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Dynamic Traffic Modeling of the 1-25/HOV 
·Corridor Southeast of Denver 

JUAN ROBLES AND BRUCE N. JANSON 

The application of a dynamic traffic assignment model (DYMOD) to 
the southeast Denver metro area surrounding I-25 and I-225 is 
described. Hourly volume counts on 20 percent of network links were 
used to estimate a morning peak-period trip matrix between 110 zones 
using a three-step procedure developed to estimate origins, destinations, 
and the origin-destination (0-D) trip matrix. Trip departure times from 
each zone were estimated using 5-min counts at on-ramps to I-25. Then, 
5-min volumes and speeds predicted by DYMOD for I-25 through lanes 
and on-ramps were compared with observed data from loop detectors. 
Lane-blocking incidents were modeled and compared with observed 
traffic volumes and speeds during these incidents. The results show that 
DYMOD can reproduce and predict network traffic conditions (with or 
without accidents) as well as generate alternative routes to reduce traf­
fic delays during incidents. 

The implementation and testing of a dynamic traffic assignment 
model (DYMOD) to predict time-varying traffic conditions on a 
moderate-sized urban network during incidents and congested peri­
ods is described. Using nonlinear optimization formulations and 
solution algorithms (1-5), DYMOD performed well in computa­
tional tests on small networks and was ready for validation and test­
ing on a suitable freeway-arterial system. An area southeast of Den­
ver including the 1-25/HOV corridor presented an excellent test 
environment for this application because of its (a) density of instru­
mentation, (b) diversity of highway types, and (c) variations in daily 
traffic conditions. 

The objectives of this project were to: . 

• Develop computer data bases of system characteristics (both 
supply and demand) for a network of freeways and arterials south­
east of Denver including 1-25 and 1-225 covering approximately 
100 mi2 (260 km2). 

• Calibrate and validate DYMOD to reproduce time-varying 
traffic conditions throughout this network based on historical data 
collected from loop detectors. 

• Demonstrate the model's ability to predict volumes, speeds, 
and delays on alternative routes during incidents such as lane-block­
ing accidents. 

Peak-hour counts for about 20 percent of the network links were 
collected from city, county, and state traffic engineering depart­
ments, and used to estimate a morning peak-period trip matrix 
between 110 zones covering this area. Volume counts of 5-min col­
lected from loop detectors at the on.:.ramps to 1-25 and 1-225 were 
used to estimate the departure times of these trips from each zone. 
Average speeds collected in 5-min intervals from the through-lane 
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detectors on 1-25 were used to calibrate the model's speed-flow rela­
tionships. 

With these data, DYMOD was used to predict volumes and 
speeds during a typical 5:00-10:00 a.m. weekday peak period. On 
average, predicted flows agreed to within 12 percent of actual 5-:rnin 
volumes on the 1-25 through lanes at detector locations. Three lane­
blocking accidents on 1-25 were then modeled. The results indicate 
that DYMOD can successfully model incident conditions to esti­
mate vehicle hours of delay and generate route-diversion planning 
strategies during lane-blocking accidents. 

DYMOD's formulation, math properties, and solution algorithm 
are described in a companion paper (6). The brevity of this paper 
precludes a discussion of other dynamic traffic modeling 
approaches. The next two sections describe the development of 
network supply and demand data bases for the southeast Denver 
area in preparation for running DYMOD and emphasize the impor­
tance of obtaining sufficient network coverage of traffic counts in 
short time intervals with which td estimate departure times. The 
results of DYMOD's application to a "base case" with no accidents 
and to three known accident cases are then presented. The con­
cluding section outlines recommendations for data acquisition and 
management procedures essential for successful dynamic traffic 
modeling. 

OVERVIEW OF DYMOD 

The dynamic user-equilibrium (DUE) version of DYMOD applied 
in this research is defined as follows: 

Given a network with speed-volume functions to predict travel times, 
and given a set of zone-to-zone trip tables containing the number of 
vehicle trips departing from each zone and headed towards each zone 
in successive time intervals, DYMOD finds the volume of vehicles on 
each link in each time interval that satisfy DUE conditions. The DUE 
condition to be satisfied for each pair of zones is that no path can have 
a lower travel time than any used path between these zones for trips 
departing in a given time interval. 

DUE is formulated in terms of link flows as a bilevel program ( 6). 
The upper problem solves for DUE flows subject to nonnegativity 
and conservation of flow constraints. The lower problem updates 
the node time intervals and ensures temporally continuous trip 
paths. The solution algorithm solves these two problems succes­
sively until suitable convergence is obtained. Link capacity reduc­
tions due to accidents or spillback queueing in specific time inter­
vals are made between these problems. DUE as solved here 
maintains the first-in first-out (FIFO) ordering of trips between all 
zone pairs. 
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NETWORK DEVELOPMENT 

The study network shown in Figure 1 contains 110 zones, 1, 714 
nodes, and 3,417 links, including intersection links. Zone centroids 
shown as circled dots in Figures 1 and 2 define the origin­
destination (0-D) trip-end locations. All legal movements at every 
intersection are represented by separate links (see Figure 3). An 
intersection of two two-way streets requires at least 12 through and 
tum-movement. links connecting eight approach and exit nodes. 
Special lane groups and allowed U-tums require additional links. 
Thus, in this network, 1,395 nodes and 1,778 links define intersec­
tion tum movements, and an additional 702 links are centroid con­
nectors, which are explained later. 

FIGURE 1 Southeast Denver network surrounding 1-25. 
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Figures 4 and 5 show the detail with which freeway interchanges 
are represented. The network contains 11 interchanges on I-25 and 
three on I-225. Figure 6 shows thafall but two I-25 interchanges 
(those at I-225 and University Boulevard) have dual-loop detector 
arrangements as shown in Figure 7. Three cloverleaf interchanges 
(Colorado Boulevard, Arapahoe Road, and County Line Road) have 
full-loop detection at both northbound on-ramps. 

Geographic Information System (GIS) software was used to code 
the network. The GIS platform proved very useful for displaying 
and analyzing the network links, and for editing and manipulating 
their attributes. All links are unidirectional, and their geographic 
representation is such that (a) no two links connect the same two 
nodes, and (b) each two-way street or highway section is repre-
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FIGURE 2 1-25 from Arapahoe Road to Hampden Avenue. 

sented by two oppositely directed links connecting two distinct 
node pairs. 

The main advantages of representing the network with this level 
of detail are that (a) delays incurred by vehicles at each through or 
tum movement at intersectio~s can be estimated more accurately 
and (b) illegal tum movements cannot occur. This coding is 
required for the estimation of spillback queueing effects on the 
capacities of upstream links as explained by Janson and Robles ( 6). 
The disadvantages of coding a network with too much detail are that 
(a) larger numbers of nodes and links result in a greater computa­
tional burden, and (b) developing the network can become very 
time-consuming, depending on the size of the study area and the 
data available. 

Perhaps the most tedious task is converting digital line graph 
(DLG) files into usable form for traffic modeling. This involves 
dividing every link into two oppositely directed links, and then 
adding separate tum movement links at each intersection and inter­
change. No automated GIS procedures or utilities have been devel­
oped to perform this task, so a program was created to split the links 

and make some intersection connections. However, nearly every 
intersection still required some reconfiguration with the GIS net­
work editing tools. 

To incorporate any road or intersection changes that may have 
occurred since the DLG files were created, survey trips were made 
to various places throughout the study area to verify (a) the config­
uration of roads and intersections, (b) number of lanes, ( c) turning 
allowances, and (d) new roads constructed. The entire network 
building and conversion process required several months of full­
time effort by the first author of this paper. 

In addition to geographic alignment coordinates, supply attrib­
utes of each link stored in the link layer of the data base include: 

1. Link identifier, 
2. From-node, 
3. To-node, 
4. Directionality code, 
5. Length, 
6. Link name, 
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FIGURE 3 Intersection representation. 

7. Road class, 
8. Number of lanes, 
9. Capacity, 

10. Speed limit, and 
11. Free flow travel time. 

Some of the link data (road names, lengths, speed limits, number 
of lanes, and road classes) were obtained from the data bases of 
other transportation agencies and matched to the network. Discrep­
ancies found in some of these data were corrected by checking maps 

HOLLY ST 

and conducting field trips. Fields for importing modeling results 
(e.g., link volumes, volume to capacity ratios, link travel times and 
speeds, etc.) were also created. By comparison, the attributes of 
each node stored in the node layer of the GIS data base were lim­
ited to its ID, X-coordinate, and Y-coordinate. 

The next step was to select a sufficient number and coverage of 
zone centroids and their linkages to the network. A zone centroid 
was located within every block sub-area surrounded by signalized 
arterial streets, plus external centroids surrounding the region's 
boundaries. Zonal areas ranged from less than 0.25 mi2 (0.65 km2) 
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FIGURE 4 Locations of accidents No. 1 and No. 3. 
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FIGURE 5 Interchange at Arapahoe Road and I-25. 



Robles and Janson 

UNIVERSITY BLVD 

0 •TRAFFIC 

DETECTOR 

FIGURE 6 1-25 interchanges. 

in the northern, denser end of the network to greater than 2 mi2 (5.2 
km2

) in the southern, sparser end of the network. Each zone centroid 
is connected to the approach or exit nodes of 2 to 4 intersections 
located on the boundaries of the zone. Access links connect before 
intersections and egress links connect after intersections. 

Trip 0-D and Departure Time Estimation 

Having defined the traffic analysis zones, the next step is to create 
a peak-period trip matrix of interzonal trips for the study area. 
Obtaining an 0-D trip matrix by dispatching surveying trip makers 
is expensive, labor intensive, prone to sampling errors, and not fea­
sible for real-time applications. An alternative is a synthetic tech­
nique that uses traffic counts on alternative routes to develop an 
0-D table. 

A conventional zone-to-zone trip distribution matrix represents 
trips between each 0-D pair of zones in a given analysis period. 
Whether trips depart and arrive within the time period, and. when 
trips actually travel within that period, is unknown once the trip 
matrix has been compiled from survey data. If the time period of a 
trip matrix is shortened (e.g., from 1 hr to 5 min), then most trips 
departing in any given interval will not be completed within that 
interval. Hence, trip matrices for short time intervals represent "trip 
departure" matrices of trips departing from each zone to the zone 
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they are headed (or trips arriving at each zone and from the zone 
they came). 

The preceding discussion raises many questions concerning how 
to estimate 0-D trips and their departure times in a combined or 
sequential manner. Janson and Southworth (5) describe a method of 
using traffic detector data to disaggregate a peak-period trip matrix 
into the likely departure times of these trips. A prohibitive disad­
vantage of estimating departure times by 0-D pair is that it requires 
a large coverage of 24-hr detectors reporting data about every 5 min. 
Moreover, there was no average weekday peak-period trip matrix 
covering 5:00 to 10:00 a.m. to disaggregate. The Denver Regional 
Council of Governments (DRCOG) uses either a 24-hr or 3-hr trip 
matrix for most of its work. Extracting a 5-hr trip matrix for the 
study area from the regional DRCOG data base with somewhat dif­
ferent zone configurations did not appear to be reliable or up-to-date 
with current traffic patterns. 

It was beyond the scope of this study to collect the necessary data 
and calibrate the travel demand models with which to estimate trip 
productions, attractions, and 0-D trips. Such a process would also 
be error-prone due to the large number of external trip ends in this 
region. Thus, despite the difficulties from traffic counts, 0-D esti­
mation was deemed to be the best strategy for developing a 5-hr trip 
matrix for which approximate departure times could be obtained. In 
addition to the I-25 detectors, traffic count information was 
requested from every state, city, or town agency in the area known 
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FIGURE 7 Typical metered freeway ramp on 1-25. 

to have some counts. A mix of 1-hr and 24-hr counts dating back to 
1990 was obtained for approximately 20 percent of the network 
links, including tum movement links. Peak-hour counts from the 
1-25 detectors were then added to this set. Much reconciliation and 
judgment were required to pull together a set of usable pea~-hour 
counts from this data. 

0-D estimation must reconcile observed counts with link-use 
probabilities and network flow feasibility. In the study, maximum 
entropy 0-D estimation (with a base-trip matrix and observed link 
counts)" and static user-equilibrium (UE) assignment were repeat­
edly executed to obtain link-use probabilities, which resulted in an 
0-D trip matrix that when assigned to the network resulted in sim­
ilar link-use probabilities. As a base-trip matrix, an approximate 
pattern of peak-hour 0-D trips were obtained from DRCOG, but not 
one that was compatible with observed counts or up-to-date with 
recent traffic growth. 

The entropy maximizing model for 0-D estimation was pro­
grammed from traffic counts as described by Van Zuylen and 
Willumsen (7) with the base 0-D trip matrix previously mentioned 
as prior information to improve the reliability of the estimated 0-D 
matrix. Because of relatively sparse count coverage on a fairly large 
network, the 0-D estimation process was broken down into the fol­
lowing steps: 

1. Assign a base peak-hour trip matrix to the network with static 
UE assignment to obtain initial link-use proportions. Also calculate 

the sum of these base origins and destinations for use in the next 
step. 

2. Use the maximum entropy procedure to separately estimate 
origins and destinations from traffic counts in proportion to base 
origins and destinations from the base-trip matrix using the link-use 
proportions just obtained. 

3. If newly estimated origins and destinations are within a small 
percent change from previously estimated origins and destinations 
(equal to the base origins and destinations when this step is first exe­
cuted), then STOP. Otherwise, continue. 

4. Distribute these trip ends in a biproportional manner to the 
base-trip matrix without using a trip deterrence function because of 
the large proportion of pass-through trips. 

5. Use static UE assignment to assign the estimated trip matrix 
from Step 4 to obtain a new set of link use proportions, and return 
to Step 2. 

Since there is no assurance that the above procedure will con­
verge, an added step before UE assignment in Step 5 that will 
"force" convergence involves combining the latest trip matrix with 
the previously estimated matrix using the method of successive 
averages. This step was not necessary for the application studied 
here. 

The advantage of estimating origins and destinations and then 
0-D trips in separate steps is that each step requires much less com­
putational burden than (a) generating the entire three-dimensional 
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matrix of 0-D link-use proportions, and (b) estimating the full 0-D 
trip matrix from traffic counts. Also, each matrix of link-use pro­
portions by trip-end zone is much less sparse than a comparable 
matrix oflink-use proportions by 0-D pair. The disadvantage of this 
approach is that it does not use 0-D-specific link-use information. 
Since the Frank-Wolfe assignment algorithm linearly combines 
successive trip assignments by origin to shortest path trees, it is 
unclear whether this poses any disadvantage to the outcome of the 
procedure just explained. 

Use ofl-25 Loop Detector Data 

In defining a study area for dynamic traffic modeling, a key issue is 
the availability of 24-hr loop detectors from which volumes, speeds, 
and densities can be obtained for short time intervals (less than 5 
min). On I-25 southeast of Denver there are 12 locations at which 
loop detectors monitor traffic using the northbound through lanes 
and on-ramps of each interchange for ramp meter operation (see 
Figures 6 and 7). Volumes and speeds for 65-min intervals of the 
morning peak-period (5:00-10:00 a.m.) were archived to tape by 
the Colorado department of transportation for each detector for each 
day from June 15 to September 15, 1992. These data were used to 
calibrate the travel time functions of the model. The best-fitting 
parameters for the Bureau of Public Roads impedance function 
were found to be 0.7 (instead of 0.15) multiplied by the volume­
to-capacity ratio raised to the power of 6 (instead of 4). 

These data also were used to factor the peak-hour trip matrix into 
a 5-hr trip matrix. Because a large percentage of trips in this study 
area use I-25 for some portion of their journeys, the 5-hr trip matrix 
was estimated as a scalar multiple of the peak-hour trip matrix that 
best fit the 5-hr counts on I-25 when assigned in a static UE man­
ner. The best-fitting multiple was found to be 3.2 for this study net­
work. The final 5:00-10:00 a.m. trip matrix represents a total of 
222,218 trips, with nonzero trips between each of the (109 X 110) 
interzonal 0-Dpairs. Intrazonal trips are not modeled. 

-

55 

The next step was to disaggregate the 5-hr trip matrix into trip 
departure times. Departure time estimation can be combined with 
DYMOD as described by Janson and Robles ( 4), but this requires 
knowledge of desired arrival times and schedule delay penalties of 
trips by origin zone. Instead, it was assumed that departure times 
from each origin were distributed similarly to departure times of 
trips using I-25 (for which there were link crossing times in 5-min 
intervals). It was assumed that the distribution of departure times 
from each origin in 5-min intervals was similar to the distribution 
of I-25 entrance volumes at the nearest on-ramp, but offset by the 
approximate travel times from each origin to their nearest I-25 on­
ramp. This approach is an ad hoc execution of the more formal pro­
cedure [defined by Janson and Southworth (5)] that worked well for 
this network. 

DISCUSSION OF RESULTS 

Figures 8 and 9 show observed and predicted volumes and speeds 
at three northbound through links ofl-25 at detector sites just before 
the merge points of each northbound on-ramp. In general, predicted 
speeds declined much earlier than actual speeds, beginning about 
6:30 a.m. at each location. The model overestimates speed reduc­
tions in most, but not all, cases. This result is satisfying because tra­
ditional static models are often criticized for grossly underestimat­
ing travel times and delays. Speed comparisons at other 
interchanges were generally better than the ones shown here. 

Figures 10 and 11 show observed and predicted volumes at three 
off-ramps and three on-ramps at the same interchanges. Detectors 
were not located at the off-ramps, but observed off-ramp volumes 
were computed based on the observed volumes on adjacent links. 
The predicted off-ramp volumes in Figures 10 and 11 generally 
agree with observed volumes, disregarding the dramatic fluctua­
tions in ramp volumes, which the model is not intended to predict. 
The off-ramp volumes at Belleview and Evans A venues are most 
poorly predicted, but the observed Evans Avenue off-ramp volumes 
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FIGURE 8 Predicted versus observed 1-25 volumes. 
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FIGURE 9 Pr.edicted versus observed I-25 speeds. 

are very curious. This may be due to some observed data problems. 
The Colorado southeast cloverleaf on-ramp also shows large dis­
parities and appears to be an underutilized on-ramp compared with 
the adjacent northwest diamond on-ramp. 

predict because of the speed at which they develop and their pro­
portional effect of multiple inflow links to the same intersection or 
freeway merge section. 

Accident Case No. 2 Near Belleview A venue 
Analysis of Lane-Blocking Accidents 

A key feature of DYMOD is that it adjusts upstream link capacities 
for spillback queueing (a) from oversaturated links in specific time 
intervals. or (b) due to accident blockages, weather conditions, con­
struction, or signal timing changes in time intervals when they occur 
.as input to the program. Spillback queueing effects are difficult to 

Figure 2 shows the section of 1-25 along which two accidents 
occurred on October 20, 1992. According to the Mile High Cour­
tesy Patrol (a motorist assistance service on 1-25), the first accident 
occurred near Hampden A venue at 7: 10 a. m. and was cleared at 
7:30 a.m. It occupied the right shoulder and part of the right lane, 
causing approximately 30 percent of this four-lane section's capac-
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FIGURE 10 Predicted versus observed off-ramp volumes. 
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FIGURE 11 Predicted versus observed on-ramp volumes. 

ity to be lost for that period of time. The second accident occurred 
near Belleview Avenue about 7: 15 a.m. and was cleared about 8:25 
a.m. It was reported in the right lane and part of the adjacent lane, 
causing about 50 percent of this four-lane section's capacity to be 
lost for that period of time. 

Figure 12 compares predicted and observed I-25 volumes on the 
day of the second accident. A very close agreement was observed 
at the Belleview and Orchard detectors, but not at the Hampden 
detector. The capacity loss and traffic impacts were underestimated 
due to the first accident at Hampden. Observed volumes rise to the 
predicted volumes when the first accident is cleared, but drop 
sharply after the second accident. DYMOD shows high traffic vol-
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umes at Hampden during the second accident because DYMOD 
rerouted traffic onto I-25 via the Belleview on-ramp (which was 
beyond the accident) and via I-225. These alternate routes could 
have been used more effectively by many travelers to avoid the 
accident queue if they had known the location of the accident. Trav­
elers who diverted from I-25 at Orchard apparently did not attempt 
to reenter I-25 until much farther north, if at all, or they simply 
waited in the queue on I-25. 

Figures 13 and 14 show very good predictions of travel times and 
speeds on I-25 during the accident. Upstream effects at Dry Creek 
Road (3 to 4 mi upstream) are shown in Figure 15. DYMOD cap­
tured more upstream effects in this case because of less acces-
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FIGURE 12 Predicted versus observed I-25 volumes (Accident 2). 
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FIGURE 13 Predicted versus observed I-25 times (Accident 2). 

sible alternate routes around this site compared with other 
sections of 1-25. 

• Case 1 was of short duration, but caused a 50 percent reduc­
tion in capacity of an already narrow (3-lane) section of 1-25, and 
happened at the peak of rush hour. 

Summary of Estimated Accident Delays 

The table shown summarizes accident delays estimated by 
DYMOD compared to travel times estimated by DYMOD without 
any accidents. The following observations may be made: 

• Case 1 caused the least total hours of delay (742 hr), but the 
most delay per directly affected trip. 

• Cases 2 and 3 were of much longer duration, but caused less 
capacity reduction and occurred mostly on the downside of the peak 
period. 

• Thus, Cases 2 and 3 directly affected more than twice as many 
trips, and caused nearly twice the total vehicle delay, but caused less 
delay per directly affected trip than Case 1. 

These delay estimates are conservative in that DYMOD diverts 
trips to alternate routes as accident queues develop. In reality, many 
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FIGURE 14 Predicted versus observed I-25 speeds (Accident 2). 
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FIGURE 15 Predicted versus observed 1-25 upstream volumes (Accident 2). 

travelers do not so readily divert from accident queues because of 
not having good knowledge of alternate route locations and travel 
times. Estimates of queueing delay assuming less route diversion 
were approximated for the same accidents in an evaluation study of 
the Mile High Courtesy Patrol (8). Those estimates were approxi­
mately 50 percent greater than the ones just mentioned, but still con­
servative compared with other national reports. Since DYMOD rep­
resents route diversions with good alternate route information, the 
difference in these estimates indicates that significant delays could 
have been reduced by directing travelers to other routes and adjust­
ing the signal timing along these routes to better handle the diverted 
flows. 

CONCLUSIONS 

The results indicate that incident delays can be significantly reduced 
using travel advisory systems in which further research and devel­
opment is needed. The results also show that DYMOD can be used 
"off-line" to develop (a) proactive response plans for accidents at 

critical network locations, (b) work-zone traffic control and detour 
routing plans, or (c) traffic impact predictions for a major spectator 
event or storm. Dynamic traffic models also can be combined with 
microsimulation models of smaller network sub-areas to make finer 
traffic control adjustments. 

Based on the information in this study, several general recom­
mendations may be made: 

• Dynamic traffic modeling yields much closer estimates of traf­
fic conditions than conventional transportation planning models 
when applied to urban area networks during congested periods. 

• The key to successful dynamic traffic modeling is the care with 
which the supply and demand data bases are developed. Much more 
detail is needed than is typical of conventional static models. 

• Wider regional coverage of traffic detection must be a priority 
to support the successful development and operation of dynamic 
traffic modeling and route guidance from a traffic management cen­
ter. 0-D and departure time estimation is operationally the "weak 
link" in dynamic travel modeling because of such limited count 
coverage in most urban areas. 

TABLE 1 Summary of Estimated Accident Delays 

Evaluation Measure Case #l Case #2 Case #3 

Total Delay 742 1426 1248 
(vehicle hours) 

Number of Directly 3300 6600 7200 
Affected Trips 

Delay per Directly 13.5 13.0 10.4 
Affected Trip (min) 

Directly affected trips are the approximate number of vehicles that 
would have passed the accident location on I-25 during the accident 
in the base or "no accident" case. 
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Eventually, dynamic traffic models will be integrated with traf­
fic control centers that respond directly to real-time conditions 
through adjustments to arterial signals, ramp meters, and messages 
sent to travelers. This study examined the implementation and per­
formance of one approach that, for reasonably large networks, can 
be run concurrently on a high-speed computer with traffic detection 
input to provide updated travel advisories and traffic management 
information. 
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