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The relationships between traffic flow variables play important roles in 
traffic engineering. They are used not only in basic traffic flow analy­
ses but also in some macroscopic traffic flow simulation models. For 
many decades, various mathematical formulations that describe the 
relationships among density, flow, and speed have been proposed, 
including multiregime models. Previously, the best mathematical 
curve was determined by trying several different formulas and apply­
ing regression analysis. In these processes, one must specify in advance 
which mathematical formula should be adopted and where it should be 
shifted to another in a multiregime model. Neural network models have 
some promising abilities to represent nonlinear behaviors accurately 
and to self-organize automatically. A procedure for describing the 
macroscopic relationships among traffic flow variables using some 
neural network models is presented. First, a Kohonen feature map 
model was introduced to convert original observed data points into 
fewer, more uniformly distributed ones. This conversion improved 
regression precision and computational efficiency. Next, a multilayer 
neural network model was introduced to describe the two-dimensional 
relationships. The model was effective in describing the nonlinear and 
discontinuous characteristics among traffic flow variables. It was 
unnecessary to specify the regression curves and the transition points 
in advance. The multiple correlation coefficients resulting from the 
model were better than those resulting from a conventional nonlinear 
equation. 

The relationships among traffic flow variables play important roles 
in traffic engineering. They are used not only in analyses of traffic 
flow behavior but also in some macroscopic traffic flow simulation 
models. For many decades, traffic-flow analysts have studied vari­
ous mathematical formulations that describe the relationships 
among density, flow, and speed ofuninterrupted traffic flows (1-3). 
The best mathematical formerly was determined by trying several 
formulas and applying regression analysis techniques. In some 
cases, one equation may be most appropriate; another may be bet­
ter in the others. Moreover, multiregime models that use a few func­
tions have been proposed, too (1-3). Normally they include dis­
continuity points not only in original functions but also in their 
derivatives-that is, in applying such models, one must specify in 
advance which mathematical formula should be adopted in each 
region and where it should be shifted to another. 
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As a matter of fact, the authors are now engaged in the develop­
ment of a traffic flow simulation model (4) in which a characteris­
tic curve prescribes the average traffic states. The curve is updated 
using traffic detector data at each observation point. The authors 
used to face the aforementioned difficulties in establishing a macro­
scopic relationship in a computer. 

Some neural network models, such as a multilayer model (5), 
have the promising ability to describe nonlinear behaviors very 
well. So, it is expected that when they are applied to the regression 
problem, they can self-adjust the curvature of characteristic curves 
automatically while responding to the distribution of observed data. 
Above all, they require no preliminary knowledge of the mathe­
matical formulas and the transition points. Another difficulty in 
regression analysis lies in the trimming of excessive observed data. 
When traffic flows are observed, often one comes across unequally 
distributed traffic data-distributed densely in a few restricted 
regions and sparsely in the others. This unequal distribution of 
observed data would affect the regression results badly. Excessive 
observed.data in a region decrease the computational efficiencies, 
too. One must determine in advance which data should be retained 
and which should be trimmed. Some statistical criteria, such as AIC 
(Akaike information criteria) and FPE (final prediction error) (6), 
may provide useful knowledge about how much data should be 
retained, but they provide no information about which should be 
retained. 

Some neural network models, such as a Kohonen feature map 
(KFM) model (7), have the ability to convert original observed data 
into fewer, more representative data automatically. The KFM 
model does not require any preliminary knowledge about the data 
structure. All one must do is specify the number of data points to 
which the original data set should be reduced. 

BACKGROUND 

Characteristic Curves 

There are many characteristic curves proposed so far for describing 
the relationship between density and speed. In this study the authors 
used the formula derived from the car-following theory (3): 

(1) 
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where 

k =density (veh/km), 
v = speed (km/hr), 
k1 =jam density, 
v1 = free speed, and 

l,m = sensitivity factors from car-following theory. 

Substituting Equation 1 into the relationships q = kv, the other 
relationships among density, flow, and speed can be obtained as 
follows: 

(2) 

(3) 

where q denotes the traffic flow rate in vehicles per hour. The 
unknown parameters in those equations are subject to some con-
straints (3): · 

l > 0 

m > 1 

vjin::; Vt::; vrx 

k?in ::; kj ::; kymx 

Regression Analysis 

Equations 1, 2, and 3 are expressed in a general form 

where 

x = control variable, 
y = state variable, and 

(4) 

(5) 

a1 (j = 1,2,3 ,4) = unknown parameters of l, m, vfi and k1 in Equa-
tions 1-3, respectively. 

By obtaining sets of observed data (x;, y;) (i = 1,2, ... ,N), one 
can identify the parameters by a regression technique. Since 
Equation 5 is in nonlinear form and is subject to some constraints 
given by Equation 4, the problem here reduces to a nonlinear con­
strained least mean square problem. That is, the unknown parame­
ters are estimated so as to minimize the objective function 1 as 
follows: 

Subject to 

G1 ::; a1 ::; H1 j = 1, 2, 3, 4 (6) 

The authors used Box's complex algorithm to solve this prob­
lem. A detailed discussion of this algorithm can be found else­
where (11) .. 
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Multilayer Neural Network Model 

Figure 1 shows a multilayer neural network model for describing 
the macroscopic relationships between traffic variables. It consists 
of three layers: an input layer, an intermediate layer, and an output 
layer. The strength of the connections is called synaptic weight. The 
normalized control variable xf was entered into the input layer, such 
as k!k1 in Equation l. The input signals were transmitted in sequence 
from the input layer to the output layer while the neural operations 
were repeated. The output layer produces the normalized objective 
variable yf, such as v!v1 in Equation 1. This is the forward signal 
process in Figure 1. Next, the synaptic weights were adjusted so that 
the error between the output signals and the target signals is mini­
mized. The backpropagation method (5) produces the adjustments 
of synaptic weights in each layer. In actual computation the synap­
tic weights are adjusted by the momentum method to smooth the 
adjustment and urge the convergence. 

Kohonen Feature Map 

The KFM model is a two-layered neural network that can organize 
a topological map from a random starting point. It has the ability to 
classify input patterns into several output patterns. Figure 2 depicts 
the basic network structure of a KFM model. the authors used a one­
di mensional structure for this analysis. It consists of two layers: an 
input layer and a competitive layer. The interconnections (synaptic 
weights) are adjusted in a self-organizing manner without any tar­
get signals. the authors briefly explain how this can be done. An 
input pattern to the KFM is denoted here as 

(7) 

Since the observed traffic variables are adopted as the input signals, 
the input layer has three neurons in it (n=3). The weights from the 
input neurons to a single neuron in the competitive layer are denoted 
as 

W; = [W1;, W2;, .... , W11;] (8) 

where i identifies the ith neuron in the competitive layer. The num­
ber of neurons there can be specified arbitrarily. 

The first step in the adjustment of synaptic weights is to find a 
winning neuron c in the competitive layer whose weight vector 
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FIGURE 1 Basic structure of 
multilayer neural network .. 
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FIGURE 2 Basic structure of KFM 
model. 

matches most to each input vector E. The matching value is defined 
by the distance between vectors E and W;: 

(9) 

The neuron with the lowest matching values wins the competition. 
After the winning neuron c is identified, weights are updated for all 
neurons that are in the neighborhood Ne of the winning neuron. The 
adjustment is 

{
/3(e1 - wu) if i E Ne 

~W·= 11 
0 otherwise 

(10) 

where 13 is the learning rate, which is decreased over a span of many 
iterations. This adjustment results in the winning neuron becoming 
more likely to win the competition when the same or similar input 
pattern is presented subsequently. In other words, the synaptic 
weight vector W; consequently represents those input patterns that 
resemble each other. This is what is called the integration of 
observed data. See work by Dayhoff (7) for more details. 

TRAFFIC DATA 

Observed Data 

The observed data used here come from the Metropolitan Express­
way in Tokyo. The data were collected on the Y okohane Line 
between Tokyo Haneda Airport and Yokohama in October 1993. 
Supersonic traffic detectors are installed _in each of the two direc­
tional lanes every 300 m, and traffic data on flow, occupancy, and 
average speed are compiled every 1 min. Figure 3 depicts the 
schematic drawing of the freeway section and the location of the 
traffic detectors. Traffic data on both lanes in the eastbound direc­
tion from Yokohama to Tokyo Airport were used. This road section 
experiences incessant congestion in the daytime on weekdays. The 
authors chose such time periods that include extensive traffic situ­
ations, ranging from free-flow to congested states. In this analysis, 
assuming that density is proportional to time occupancy, the authors 
used time occupancy directly rather than converting it to density (8). 
This requires a minor change in the nonlinear equations from Equa-

FIGURE 3 Overview of Yokohane Line and 
locations of traffic detectors. 

13 

tions 1 through 3. Assuming homogeneity around observation 
points, the authors treated the time-mean speed as identical with the 
space-mean speed. However, it should be noted that this assump­
tion is not always valid. One must examine carefully what has been 
analyzed, in particular when traffic is congested. 

Training 

By using the KFM model in three-dimensional space, the original 
observed data were converted to fewer points of more integrated 
data. Figure 4 depicts the schematic drawing of the conversion. 
Iterative trainings by the model produce the neurons whose weights 
correspond to integrated data. They were projected on each two­
dimensional plane for two-dimensional analysis. Next, by using a 
multilayer neural network model, ihe input-output reiationships 
between the control and the state variables were built up. The com­
pletion of training by the backpropagation method brings a stable 
regression between them. 

Kohonen Feature Map 

To convert observed data to sets of integrated data, the authors pre­
pared a KFM model consisting of an input layer with three neurons 
and a competitive layer with neurons that correspond to the number 
of integrated data points. Before the training, all observed data are 
normalized. After having given a set of observed data to the input 
layer in Figure 2, the authors selected a winning neuron in the com­
petitive layer and adjusted the weights of neurons in the neighbor­
hood of the winning neuron. This process is iterated for all input 
patterns consecutively. Training iteration continues until the change 
of synaptic weights becomes sufficiently small. Finally, a stable for­
mation of integrated data can be obtained. 

The most important problem in this process is how to determine 
the number of integrated data points. Generally, the appropriate 
number of data points depends on the use of a characteristic curve; 
for interpreting traffic flow behaviors, the number must be deter­
mined carefully so as to not lose the original data properties. One 
must determine it while checking the information statistics based on 
a criterion, such as AIC or FPE. On the other hand, for using a char-
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FIGURE 4 Schematic drawing of integration of observed data by 
Kohonen f ea tu re mapping. 

acteristic curve in a simulation model, excessive data should be 
trimmed because such data affect the regression badly. In this case, 
one may be able to determine the number experimentally because 
only the average characteristics of traffic fl.ow states are needed. In 
this paper, assuming the usage in a simulation model, the authors 
determined it experimentally: 20 points for each data set containing 
120 points of observed data. 

Figure 5 shows how original observed data are integrated as the 
training proceeds. For simplicity, the evolution process is pro­
jected on the occupancy-speed plane, and, for convenience, it is 
enlarged to the real scale. White circles in Figure Sa are original 
observed data, and black ones in the center of the graph are the ini­
tial weights that are set to the value 0.5 plus a small, within 10 per­
cent, randomized value. Figures 5b-d show the distribution of the 
neuron weights after 50, 130, and 200 training iterations, respec­
tively. It can be seen that the weights spread out gradually over the 
original space as the training proceeds. As shown in Figure 5, the 
KFM model requires nearly 100 to 300 iterations to complete the 
training. 

Multilayer Neural Network 

As mentioned before, the authors prepared a multilayer network 
with a neuron in the input layer and a neuron in the output layer for 
two-dimensional analysis. The synaptic weights were adjusted by 
the back-propagation method. 

In this paper the authors adopted a training procedure (9) that is 
somewhat different from the usual one. Here, the authors adjust the 

weights thoroughly for an input pattern until the error between the 
output signal and the target signal becomes sufficiently small. The 
adjustment is repeated for all input patterns. The completion of 
adjustment for an input pattern deteriorates the synaptic weights for 
the other patterns, so that those training processes are iterated hun­
dreds or thousands of times, normally 10,000 to 30,000 times. The 
training method adopted here was effective in avoiding entrapment 
into a local minimum and converged steadily to a global minimum. 

RESULTS 

In presenting how well the neural network models describe the non­
linear phenomena without any specific functions, the authors com­
pare two methods: an analytical one by nonlinear equations, and one 
using artificial intelligence through neural network models. How­
ever, the authors refrain from interpreting the curves from the traf­
fic fl.ow viewpoints because there is much to do before doing so, 
including determining the appropriate number of integrated data 
points. 

Occupancy-Speed Curve 

First, the methods are compared using the traffic data observed at 
Detector Station 1201. The period is 2 hr. Figure 6 shows three 
regression curves: (a) a curve by a nonlinear equation for original 
observed data, (b) one by a neural network model without the KFM 
model, and (c) one by a neural network model with the KFM model. 
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The white circles in Figures 6a and b present 120 points of original 
observed data, and the black ones in Figure 6c present 20 points of 
data integrated by the KFM model. 

It is seen in Figures 6a and b that the observed data are exces­
sively distributed in both regions where time occupancy is 
from 5 to 15 percent and from 20 to 40 percent. Those excessive 
data points affect the regression curve very badly. It should be 
noted that the shape of the curves is quite different in the high­
occupancy region (occupancy is more than 40 percent), although 
there is little difference in the correlation coefficients, as presented 
in Table 1. This means that the densely distributed data in the 
low- and middle-occupancy regions almost govern the curve, 
and to the contrary, the data in the high-occupancy region have 
little effect on it. 

On the other hand, Figure 6c shows 20 points of integrated data 
and the regression curve by the neural method with the KFM model. 
It is seen that by introducing the KFM model, the authors were able 
to make the original data more uniformly distributed. In particular, 
the five original data in the high-occupancy region in Figure 6a are 
reduced to two sets of data in Figure 6c. This favorably improved 
the regression in the region. One can see that the regression curve 
with the KFM is located in the middle of the original observed data 
in the high-occupancy region. This appears to be desirable for 
applying the curve in a traffic simulation model. However, for inter­
preting traffic flow phenomena in the region, the overtrimmed curve 
is not adequate. In such cases, one should increase the number of 
integrated data or use original raw data. 

Figure 7 shows the regression curves for the other detector sta­
tions. As in Figure 6, the white circles are the original data, the black 
are the integrated data, and the thick line is the regression curve pro-

duced by the multilayer neural method. One realizes at a glance that 
the regression curves are more complicated than those of the non­
linear equation in Figure 6a. It is seen in the low-occupancy region 
that the curves have a "snake head": they are nearly flat where time 
occupancy is less than 15 percent. In addition, the regression curves 
consist of a few convex parts. In other words, they are discontinu­
ous in their derivatives. Likewise, a small gap can be seen around 
the time occupancy of 20 percent in Figure 7 b. 

In this way, the neural network method has the promising ability 
to describe a discontinuous relationship more precisely. It needs 
neither to divide the whole region into several nor to introduce an 
individual function for each region. Unfortunately, those features of 
the neural network models are not easy to evaluate quantitatively. 
However, the correlation coefficients reflect those features indi­
rectly. Table 1 presents the coefficients produced by both of the 
neural methods along with those produced by the nonlinear equa­
tion for all cases. It is seen that the neural methods are better than 
the nonlinear equation. Also, there is little difference between both 
of the neural methods. This means that the neural network models 
can flexibly self-adjust the curvature of regression curves according 
to the number of data points. Needless to say, the neural method 
with the KFM model is more efficient in the computation than that 
without the KFM model. 

Occupancy-Flow Curve 

Figure 8 presents the regression results by both methods for the 
occupancy-flow curve at Detector Station 1201. Compared with the 
occupancy-speed curve in Figure 6, the behaviors are a bit more 
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FIGURE 6 Comparison of neural network models 
with nonlinear equation on occupancy-speed curve: 
a, nonlinear equation; b, neural network without 
KFM; c, neural network with KFM. 

complex. Clearly, the nonlinear equation in Figure 8a fails to 
describe the relationship in the congested region. On the contrary, 
as shown in Figure 8b, one can recognize the good regression in the 
region. Integration of original data in the high-occupancy region 
into a few data points contributed to this improvement. Of course, 
it must be examined carefully if the number of data points in the 
region is sufficient or not, according to the purpose for which the 
curve is used. In addition, one can see that the curve is not so well 
regressed in the vicinity of capacity, apparently because of the data 
being scattered in the region. That is, even the neural method can-
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TABLE 1 Comparison of Multiple Correlation Coefficients on 
Occupancy-Speed Curve 

Detector Non-linear Neural Network 
Point Equation without KFM with KFM 

1009 0.94 0.97 0.97 

1011 0.87 0.92 0.94 

1103 0.91 0.94 0.95 

1201 0.88 0.91 0.92 

1203 0.92 0.96 0.97 

not describe such data. The description for such data is the most dif­
ficult subject in the mathematical formulations. 

Figure 9, similar to Figure 7, shows the regression curves by the 
neural method for the other cases. One can see that the distribution 
of integrated data is more complicated than that of those in the occu­
pancy-speed curves in Figure 7: the thin curve that connects the 
integrated data in sequence has two peaks. It should be noted that 
the regression curve (thick line) in Figure 9a corresponds well to the 
movement of the data. In this way, the neural method is able to 
describe such a complex relationship, too. Here also, one must care-
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FIGURE7 Occupancy-speed curves by neural· 
network models: a, Station 1011; b, Station 1103. 
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fully examine the validity of the curve from traffic engineering 
viewpoints. 

On the other hand, the regression curve in Figure 9b is relatively 
smooth, although the integrated data are distributed zigzag as in 
Figure 9a. This is because even the neural network model is not able 
to describe such a function that has two or more state values for a 
control value. In this case, there are two or three flow values for an 
occupancy value near capacity. Anyway, it should be noted that the 
curves are not so well regressed yet in the vicinity of capacity in 
both of the figures. For reference, the correlation coefficients for all 
cases are given in Table 2. One can see that the neural method is 
much better than the nonlinear equation. 

Flow-Speed Curve 

In general, flow-speed curves become more complicated because of 
the transition of traffic states (10). They would take a different path 
according to whether the traffic goes into congestion or recovers to 
free-flow state. However, in this paper, neglecting those dynamic 
behaviors, the authors treated traffic states as static ones. Figure I 0, 
similar to Figures 7 and 9, shows regression curves for two cases, 
in which the authors treated speed as the control variable and flow 
as the state variable. Because of the lack of observed data in the 
free-flow state, the regression curve cannot be seen in the high­
speed region. The curve in Figure I Oa presents a somewhat poor 
regression with the integrated data points around capacity whereas 
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FIGURE 9 Occupancy-flow curves by neural 
network models: a, Station 1011; b, Station 1203. 
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80 

80 

the one in Figure I Oa follows them somewhat better. To trace the 
data in Figure l Oa more precisely, it may be necessary to change the 
number of data points. But this should be done only if it is mean­
ingful from the viewpoint of traffic engineering. Here also, as indi­
cated in Table 3, the neural method gives better correlation coeffi­
cients than the nonlinear equation. 

CONCLUDING REMARKS 

The relationships among traffic flow variables play important roles 
in traffic engineering. They are used not only in analyses of traffic 
flow behaviors but also in some macroscopic traffic flow simulation 
models. Noting that some neural network models have promising 
abilities to represent nonlinear behaviors and to self-organize auto­
matically, the authors applied them to the description of the rela­
tionships. First, the authors introduced a KFM model to integrate 
the original observed data points into fewer, more uniformly dis­
tributed ones. Next, a multilayer neural network model was used to 
describe the relationships between traffic flow variables. the authors 
investigated the applicability of the neural network models to the 
regression problem and compared the results with those produced 
by a conventional nonlinear equation. The major findings are as fol­
lows: 

I. A KFM method served to integrate original observed data 
points into fewer, more uniformly distributed data points. All that 
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TABLE 2 Comparison of Multiple Correlation 
Coefficients on Occupancy-Flow Curve 

Detector Non-linear Neural 
Network 

Point Equation with KFM 

1009 0.60 0.78 

1011 0.47 0.58 

1103 0.74 0.79 

1201 0.52 0.66 

1203 0.61 0.80 

must be done to specify the desired number of integrated data 
points. This integration contributes to the improvement of regres­
sion precision and computational efficiency. 

2. A multilayer neural network model was effective in describ­
ing the nonlinear and discontinuous relationships between traffic 
flow variables. The model made it unnecessary to specify the 
regression curves and the transition points in advance. In addition, 
the multiple correlation coefficients produced by the model were 
better than those produced by a nonlinear equation. 
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TABLE 3 Comparison of Multiple Correlation 
Coefficients on Flow-Speed Curve 

Detector Non-linear Neural 
Network 

Point Equation with KFM 

1009 0.70 0.83 

1011 0.74 0.85 

1103 0.79 0.82 

1201 0.63 0.81 

1203 0.75 0.81 

The method proposed here still has some disadvantages: it 
requires a bit of burdensome work to estimate some fundamental 
traffic parameters, such as maximum volume, which are significant 
for analyzing traffic flow behavior. 

In this paper, the discussion was limited to the availability of 
neural network models. The interpretation of traffic phenomena · 
using them is left to future work. Moreover, the availability of other 
neural models that might be more effective than those used here 
must be examined. 
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