle's volume limit). However, the time
sensitive nature of delivery deadlines precludes the vehicles from 
even visiting enough points to reach vehicle capacity, meaning that 
time is the second, and as it turns out the binding, design constraint. 
The solution is to divide the delivery area into subregions, the size 
of which are determined by the maximum number of points that a 
single delivery vehicle can visit in the allotted time. This is equiva
lent to minimizing the number of delivery subregions in the deliv
ery area. 

To illustrate analytically, consider the following simplified 
ground-side delivery cost function facing a freight carrier: 

where 

Cd = cost per mile traveled, 
C1 ~ cost per hour of labor, and 
C,. = fixed cost per vehicle. 

(I) 

First, consider the cost per distance term of Equation 1. Let N be 
the number of delivery subregions required to visit all pickup and 
delivery points, n, in a city. Each delivery tour consists of a line-haul 
portion (the distance from the terminal to the nearest point in the 
tour), and a local travel portion (the distance required to visit all 
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pickup and delivery points in the subregion). For a given number of 
pickup and delivery points in a city, increasing N by one increases 
the total line-haul distance traveled by an amount on the order of the 
average distance from the terminal to all pickup and delivery points 
in the city. However, it decreases the total local distance traveled by 
approximately the average travel distance between pickup and deliv
ery points. Because line-haul trips are almost always much longer 
than the average distance between pickup and delivery points, it fol
lows that the total travel distance increases with N. Thus, to minimize 
the cost of overcoming distance, we would want to minimize N. 

The relationship between N and the labor cost of delivery follows 
a similar vein. Let T1 be the total labor (hours) required to service 
all pickup and delivery points in the city, which is comprised of the 
total time required to travel (both line-haul and local travel) and the 
total time required to handle and process freight at each pickup and 
delivery point. The latter is constant regardless of the size of N. 
Since the total travel time is directly proportional to the total dis
tance traveled, it is obvious that the total travel time also increases 
with N. Thus, the labor costs are comprised of fixed and variable 
(with N) components, which are minimized by minimizing N. 

Finally, it is clear that if one delivery vehicle is assigned to each 
subregion, the vehicle cost is also minimized by minimizing N. 
These transformations allow the cost function to be rewritten: 

(2) 

where f! (N) 2::: 0. Therefore, to minimize costs, carriers should min
imize the number of delivery subregions required, subject to the 
constraint that all points are visited in time T. 

DESIGN OF MUL TIVEHICLE DELIVERY ZONES 

Designing delivery subregions is a detailed, and case specific, activ
ity. Results differ with changes in the terminal location or the under
lying transportation metric. The design process remains the same, 
however, as formalized below. 

Let Tbe the amount of time allotted to visit all points in the deliv
ery area (city). Only one delivery vehicle visits each subregion in 
time T. For the delivery process, T includes the time required to 
travel to the delivery subregion and visit all points in the subregion. 
For the pickup process, it includes the time to visit all points in the 
subregion and return to the terminal. (For cost estimating purposes, 
both line-haul trips must be included.) 

. We can analytically express the design constraint by defining 
three time quantities: the line-haultime, Tl, which is time required 
to travel from/to the terminal to/from the delivery subregion; the 
handling time, T2, which is the time required to transport freight 
to/from the customer from/to the vehicle; and the local travel time, 
T3, which is the time required to travel the local streets between 
pickup and delivery points. The sum of these activities must be less 
than or equal to T for all delivery subregions: 

Tl+T2+T3~T (3) 

This basic constraint holds true for all transportation metrics and 
city shapes analyzed in the remainder of this section, wherein several 
different scenarios are analyzed. For simplicity of demonstration, a 
linear city is analyzed first. The design process is then expanded and 
applied to cities with Li transportation metrics, a scenario that is 
much more realistic than linear or ring-radial cities. Finally, the 
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impact of fast roads on the design of delivery subregions is consid
ered, providing the most realistic design framework possible. 

Linear City 

To formalize and demonstrate the design process, a linear city of 
length De is considered first. A terminal is located at one end of the 
city, and all points to be visited are randomly distributed across its 
length. Delivery subregions are nonoverlapping zones of length d;, 
located a distance D; from the terininal, as shown in Figure 1. Sub
regions are located adjacent to one another, so that 'i.di = De. 

The line-haul time, Tl, is the time required to travel between the 
terminal and the nearest edge of the subregion. By assuming an 
average velocity, v, the line-haul travel time to subregion i is sim
ply Tl = D;1.,. 

The handling time, T2, for a vehicle of the ith subregion is the time 
required to perform the delivery or pickup tasks at all points in the 
subregion. Such a task includes parking the vehicle, walking to the 
appropriate location, processing the required paper work, handling 
the package, and returning to the vehicle. To obtain the total handling 
time in subregion i, we assume that the handling time per stop, T, is 
constant on the average, which we then multiply by the total number 
of points in the subregion. If 8 is the customer density (number of 
points per unit length), then the expected number of points in subre-

. gion i is 8 d;. Thus, the total handling time of zone i is T2 = 8d;T. 
The third element of the time constraint is the local travel time, 

which is the time required to travel between all points in a specific 
zone. When the number of points in a subregion is sufficiently large, 
the distance traveled is closely approximated as the length of the 
subregion. If there are few points in the subregion, however, it may 
be deemed necessary to reduce the travel distance by one half the 
expected distance between points, 1/(23). Assuming there is a suf
ficiently large number of points in the subregion, the local travel 
time in subregion i is T3 = d;;,,. 

Having defined all three tasks, the time constraint facing vehicles 
in subregion i can be rewritten: 

D· d· --i- + 8d;T + -¢ ~ T (4) 

In designing the subregions, the underlying goal is to minimize 
the number of vehicles required, which is equivalent to maximizing 
the number of points per subregion. The design process is begun by 
considering the outermost delivery zone, subregion 1. Its optimal 
length, dt, is determined by replacing the line-haul distance, D;, in 
the first term of the time constraint with the line-haul distance to the 
first zone, De - di, and solving for d 1: 

d* = Tv - De 
I OTV 

(5) 
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It should be noted that d1, and all remaining calculations of d;, can 
be solved in this manner only by assuming that time is the binding 
constraint. By substituting [De - (d2 + d1)] for D; and d2 for d; in 
the time constraint, di is easily determined. Solving recursively, an 
expression emerges that allows us to design zone i (for i = 2, ... , 
n - 1) where n is the total numbers of zones required to cover the 
entire city: 

i 

Tv - De+ Ld;_, 
di= ~~~~~j_=_2~~ 

8-rv 
(6) 

The zone adjacent to the terminal, zone n, is simply the remaining 
length of the city, 

11 

* - ~ * d,, - De - L dj-1 

j=2 

It will be less than the length determined by the above design 
equation. 

Thus, given a linear city of length De and customer density B, we 
can optimally design all subregions. We simply begin with the 
above expression for df, which gives the optimal size and location 
of the outermost subregion. Then, knowing the length df, we can 
determine the length of all other zones (i = 2, ... , n - I) recur
sively with the above expression ford( . 

L 1 Metrics 

A linear city is clearly an unrealistic representation of any city that 
would be included in air freight networks. However, the design 
process that applies to the hypothetical linear cities also applies to 
two dimensional cities. Since U.S. cities rely primarily on rectan
gular (L1) transportation metrics, we need to adapt the design 
process to apply to such metrics. In the following pages, we apply 
the design approach to cities with L1 metrics when the terminal is 
located in the city center, on the edge of the city, and in one corner 
of the city. 

Terminal in City Center 

First, consider a delivery area with a centrally located terminal, as 
shown in Figure 2(left). For analysis purposes, the delivery area 
shape is approximated as a square oriented at 45° to a fine orthogo
nal transportation grid (L1 metric), a shape dictated by the equi
travel time contours (the locus of all points that can be reached in a 
given amount of time). The size of the delivery area is defined by 
Dn which is the travel distance to the outermost corner or edge of 
the city. All points to be visited are distributed randomly through-

FIGURE 1 Subregion design for a linear city with one terminal on 
edge of city. 
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FIGURE 2 Subregion design for city with an L1 metric and centrally located terminal. 

out the area with a constant density, 3(x, y) = 3. Vehicles travel at 
speed v throughout the city. 

The first step in designing delivery subregions is to build equi
travel time contours from the depot. For this scenario, the contours 
are squares centered at the depot at 45° to the metric's preferred 
directions. Daganzo (12) indicates that delivery subregions should 
be rectangular in shape and should be oriented perpendicular to 
these contours, as shown in Figure 2(left). 

As before, the outermost delivery subregions are designed first, 
followed by the subregions in bands progressively closer to the ter
minal. Vehicles are again bound by a time constraint that includes 
the line-haul time, Tl, the local travel time, 72, and the handling 
time, T3. Letting D; equal the distance to the inner contour of band 
i, the line-haul travel time can be defined: 

i 

Dc-2,d; 
Tl= D; = I 

v v v (7) 

The handling time, T2, is the time required to perform the deliv
ery and/or pickup tasks at all points in the subregion. Assuming that 
the required handling time per stop, T, is constant on the average, 
then the total handling time is the product of the total number of 
points in the subregion and T. Daganzo (12) illustrates that, for an 
L, metric and randomly scattered points, the tour length minimizing 
dimensions for delivery subregions are approximately: 

Subregion width = (6/3) 112 (8) 

Subregion length = C(63)- 112 (9) 

where C is the number of points in the subregion. The total number 
of points in a subregion, then, can be estimated by solving the sec
ond equation for C = /(63) 112

• By so doing, the total handling time 
for a zone in band i is approximated: 

T2 = T/;(63) 112 (10) 

The local travel distance is approximated as the product of the 
number of points in the subregion, defined above, and the expected 
travel distance between two points in a subregion. Daganzo (12) indi
cates that the expected travel distance between points is k3 112

, where 
k is a dimensionless constant; approximately 0.82 for L1 metrics and 
0.57 for Euclidean metrics. Thus, the local travel distance is approx-

. imately lk\16, and the local travel time in a subregion in band i is: 

T3 = l;k\16 
v (11) 

As in the previous section, the design process begins with the out
ermost band of the city, which faces the following time constraint: 

Tl +T2+T3::;T (12) 

(13) 

Solving the constraint gives the optimal length of the subregions in 
band number 1: 

* _ Tv - De 
f, - (63) 112 TV+ kv16 - V2 (14) 

For design purposes, and particularly for cost estimating pur
poses, we also need to know how many delivery subregions are in 
each band. Having determined Li, we can calculate the average 
perimeter of the band and the total number of subregions in band n: 

N = average perimeter of band i 
' optimal zone width 

(15) 

[ 

4VlD - 41* ]+ 
N, = (~)•n ' (16) 

where[]+ is the nearest integer greater than the quantity in brackets. 
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The second band, or any subsequent band, is designed in a simi
lar process, substituting De - V22J for D, in the line-haul expres
sion. Repeating this process, the following recursive design equa
tions emerge: 

Tv - De+ V2f f'J_, 
Li= j=2 

(68) 112 TV + kvl6 - V2 (17) 

-[ 4'\/2Dc - 8 j~ lj_, - 4lj ]+ 
N;-

(~t 
(18) 

The above equations can be used iteratively to design each deliv
ery subregion in the delivery area.· Note, however, that this design 
process will result in irregular delivery bands (and zones) adja
cent to the terminal. It may be necessary to "manually" adjust sub
regions boundaries to cover the area in consideration, either by 
expanding/contracting nearby subregions or adding another subre
gion. Whatever method is employed, the number of additional 
delivery zones required is small relative to the total number of zones 
required for the entire delivery region. 

Other Terminal Locations 

Air express terminals are typically located at local airports which, 
more often than not, are located on the perimeters of cities due to 
land and noise constraints. As a result, it is not always appropriate 
to assume that the terminal is in the city center. Two other terminal 
locations have been evaluated using the procedure just described; 
one with the terminal located in the corner of the city, and another 
with the terminal in the middle of the city edge. Letting De equal the 
travel distance from the terminal to the furthest edge of the city, the 
Euclidean length of the city edges are le = DJV2. 

When the terminal is located in the center of the city's edge, the 
equi-travel time contours take on a peculiar shape. The outermost 
bands are simply formed by straight contours. But, halfway through 
the city, the contours take on a rectangular shape, as shown in Fig
ure 2(b). As a result, additional notation is required; delivery sub
regions on the outermost contours are in bands 1 to (t - 1), the tran
sition band is band t, and the half diamond shaped contours form 
bands (t + 1) ton. To determine the number of subregions in the 
transition band, t, the zone is divided into two parts; the "cross
piece" (which is equivalent to bands 1 through t - 1) and the "legs" 
which form the edge of the city. The number of subregions in the 
cross-piece is given by Equation 20, and the number of subregions 
in the legs is estimated as the dividend of the area of the two legs 
and the optimal area of a subregion located in band t. Then, the 
design equations can be expressed: 

N; = [ ( i)'" ]• for i~(l, 2, ... , t- I), (19) 

[ 

De x 

N; = (182 t + (1~ t Li (De + V2Dc 

- 2V21'; _ 4 jt, /)'_,)r for i ~ '· (20) 
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i-1 

[ 

V2Dc - 4x - 4 I l"j - 21~ ]+ 
N; = (~f <+I for i~(t+ I, ... n-1), (21) 

N; = [ (;)'." r for i ~ n, (22) 

where 

r D 
x= I l't+ _e_ 

i=l 2'\/2 

is the distance between contour t and the edge of the city. 
The third scenario (terminal in the city corner) has associated 

with it a set of design equations similar in nature to the city center 
scenario originally considered: 

FAST ROADS 

The models presented in the previous sections assume that vehicles 
travel the same speed on all roads. Since city networks are combi
nations of local roads, arterials, and freeways, the aforementioned 
models must be expanded to allow for more than one travel speed. 

Newell (13) examines the impact that fast roads have on the 
shape of equi-travel time contours, demonstrating that a single fast 
road stretches the contours in the direction of the road. Kiesling (14) 
indicates that a grid of fast roads, which arguably exists in any 
major city, results in equi-travel time contours that are closely 
approximated by a contour oriented at 45° to the origin as in the pre
viously analyzed case in which no fast roads are present. 

The approximated equi-travel time contour is dependent on pre
viously defined variables and two vehicle travel speeds, v1 (fast) and 
vs (slow). If we assume that delivery vehicles travel fast on the line
haul portion of their delivery tour, and travel slow on local portions 
of the tour, the original time constraint can be rewritten: 

(26) 

Solving the constraint as in Section 2, we can determine the optimal 
zone lengths: · 

l* - ~Ir 
I - (68)1/2'TVJ + k y 6v/ - '\f2 

Vs 

(27) 



66 

li= 

i 

Tvf- De+ Y2I r;_, 
j=2 

(60)112 TVJ + kv'6vf - \/2 
Vs 

(28) 

The above expressions are true no matter where the terminal is 
located. However, the definition of De changes for each scenario. 
Generally speaking, De is the travel distance from the terminal to the 
furthermost point on the city boundary. 

The optimal zone length is now a function of two speeds. But, 
what about the number of subregions in each band? None of the pre
viously defined expressions change simply because, in all previ
ously analyzed scenarios, the number of subregions in each band is 
not a function of v. Thus, the design of all delivery subregions in 
metrics with fast roads is identical to the previously described 
process with the exception that the optimal zone length changes. 

LOGISTIC COSTS OF GROUND-SIDE DELIVERY 

The heuristic developed and demonstrated up to this point provides 
all of the information needed to locate and size delivery subregions 
which, in turn, allows us to begin analyzing ground-side pickup and 
delivery costs. In this section, a basic cost model is developed that 
incorporates four categories of logistics cost; costs of stopping, 
costs of overcoming distance, costs of carrying additional freight, 
and fixed vehicle costs. 

Included in the time constraint that underpinned the development 
of our design algorithm is the time required to stop at an origin or 
destination and move the package to/from the delivery vehicle. Sev
eral costs are incurred each time the delivery vehicle stops includ
ing labor, vehicle depreciation costs and materials. The total cost of 
stopping is determined by assuming that the cost per stop, C.,, is con
stant on the average. Including the entire ground-side delivery sys
tem, the total number of stops is the sum of city-wide stops and 
stops at the local terminal. Thus, the total stopping cost follows: 

Stopping cost = Cs (Ao + ~ N;) (29) 

where A is the area of the region in question. 
The cost per mile, Cd, is also assumed constant on the average. 

Recalling the need to include both line-haul trips in the cost formu
lation, the total distance traveled is easily determined: 

Total distance= 2f DiNi + kV6f tiN; 
i=l i=l 

( 

/1 11 ) 

Distance cost= Cd 2i~ DiN; + k\16~ tiN; 

i 

where DT= De - It1 and D~ = 0. 
j=I 

(30) 

(31) 

We also include the added cost per item carried, C,n, in the for
mulation. The total number of items carried is the product of the 
number of stops and the number of packages per stop, z: 

Marginal cost = C111(Aoz) (32) 

The marginal costs are very small compared to other logistics costs 
and are frequently ignored. 
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The final cost to include in this model is the fixed vehicle cost, 
Cf. The total number of vehicles required to deliver freight through
out the city is assumed equivalent to the number of delivery subre
gions in the city: 

Fixed vehicle cost= ct(~ NII) 
The total cost of delivery, TC, can then be expressed as the sum 

of the aforementioned costs: 

. TC= c(Ao + ;~ N;) + cd(2~ DfN; + k\16~ tiN;) 

+ C111(Aoz) + C{( ~ N;) (34) 

To demonstrate the economic characteristics of this model, we 
consider a diamond-shaped city with an L 1 metric and a terminal 
located in the lower corner. In such a case the city area, A, is l?, or 
Dl!2. Table I summarizes the parameter values assumed for the 
remainder of this section. 

The results of the subregion design algorithm confirm a priori 
expectations about the subregion partitioning, that bands furthest 
from the termi~al are narrowest (l1 = l.74 km), and bands closest 
to the terminal are widest (l7 = 6.13 km) with the exception of band 
n. It is easily shown that bands i ton + i increases by the constant 
percentage 

To assess the concepts of scale and density economies in ground
side delivery operations, the total cost formulation is used to deter
mine average costs (total cost per package) of delivery under vari
ous assumptions. Scale economies are defined as a change in the 
average unit costs of production resulting from a change in output. 
If output is defined as the number of points visited by a carrier, 
which increases as a result of city growth (De increasing, ceteris 
paribus) or an expansion in the carriers delivery market, it is easily 
shown that there are diseconomies of scale. If o increases while 
holding De and all other variables constant (which is more accu
rately called economies of density), it is clear that there are pro
found economies of density in ground side freight distribution, as 
indicated by the decreasing average unit cost curve in Figure 3. 
Although the finding of such significant economies of density is not 

TABLE 1 Assumed Parameter Values for Demonstration of Cost 
Model 

Parameter Assumed Values 

0.39 to 9.67 stops/km2 (1 to.25 stops/mi2) 
40.2 km (25 mi) 
1 to 4.5 hr 
64.4 kph (40 mph) 
32.2 kph (20 mph) 
5 min 
0.82 
1 to 4.5 pkg/stop 
$0.62/km ($I/mi) 
$2/stop 
$0.05/pkg 
$1.25/veh 
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FIGURE 3 Economies of density in ground-side pickup and delivery operations. 

surprising, this result has particular importance in the analysis of 
carrier competition when coupled with the impact that the time con
straint has on operational costs, discussed below. 

As discussed in the introductory section, time may be the most 
important strategic decision variable facing air freight carriers. 
There are two competing effects of varying the time constraint, T. 
First, increasing T lowers average unit costs significantly, ceteris 
paribus. The reason is simply that if T increases, the number of 
required delivery subregions decreases, thus lowering the opera
tional costs. In a competitive setting, it may appear that a combina
tion carrier would therefore want to make the time constraint as 
large as possible to mi_nimize costs. There are several potential 
trade-offs to increasing T, however. To illustrate, consider the ways 
in which an increase in T can be accomplished. First, it can be 
accomplished by setting the pickup deadline earlier (or the delivery 
deadline later). However, this would diminish the level of service 
offered to the customer, causing some customers to select another 
carrier or not purchase the product at all. Second, it could also be 
accomplished by serving a smaller market (within a city). In other 
words, reduce the area served from a terminal. Third, it could be 
accomplished by reducing the number of destination cities served 
from an airport. A combination carrier, for example, may have 
departing flights to Phoenix and Chicago at 6:30 p.m. and 7:00 p.m., 
respectively. With a 4:30 package pickup deadline, both destina
tions are served by a 1.5-hr time constraint (allowing 0.5 hr to load 
aircraft). T could be increased to two hours if only Chicago bound 
packages are served. Thus, T can be increased in several ways, 
including combinations of the above methods. The trade-off, how
ever, is that any of the aforementioned "solutions" reduces the 
demand served by the carrier, which increases average units costs 
according to the previously illustrated economies of density. 

The trade-off between economies of density and "economies 
of time" can be illustrated two ways. First, we can assess the impact 
of varying Ton average unit costs, taking into account the decrease 
in available demand caused by an increase in T. Clearly, at T = 0, 
the maximum number of points are potentially served (although 
there is no way to service the pickup and delivery points in zero 
time). Furthermore, it is appropriate to assume that the entire mar
ket (oA) is available for time constraints up to 2 hr. For T greater 
than approximately 2 hr, however, the number of points that can be 
serviced begins to decline for the previously discussed reasons. 
Eventually, no demand is available at T = 9 hr, the full business 
day. The available demand (AD) distribution could be represented 
as follows: 

AD= o(l -( eT-y )x) 
} + eT-y (35) 

where x and y are distribution shape parameters, assumed to be 
2 and 4 for demonstration purposes. The available demand (as a 
function T) is illustrated in Figure 4. Substituting this "available 
demand" quantity into the total cost model (Equation 34) and vary
ing T from 0 to 9, Figure 5 illustrates that the cost minimizing 
time constraint is from 5 to 7 hr, but the improvement in costs over 
T = 3 is relatively small. Profit maximization is more impor
tant than cost minimization for a freight carrier, however, so a 
more appropriate way to view the effect of time on production 
strategy is to consider the impact that the time constraint has on 
carrier profits. Assuming an average price per package of $10, Fig
ure 6 illustrates that the profits of a hypothetical carrier are maxi
mized when the time constraint is approximately 1.5 hr (for this 
example). 
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FIGURE 4 Available customer density as a function of time constraint, T. 
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FIGURE 5 Average unit costs as a function of time constraint, T. 
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FIGURE 6 Carrier profit as a function of time constraint, T. 

CONCLUSIONS 

Throughout this report, several aspects of the design of ground-side 
delivery systems have been explored. It was first indicated that the 
binding design constraint is that of time, not vehicle capacity con
straints as assumed by most previous studies. It was further indi
cated that an appropriate way to approach the design of delivery 
subregions is to first define the time constraint as a function of line
haul time, handling time, and local travel time. Then, according to 
this time constraint, design the delivery subregions along the equi
travel time contours beginning in the outermost band and iteratively 
moving toward the terminal. Expressions were derived for the sub
region dimensions, the number of subregions per band, and the 
location of the subregions for cities employing Li metrics with ter
minals located centrally, in one corner of the city, and in the middle 
of one edge of the city. 

City street networks generally allow for more than one speed of 
travel. Fast roads, as they are often called, significantly change the 
shape of the equi-travel time contours that the design is based on. As 
a result, the impact of fast roads in a city network was explored. The 
design framework was then generalized to allow for two travel 
speeds; fast travel on line-haul trips and slower travel on local streets. 

The results of the design process for a square city with an Li met
ric, two travel speeds, and a terminal in one corner, were then used to 
develop a total cost model of ground-side pickup and delivery opera
tions. The model, in turn, was used to explore the economic cost struc
ture of the delivery system. It was indicated that ground-side pickup 
and delivery operations exhibit significant economies of scale and 
profound economies of density. The results were highly robust with 
respect to changes in all design variables. It was also demonstrated 
that as the time constraint increases, the average unit cost decreases. 
However, increasing this decision variable results in a decrease in the 
market that is potentially captured by a competing carrier. 
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