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Estimating Intersection Turning Movement 
Proportions from Less-Than-Complete 
Sets of Traffic Counts 

GARY A. D.AVIS AND CHANG-JEN LAN 

Estimated turning movement proportions are used in a number of traf
fic simulation and traffic control procedures to predict the turning 
movement flows at intersections. Historically, these proportions have 
been estimated by manual counting, but the ongoing deployment of 
real-time adaptive traffic control strategies indicates that the ability to 
automatically estimate these proportions from traffic detector data is 
becoming increasingly important. When it is possible to count the vehi
cles both entering and exiting at each of an intersection's approaches, 
methods based on ordinary least squares can produce usable estimates 
of the turning movement proportions, but when the number or place
ment of the detectors does not support complete counting, these meth
ods fail. The feasibility of estimating turning movement proportions 
from less-than-complete sets of traffic counts is assessed, and the sta
tistical properties of less-than-complete count estimates are compared 
with estimates generated from complete counts. It turns out that esti
mation from less-than-complete counts can be done as long as the detec
tor configuration satisfies an identifiability condition. A numerical test 
is presented to assess whether or not this condition is satisfied, along 
with some simple rules for designing detector configurations that are 
likely to satisfy this condition. A Monte Carlo experiment suggests that 
estimates generated from less-than-complete counts can be more vari
able than those generated from complete counts. 

A commonly used representation of the demand for travel on a 
bounded network of urban streets requires specifying (a) the arrival 
flows at each input point on the boundary of the network, and (b) 

the turning movement proportions at each of the network's inter
sections. Both arrival flows and turning movement proportions may 
vary in time. When coupled with a method for estimating the travel 
times on street segments, knowledge of the arrival flows and turn
ing movement proportions allows a traffic engineer to predict the 
turning movement flows at each intersection in the network, and 
these in turn are needed to evaluate the effectiveness of all but the 
most simple intersection signal control plans. Not surprisingly, this 
representation of demand has a long history of practical application, 
including use by classical methods for computing pretimed controls 
for isolated intersections (e.g., Webster's method), the Highway 
Capacity Manual's method for evaluating level of service at inter
sections and along arterials (1), and computer models used for off
line optimization and evaluation of timing plans for networks of 
intersections (e.g., TRANSYT, NETSIM). More recently, on-line 
adaptive control schemes (e.g., SCAT, CARS) have also used this 
representation. 

In the past, a major limitation on the timely updating of signal 
control plans was that the only reliable method for estimating the 
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turning movement flows was time-consuming and costly manual 
counting. This limitation became even more burdensome when one 
wished to adapt a control plan in real time, and often it led to 
reliance on a stored library of "typical" turning movement patterns, 
which were determined by off-line counting. It is no surprise, then, 
that over the past 15 years, a number of researchers have investi
gated methods for estimating turning movement proportions auto
matically from the traffic count data collected by real-time traffic 
control systems, which typically are gathered using detectors 
embedded in the pavement. Almost without exception, however, 
this work has assumed that it is possible to count the total number 
of vehicles entering the intersection from each of its approaches as 
well as the total number of vehicles exiting from each exit leg. For 
example, the intersection of two two-lane, two-way streets would 
require a minimum of eight detectors. It is now well-established that 
when time series of an intersection's input and output counts are 
available, estimation methods based on ordinary least squares will 
produce usable estimates of the turning movement proportions, both 
off-line and in real time (2-6). However, such a rich density of 
detectors tends to be the exception rather than the norm, at least in 
the United States, and the slow application of automatic turning 
movement estimation in the United States can in part be blamed on 
the added expense imposed by the additional detectors. The func
tional specifications for real-time traffic adaptive control systems 
(RT-TRACS), recently prepared for FHWA, explicitly recognizes 
this limitation by calling for a maximum of 20,000 detectors for a 
total of 5,000 intersections. 

Before proceeding, it is useful to specify more completely the 
relation between this paper and past work. For the case in which 
counters are placed at each entry and exit point of an intersection, it 
has been recognized that the problem of estimating turning move
ment flows or turning movement proportions from the counts is a 
special case of the more general problem of estimating an origin
destination (OD) matrix from traffic counts, and reviews of this 
problem can be found elsewhere (7-9). As noted by Davis (10), OD 
estimation methods can be classified as either over- or underdeter
mined, depending on whether the traffic count data at hand are suf
ficient to produce a unique estimate of the OD elements. For under
determined approaches, an infinite number of OD estimates 
consistent with the count data will exist, and one of these is selected 
by specifying a prior estimate of the OD matrix and then selecting 
as the new estimate the OD matrix that is consistent with the count 
data and "closest" to the prior estimate (7). 

Three general approaches to underdetermined OD estimation 
have appeared to date, defined primarily by how they define "close
ness" to the prior estimate: the information minimizing (IM) 
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approach developed by Van Zuylen and Willumsen (11) and Bell 
(12), the weighted least squares (WLS) approach initiated by Maher 
(13) and Cascetta (14), and a maximum likelihood (ML) approach 
described by Speiss (15). Speiss also assumes that the prior estimate 
comes from a survey with known sampling properties. All of these 
approaches are subject to the criticism that despite more than 15 
years of research, none has been shown to yield estimators that are 
consistent, in the statistical sense of becoming increasingly accurate 
as the amount of traffic count data become arbitrarily large. In fact, 
Davis and Nihan (16) have shown that an underdetermined least 
squares OD estimator remains underdetermined, and hence not con
sistent, even with an infinite time series of traffic count data. The 
IM, WLS, and ML approaches all have specializations to the prob
lem of estimating an intersection's turning movement flows from 
traffic counts, and Maher (17) has provided a concise summary of 
these methods, where he found that for a particular computational 
example, these three approaches tended to produce similar esti
mates. As with general OD estimators, the underdetermined meth
ods for estimating intersection turning flows will fail if a good prior 
estimate is not available, so they are unable to "bootstrap" good esti
mates from traffic count data alone. This dependence on prior infor
mation makes them particularly ill-suited for real-time implemen
tation. 

The limitations of underdetermined approaches were described 
by Cremer and Keller (2), who also described the first overdeter
mined method for estimating intersection turning movement pro
portions. Here it was assumed that time-series data of the intersec
tion's entering and exiting counts were available, and an estimate 
of the turning movement proportions was coupled with the entering 
counts to produce predictions of the exiting counts. Those values of 
the turning movement proportions that minimized a measure of 
error between the predicted and observed exit counts were then 
selected as the best estimates. Subsequent papers (3-5) located this 
work within the framework of the systems identification paradigm 
(18-20), and general results on systems identification have been 
used to show not only that ordinary least-squares estimates of turn
ing movement proportions are consistent (5), but also that consis
tent estimates of more general OD matrices can be computed from 
time series of traffic counts (10). A particular advantage of the sys
tems identification approach is that real-time implementation of the 
estimation algorithms is often straightforward. 

When considering the problem of estimating turning movement 
proportions for a network of intersections and complete entry and 
exit counts are not available, the estimation problem is no longer a 
special case of OD estimation, and to date no underdetermined 
methods have been proposed for this problem. When time series of 
traffic counts are available, however, the overdetermined estimation 
problem again falls within the systems identification paradigm, for 
which a reasonably general statistical theory (20) and real-time 
implementations (18) have been described. This paper considers the 
problem of estimating intersection turning movement proportions 
in networks where time series of traffic counts are available from 
automatic traffic detectors but the number or placement of the 
detectors may not be sufficient for the standard least-squares esti
mation methods. Although it is recognized that method of moments, 
least squares, and ML approaches are applicable to this problem, the 
focus will be on a nonlinear least squares (NLS) approach because 
(a) it leads to a straightforward generalization of the methods that 
use complete sets of counts, and ( b) the basic ideas behind this 
approach can be developed with the least amount of statistical jar
gon. Thus the authors believe that the NLS approach is more likely 

TRANSPORTATION RESEARCH RECORD 1510 

to be accessible to interested practitioners. The primary focus in this 
paper is on determining feasibility, so the authors concentrate on 
off-line computation of the turning proportion estimates and simply 
note that on-line versions of NLS estimation, using state-space 
models, have been described in the literature (18,21). This restric
tion to off-line methods is justified by the fact that an approach that 
performs poorly off-line will also perform poorly on-line, and the 
pathologies of an approach are usually easier to diagnose off-line. 

TRAFFIC FLOW MODEL 

To date, all methods for automatic estimation of turning movement 
proportions have used prediction error minimization methods, in 
which one first specifies a model for predicting the intersection's 
exit counts using the intersection's input counts and a trial set of 
turning movement proportions. One then selects as the estimated 
proportions those values that minimize some measure of the differ
ence between the predicted and the actual exit counts. The predic
tion model thus is essential for estimating, or identifying the turn
ing proportions. The first requirement then is a prediction model 
that is capable of handling several intersections simultaneously and 
that allows for a variety of detector configurations. 

Consider a set of street intersections surrounded by a cordon 
boundary. Traffic counters are located at each point where traffic 
can enter the cordon area; they count the number of vehicles cross
ing into the cordon area at that point. Suppose there are m of these 
input counters, and let q;(t) equal the traffic count at input counter i 
during time interval t, i = 1, ... , m. 

Next, suppose the streets within the cordon have been divided 
into s sections, or compartments, according to the following rules: 

1. Traffic flow within a compartment is unidirectional, 
2. The stop lines at intersections always mark the downstream 

boundaries of a compartment, and 
3: The exit line on an intersection leg always marks the upstream 

boundary of a compartment. 

A segment of a two-way street connecting two intersections must 
be divided into at least two compartments, one for each direction, 
with the compartment boundaries being the intersection stop and 
exit lines. These two compartments may be divided further. At a 
total of n compartment boundary points are placed additional detec
tors that count the number of vehicles crossing that boundary point. 
Call these the output detectors, and let yj ( t) equal the number of 
vehicles crossing output detector j during time interval t, j = 

1, ... , n. 
Next, let 

xk(t) = number of vehicles in compartment k at begin
ning of time interval t; 

q(t), x(t), y(t) = m-, s-, and n-dimensional vectors, respectively, 
containing individual elements q;(t),xk(t), and 
y/t); 

b1k = proportion of vehicles currently in compartment 
l that desire entry into compartment k, if com
partment l is adjacent to compartment k, or 0, if 
compartment k is not adjacent to compartment 
l; 

b = d-dimensional vector containing turning move
ment proportions; 
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Pk(x) = proportion of vehicles that can physically exit 
compartment k during time interval t, as a func
tion of the current distribution of vehicles in the 
system; 

gki = 1, if input counter i is at the upstream boundary 
of compartment k, and 0, otherwise: 

The distribution of vehicles over the compartments then evolves in 
time according to the mass balance equations 

xk(t + 1) = {1- pdx(t)]}xk(t) 

+ L 1 x,(t)p,[x(t)]b1k +Li gkiqi(t) k = 1, .. . ,s (1) 

Thus the quantity xi(t) p 1 [x(t)] gives the number of vehicles actually 
exiting compartment l during time interval t, and these are then dis
tributed to the neighboring compartments in proportion to the b1k, 

with 2,kb1k = 1.0. At this point no assumptions are made concerning 
specific functional forms for the exit probabilities pk(x), but note 
that plausible forms can be derived from traffic flow models, so that 
the quantity xkpk behaves like a traffic flow-that is, as the product 
of space-mean speed and traffic density (22-24). Additional gener
ality can be achieved by letting these exit functions depend explic
itly on time or on the destination compartment as well as the origin 
compartment, or on other dynamic variables, such as compartment 
mean speeds, making this class of models roughly coextensive with 
macroscopic traffic models based on continuum theory. Such 
enhancements do not affect the main conclusions of this paper, but 
they tend to obscure the drift of the argument with notational com
plexities and so will not be dealt with here. It is noted, though, that 
actual application requires specification of the exit functions. 

Finally, for a given sequence of input counts q(l), q(2), ... , q(N) 
and a given vector of turning movement proportions b, predicted 
output counts can be generated by solving the mass balance equa
tions recursively while computing the predicted output counts via 

if detector j counts exits 
from compartment k 

if detector j counts entries 

into compartment k 

(2) 

Equations 1 and 2 define a nonlinear state-space model: the first 
describes the state dynamics and the second gives predictions of the 
observations. 

The simplest example of such a model would be a network con
sisting of a single intersection and its adjacent compartments, with 
the input counters located at the upstream boundaries of the inter
section's approaches, the output counters located at the intersec
tion's exit points, and pk(x) = 1.0 for all k and x. Since each pro-

0 

portion bk1 corresponds to exactly one inpuUoutput pair, these can 
be reindexed as bij, and they give the intersection's turning move
ment proportions as defined elsewhere (2-6). In this case, given the 
input counts, the prediction of an output count is given by the sim
ple linear relationship 

(3) 

and constrained ordinary least squares (CLS) estimates of the turn
ing movement proportions can be computed by minimizing the sum 
of squares function 

subject to the constraints 

0:::;; bij:::;; 1.0 

Ljbij = 1.0 i = I, ... ,m 

This problem is well-defined as long as the matrix 
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(4) 

(5a) 

(5b) 

(6) 

is nonsingular. This is the basic model used by Cremer and Keller 
(2,3) and Nihan and Davis (4,5) in developing their numerous vari
ants of least-squares estimators of turning movement proportions, 
whereas letting Pk :'.S 1 produces the platoon dispersion model pro
posed by Bell (6) to account for travel time lags between the input 
and output counters. 

IDENTIFIABILITY OF TURNING MOVEMENT 
PROPORTIONS 

Returning now to the nonlinear prediction model defined in Equa
tions 1 and 2, for a given sequence of input counts and an estimate 
of the turning movement proportions b, this model can be used to 
generate a sequence of predicted output counts, which in tum can 
be used to compute the sum-of-squares function 

S2(b) = L,[y(t)- y(t, b)f[y(t)- y(t, b)] (7) 

where y(t, b) denotes the vector of predicted outputs produced by 
Equation 2. The dependence of the predicted outputs on the unob
served state vector x(t) makes y(t, b) a nonlinear function of the 
turning movement proportions, so that attempting to minimize S2 

with respect to b leads to an NLS problem. This can be solved using 
any of a number of standard routines as long as the problem is well
defined, in the sense that at least a locally unique minimizing value 
of b exists. It may be, though, that the number or placement of the 
output detectors is not sufficient to produce a well-defined problem, 
leading to a situation analogous to the underdetermined OD esti
mation problem. · 

The problem of determining in advance whether a data collection 
experiment will support estimation of a model's parameters is an 
example of the system identifiability problem, to which a substan
tial research effort has been devoted (24,25). It is straightforward to 
verify that when the output count predictions are differentiable 
functions of the turning movement proportions (which is true for 
prediction model used here), and when there exists a vector b0 that 
produces "good" predictions (in the sense that the prediction errors 
are uncorrelated with the input counts), then the problem will be 
well-defined as long as the matrix J(bfJ(b) is nonsingular, where 

r 

aYi(1, h) aYi(1, h) I 
~--·~ 

J(b) = . . . . . . . .. 
ay11 (N, b) cry11 (N, b) 

ab1 ··· abd 

(8) 
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is the Jacobian matrix giving the derivatives of the predicted output 
counts with respect to the turning movement proportions. In prac
tice, one would test whether or not a particular eonfiguration of out
put counters will support identification of the turning movement 
proportions by Computing the determinant Of J(b) TJ(b) at a Sample 
of values for b, using a typical sequence of input counts. Analytic 
expression for the partial derivatives appearing in J(b) is not 
needed, as these can be evaluated numerically; as long as one can 
generate an a priori reasonable set of input counts, no actual data 
are needed to perform these tests. This makes this test suitable for 
use in designing detector configurations. A justification for testing 
only a few sample values for bis given by a result attributable to 
Eisenfeld (26): suppose J(b) is a polynomial function of b (as is the 
case for the prediction model described by Equations 1 and 2). Then 
if there exists one value b such that the determinant of J(bf](b) 
does not equal 0, the determinant of J(b)rJ(b) does not equal 0 for 
almost all values of b. 

Experience from the identification of compartment models in 
biology and medicine indicates that this property, known as local 
identifiability, is useful for determining which data collection con
figurations can support parameter estimation (24,25). 

DESIGN OF IDENTIFIABLE DETECTOR 
CONFIGURATIONS 

The Jacobian test provides a method for assessing the ability of a 
given detector configuration to provide enough information for esti
mating turning movement proportions, but it provides no guidance 
as to how one might arrive at plausible configurations in the first 
place, nor does the test indicate how to correct an unidentifiable 
configuration. Ideally one would like to have identifiability condi
tions that are both necessary and sufficient, where the necessary 
conditions give guidance on how to design the detector configura
tion while the sufficient conditions verify that the design is in 
fact adequate. In the current state of the art, useful necessary and 
sufficient conditions have yet to be found, even for linear, time
invariant models. For linear models, however, there do exist neces
sary conditions that indicate how to avoid certain common reasons 
for nonidentifiability, and although the traffic model described pre
viously is nonlinear, because of the dependence of the exit flows on 
the current traffic distribution x(t), it shares many bf the structural 
features of linear models, becoming a time-invariant linear model 
when the exit probabilities are constant. Thus it can be recom
mended that following the conditions for linear systems should pro
vide good starting points for designing identifiable detector config
urations for the nonlinear model. 

• A configuration of detector placements will be said to produce 
an input-reachable model if there is a route to each compartment 
from at least one input detector. Similarly, the configuration is 
output-reachable if there exists a route from each compartment to at 
least one output detector. 

• A pair of turning movement proportions will be called insepa
rable if every route connecting an input detector to an output detec
tor that involves one of these turning movements also involves the 
other. 

For linear models, it has been established that models that are not 
input- and output-reachable are unidentifiable whereas two insepa
rable parameter values will be identifiable only in special cases (25). 
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Thus input and output reachability and separability can be regarded 
as highly desirable properties for a detector configuration, and for 
very simple networks it is usually possible to verify input and out
put reachability and separability by inspecting a graphical represen
tation of the network (25 ). For larger networks, input and output 
reachability can be verified by computing reachability matrices for 
the network (27), but separability is more difficult to check. The task 
b.ecomes much simpler if the network shows the graph theoretic 
properties of strong connectedness and degree-2 vulnerability. [By 
strongly connected, the authors mean that it is possible to travel from 
any internal compartment to any other internal compartment; by 
degree-2 vulnerability, they mean that the network remains strongly 
connected even if any one of its turning movements is forbidden. 
Roberts (27) gives a more detailed discussion of these properties.] 

• Proposition. Suppose a network of intersections is bounded by 
a cordon line, with no internal origins or destinations. Suppose the 
network is strongly connected and degree-2-vulnerable and that 
detectors are placed so that a complete cordon count of both enter
ing and exiting vehicles is achieved. Then this detector placement 
is both input- and output-reachable and separable. 

• Proof Since the vehicles entering from the cordon line must 
enter an internal compartment, and since the vehicles exiting at 
the cordon line must exit from an internal compartment, strong 
connectivity implies input and output reachability. Now let 
(k, li. 12 ••• , l,l) denote a sequence of compartments that when tra
versed, form a route from input point k to output point l. Let 
[(k, li)(/1, 12), ••• ,(/,, l)] denote the sequence of turning movements 
used in traversing this route, and select any two turning movements 
from this sequence, denoting them by (/0 , lb) and Uw 113). Since the 
network is degree-2-vulnerable, it is possible to forbid movement 
(1"'113) and still construct one route from an input from an input point 
to compartment 10 and another route from compartment lb to an out
put point. Joining these routes with the movement (l"' lb) creates a 
route from an input to an output that uses (/", lb) but not Ua, l~), so 
the configuration is separable. 

Although it is easy to construct networks that are not strongly 
connected (the network shown in Figure 1 is an example), the 
authors believe that most well-designed street systems should have 
this property. For if a network is not strongly connected, it will be 
possible to divide it into two or more components, some of which 
are inaccessible from others (27). That is, a vehicle that is one part 
of the network can find it impossible to travel to other parts. Degree-
2 vulnerability also appears plausible but less general, so that some 
networks will have this property and some will not. One exception 
would arise from a T-intersection formed by two one-way streets, 
where, for instance, vehicles turn left from the cross of the T into 
the stem of the T. Forbidding this left turn would make it impossi
ble to enter the stem of the T (and hence destroy the network's 
strong connectivity), and this also makes it impossible to construct 
a route using a movement exiting the stem of the T without using 
this left turn. The solution for this problem would be to place an 
additional output detector to count vehicles entering the stem of the 
T, so that routes terminating at this detector would separate the left 
turn into the stem of the T from the movements exiting the stem. 
Finally, for networks with internal origins or destinations, placing 
detectors to count the vehicles exiting or entering these points will 
convert them to "internal" cordon points, and the preceding results 
will still hold. 

To summarize, a detector configuration that is input- and output
reachable and separable is not guan:mteed to be identifiable, but it 
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FIGURE 1 Simple signalized network. 

will avoid two common causes of nonidentifiability. If a network is 
strongly connected and this connectivity is relatively invulnerable 
to disruption, then a complete cordon count will give an input- and 
output-reachable and separable configuration. Finally, internal 
compartments that can be entered from only one other internal com
partment are likely to cause separability problems unless additional 
detectors are used. 

MONTE CARLO EXPERIMENT 

A system that is identifiable in the preceding sense is one for which 
the data collection configuration will not, by itself, prevent estima
tion of the turning movement parameters. However, the quality of 
the resulting estimates will depend at least in part on factors such as 
quality and quantity of the available data, the algorithm used to 
solve the NLS problem, and the choice of NLS as opposed to some 
other estimation approach, such as method of moments or ML. A 
comprehensive answer to the questions raised here is not available, 
but to illustrate these issues, consider the simple network depicted 
in Figure 1, showing two intersections of two-way streets. The var
ious compartments are numbered from 1 to 14, and the figure also 
shows the 24 separate turning movement proportions, indexed 
according to their exit and entry compartments. Since for any given 
approach the proportions for left turns, right turns, and through 
movements must add up to 1.0, there are in fact only 16 linearly 
independent turning movement parameters in this network, and the 
vector b containing these independent parameters will have dimen
sion d = 16. Figure 2 shows two different configurations of detec
tor placements for this network. Placement Scenario 1 corresponds 
to the complete detectorization assumed by the linear model for es~i
mating turning movement proportions, and Scenario 2 corresponds 
to a cordon count placement. It is straightforward to verify that 
under Scenario 2, the detector configuration is both input- and 
output-reachable and separable. 
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• -- D D --• DD 
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___ ..... oo __ _ 
•---- D D-- • 
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1. ·' • 
Scenario I 
Scenario II 

FIGURE 2 Configurations of detector 
placements. 
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The primary objective of this paper was to generate a sample of 
turning proportion estimates computed by minimizing the nonlin
ear sum of squares function S2 and then to compare it with a sample 
of estimates generated by minimizing the linear least-squares func
tion S1• To this end, simulated traffic counts for both the Scenario 1 
and the Scenario 2 detectors were generated using a stochastic ver
sion of the prediction model described by Equations 1 and 2. Sim
ulated input counts at each of the six input points for time interval t 
were generated as Poisson outcomes with time-varying means q(t), 
and the number of vehicles exiting compartment k during inter~al t 
was generated as binomial random variable with parameters xk(t), 

pdx(t)]. The exiting vehicles were then allocated to adjacent com
partments as multinomial random outcomes with classification 
probabilities bki· The exit probability functions were of the same 
form as those presented and tested elsewhere (23,24) to describe 
freeway traffic flow, but with free-flow speeds, capacities, and jam 
densities selected to make them more representative of arterial 
travel. The traffic signal at each intersection was given a standard 
two-phase timing plan, with a 60-sec cycle length and 30 sec of 
green allocated to each phase (i.e., no yellow intervals were used). 
The effect of red time on a movement was simulated by setting the 
exit probability to 0.0 during the red interval. Fifty simulated data 
sets were generated, each consisting of 180 I-min traffic counts for 
each of the detectors depicted in Figure 2. Under Scenario l, it was 
assumed that data from the white detectors were available, and esti
mates of the turning movement proportions were computed using 
the equality-constrained least-squares algorithm (28). Under Sce
nario 2, it was assumed that data from the black detectors were 
available, and predicted values for the cordon output detectors were 
computed recursively using the prediction model described in 
Equations 1 and 2, with the I-min input detector counts as inputs. 
This recursion was implemented as a subroutine called by the NAG 
optimization routine E04JBF (29), which computed those estimates 
of the turning movement proportions that minimized the nonlinear 
sum-of-squares function S2• For the nonlinear estimation, only the 
left and right turning proportions at each approach were treated as 
independent parameters, with the through proportion then being 
computed as h1hrough = 1 - h1ef1-bright· 
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As noted earlier, even when a detector configuration supports 
identification of the turning movement proportions, the statistical 
properties of these estimates remain to be assessed. The least
squares estimates generated by an identifiable configuration may 
still show enough bias or variability to limit their practical useful
ness. Estimated turning proportions were computed for each of the 
50 simulated data sets, giving a pseudorandom sample of the 
estimates under each scenario. Table 1 presents the results of this 
experiment. 

The mean columns in Table 1 give the average, across the 50 data 
sets, of the estimates for that parameter, whereas the "std" column 
gives the standard deviation of the estimates. The "t" columns give 
the t-statistic testing the hypothesis that the sample average for that 
parameter is equal to its true value (i.e., a test for whether that esti
mate is biased). For each approach, the "true" parameter values used 
in generating the simulated data were bthrough = 0.6, h1eftturn=0.3, and 
bright turn = 0.1. For the NLS estimates, the t-statistics for the through 
movements are omitted since they are actually deterministic func
tions of the estimates for the right and left turn proportions. The 
results for the CLS estimates are consistent with those reported by 
Nihan and Davis (5), being unbiased with moderately low standard 
deviations. As would be expected, the NLS estimates show an 
increase in variability, because the NLS estimator is working with 
less information than the CLS estimator. The first set of NLS esti
mates also shows a substantial number of instances of bias, but this 
appears to be due in large part to numerical difficulties experience 
by E04JBF. In 21 of 50 instances, E04JBF terminated with a mes-

TABLE 1 Results of Monte Carlo Experiments 

Para- CLS 

meters mean std mean 

hs.4 0.3015 0.0274 0.38 0.2978 

hs.2 0.5926 0.0312 1.67 0.5769 

bs.J 0.1059 0.0297 1.40 0.1254 

b9,J 0.2994 0.0190 0.21 0.2913 

b9,I 0.5953 0.0308 1.08· 0.6045 

b9.4 0.1052 0.0232 1.60 0.1041 

bl0,1 0.3096 0.0453 1.50 0.3080 

bl0,4 0.5888 0.0404 1.97 0.5825 

b10,2 0.1016 0.0338 0.34 0.1095 

bl4,2 0.3067 0.0331 1.44 0.2819 

bl4,3 0.5970 0.0296 0.72 0.5883 

bl4,l 0.0963 0.0323 0.81 0.1298 

h12.s 0.3032 0.0286 0.80 0.3106 

b,2,5 0.5933 0.0264 1.80 0.5751 

b,2,6 0.1035 0.0287 0.85 0.1144 

bl.6 0.3010 0.0343 0.21 0.2838 

bl.7 0.5973 0.0424 0.45 0.5859 

bl,8 0.1017 0.0315 0.38 0.1303 

bll,7 0.3020 0.0214 0.65 0.2993 

h11,s 0.5975 0.0243 0.72 0.5468 

bll,5 0.1005 0.0191 0.19 0.1474 

bl3,5 0.3038 0.0295 0.91 0.3162 

b,3,6 0.6002 0.0384 0.04 0.6036 

bill 0.0960 0.0414 0.69 0.0802 
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sage indicating that it was unable to satisfy all convergence criteria; 
in the remaining 29 cases, satisfactory convergence was achieved. 
Computed means, standard deviations, and t-statistics for only those 
cases showing satisfactory convergence are displayed in the three 
rightmost columns of Table 1, and these show removal of a number 
of instances of bias. This result suggests that careful attention to the 
numerical properties of one's optimization algorithm may result in 
improved estimator performance. 

From a practical standpoint, probably the most interesting result 
is the increased variability shown by NLS estimates when compared 
with CLS estimates. To interpret this, the results in Table l suggest 
that with 180 1-min traffic counts, roughly 95 percent of the time 
one could expect to have an estimate of b5.4 that would fall in the 
interval [0.25, 0.35], whereas with NLS one would need the inter
val [0.18, 0.42] for the same degree of confidence. A similar result 
is shown for each of the turning movement proportions. Thus, shift
ing to fewer detectors does not guarantee something for nothing. 
The cost savings can be offset by a loss of precision. 

CONCLUSION 

The first objective of this paper was to assess the feasibility of esti
mating intersection turning movement proportions from automatic 
traffic counts, when the number or placement of the detectors can
not provide complete counts for each intersection. It was deter
mined that such estimation was possible for detector configurations 

NLS (1) NLS (2) 

std mean std 

0.0584 0.27 0.3011 0.0613 0.10 

0.0535 0.5854 0.0526 

0.0426 4.21' 0.1136 0.0402 1.82 

0.0259 2.38' 0.2981 0.0264 0.40 

0.0495 0.5985 0.0398 

0.0401 0.73 0.1035 0.0306 0.61 

0.1120 0.50 0.3139 0.1029 0.73 

0.1095 0.5832 0.1094 

0.0710 0.94 0.1029 0.0657 0.23 

0.0577 2.21' 0.2812 0.0583 1.74 

0.0525 0.5908 0.0564 

0.0612 3.44' 0.1280 0.0681 2.22· 

0.0415 1.80 0.3160 0.0429 2.01 

0.0544 0.5711 0.0611 

0.0442 2.30' 0.1129 0.0498 1.39 

0.0416 2.76' 0.2842 0.0432 1.97 

0.0477 0.5852 0.0515 

0.0422 5.08' 0.1306 0.0501 3.29' 

0.0280 0.18 0.3011 0.0292 0.21 

0.0490 0.5494 0.0362 

0.0377 8.90' 0.1495 0.0399 6.68' 

0.0643 1.78 0.3131 0.0518 1.36 

0.0549 0.6046 0.0389 

0.0553 2.54' 0.0823 0.0536 1.78 
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providing a requisite minimum amount of information. The authors 
described a numerical test of whether a given pattern of detector 
placements could provide this information and recommended a 
minimal placement pattern that is likely (but not guaranteed) to pro
duce adequate information. Overall, it appears plausible that there 
is more information about turning movement proportions in limited 
detector configurations than is being used. 

The second objective was to obtain some idea of the effects on 
the statistical properties of turning movement estimates that result 
from a reduced detector configuration. A Monte Carlo study using 
a simple two-intersection network showed a noticeable increase in 
a tendency toward bias and in estimate variability when one shifted 
from a complete set of counts to cordon counts. This suggests that 
minimal identifiable detector configurations might not provide the 
precision needed for real-time tracking of turning movement pro
portions. If full detectorization is not possible, one could begin with 
a minimal configuration, such as cordon counters, and add as many 
detectors as is economically possible. One compromise might be to 
divide a large network into a number of smaller cordoned areas, 
allowing some detectors to do double duty on the boundary between 
two areas. Doing so would also facilitate direct verification of input 
and output reachability and separability. 

For practitioners, the fact that a residual amount of uncertainty 
remains in the estimates of the turning movement proportions, even 
after processing 3 hr of data, should cause them to question the stan
dard practice of "certainty equivalent" control, in which estimated 
quantities are used as if they were known with certainty. For a given 
identifiable detector configuration, some of this uncertainty might 
be eliminated by switching to a more efficient estimation approach, 
such as ML; the feasibility of such a switch is currently under inves
tigation. It does not appear likely, however, that all uncertainty can 
be eliminated, and genuinely optimal control of traffic signal sys
tems may need to take uncertainty into explicit account. 
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