Superpave5: Constructing Asphalt Pavement with Road Air Voids Equal to Design Air Voids

Webinar being sponsored by; AFH60, Asphalt Pavement Construction and Reconstruction

Lee Gallivan, Chair

Today's Webinar Includes

- Three Sessions will cover the following
 - Present the principles of constructing asphalt mixture to the same *compaction* level as the mixture design
 - Describe research to modify design requirements as listed in AASHTO M 323.
 - Describe construction of experimental mixture including production, placement and compaction.
 - Describe the results of the comparison of road cores taken from regular and experimental mixture.

Presenters

- <u>Gerry Huber, P.E.</u> Director of Research, Heritage Research Group, Indianapolis, Indiana (23 years), Asphalt Institute (5 years), Saskatchewan – Highways (10 years)
- John Haddock, PhD, P.E. Professor of Civil Engineering & Director, Indiana Local Technical Assistance Program, Purdue University, Lafayette, Indiana (15 years)
- <u>Matt Beason, P.E.</u> State Materials Engineer (just appointed), Office of Materials Management- Indiana Department of Transportation, Indianapolis, Indiana (8 years)

Questions

 Questions can be posed though anytime using the questions box and I will be monitoring them as they come in but will be answered at the end.

• Follow instructions for your PDH hours.

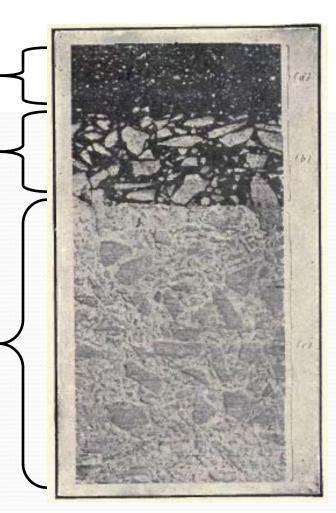
Subcommittee AFH60 Flexible Pavement Construction and Rehabilitation

Laboratory Design at Five Percent Air Voids (Superpave5)

Gerry Huber Heritage Research Group

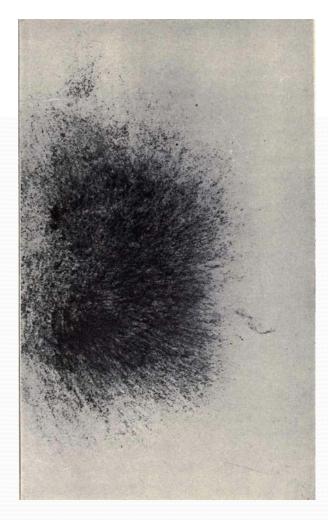
Mix Design Historical Perspective

Understand where we have been


To see where we should go

Typical 1900s Pavement

Surfacing Mix


Asphaltic Concrete

Hydraulic Cement
 Stabilized Aggregate

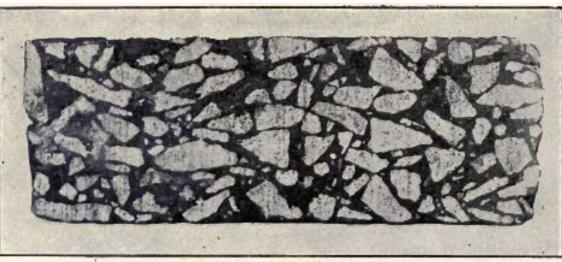
Surface Recipe Design

- Components (typical)
 - 78% sand
 - 12% lime
 - 10% asphalt
- Sand heated to 300°F
 - Asphalt added
 - Lime added cold
 - Amount adjusted visually
- Paper Pat Test
 - Brown paper
 - Mixture dumped on to paper

Surface Mix

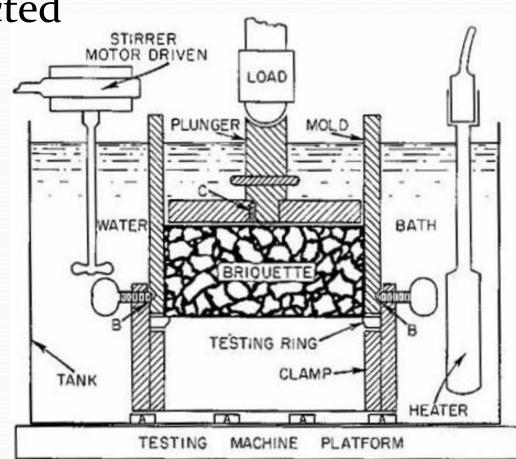
- Asphalt Content 11%
- Gradation
 - #10 100
 - #40 87%
 - #80 49%
 - #200 15%
- Air Voids approx. o%

City Street 1890s

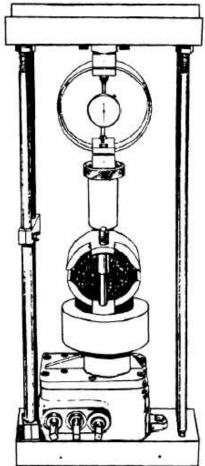

Asphaltic Concrete Mixture

• Asphalt 7.4%

 Air voids o(?)%


• VMA 13.2%

"Not suitable for Surface Mix"


Hubbard Field Mix Design (1920s)

- Mixture Compacted with rammer
- Specifications
 - Air voids
 - Voids in compacted aggregate
 - Hubbard Field Stability

Marshall Method of Mix Design (1930s)

- Bruce Marshall of Mississippi Department of Highways
 - 1943 joined U.S. Army Corps of Engineers
- Design used for airfields in World War II
 - Post WWII method was "civilianized"

Marshall Mix Design

- Used drop hammer instead of hand rammer
- Air voids calculated
- Stability test
 - Geometry different than Hubbard Field
- No VMA
- No absorption

__Added in 1962

Design Air Voids

Marshall Mix Design

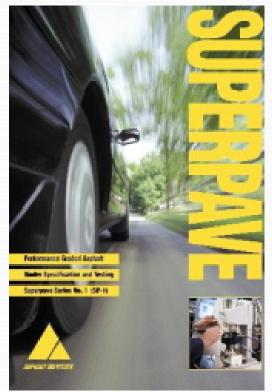
Construction (8%)

Decreases to

• Design voids set at 3 to 5%

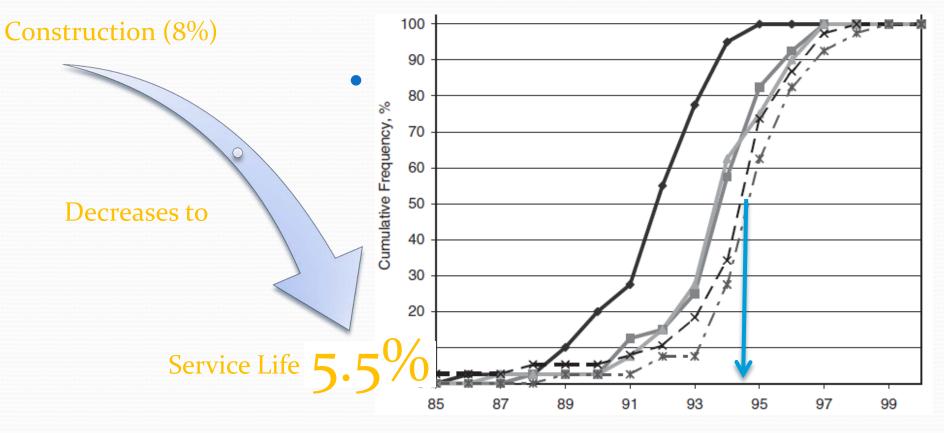
Field Compaction

Service Life (4%)


- "Standard" rolling train used
- 8% will densify under traffic to 4%
 - "Density at end of life = Design Density"

Strategic Highway Research Program

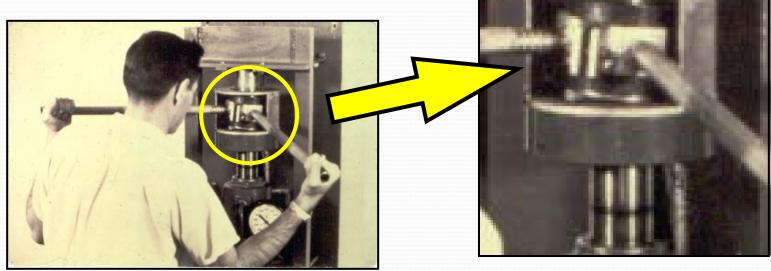
"Marshall" carried forward


- Design air voids fixed at 4%
- Recommended compaction
 - Set at 92% Gmm

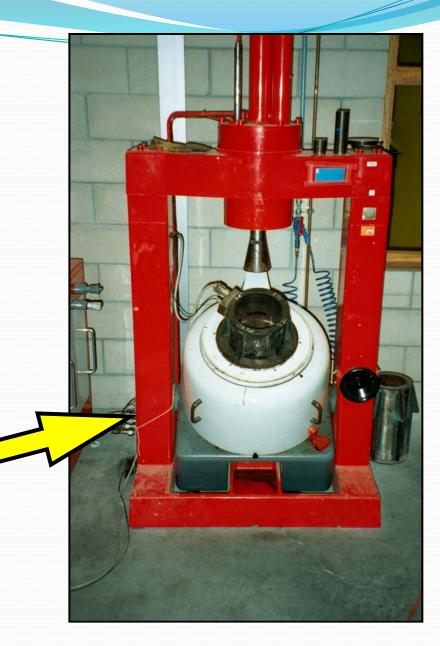
Design Air Voids

• NCHRP Report 573

BUT WAIT!!


 1959 LCPC visit to Texas

 Developed LCPC gyratory compactor


Early Texas Gyratory Compaction

- 1939, Texas Highway Department
 - Philippi, Raines, and Love
- Texas 4-Inch Gyratory Press

LCPC Gyratory Compactor

- Models
 - Texas-type press
 - 1968, 2nd prototype
 - 1973, PCG1
 - 1985, PCG2 🔽

LCPC Developed Mix Design Method

Design to 5%

Construct to 5%

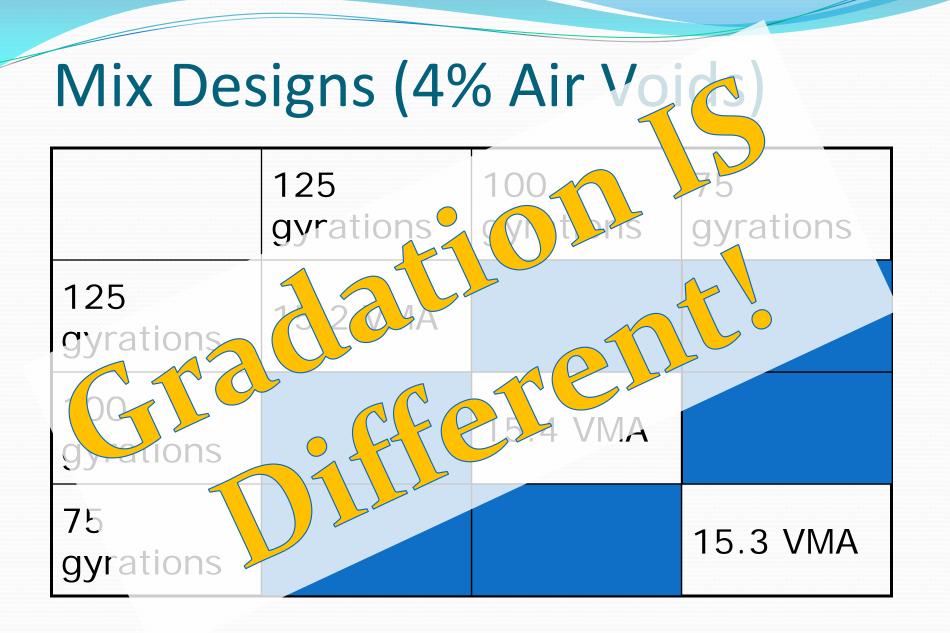
and the second

Performance Good

ENDERLEHUS

Superpave5

- Inspired by LCPC
- Designed in America


Superpave5 Concept

• Design at 5% air voids

ncrea

• Compact to 5% (5%) m

Aggregate specifications stay same
Lift thickness stays same

Asphalt Content @ 4% Air Voids

	125 gyrations	100 gyrations	75 gyrations
125 gyrations	5.8%		
100 gyrations		5.7%	
75 gyrations			5.7%

Superpave5

Benefit

- Asphalt content stays same
- Higher in-place density
- Lower permeability
- Reduced aging (?)
- No(?) increase in cost

000

Greetings from Billy Bob

Flu Shots

REL PRIE

Little Clinic Roger

Superpave 5: Constructing Asphalt Pavement with Road Air Voids Equal to Design Air Voids

John E. Haddock, PhD, PE Professor of Civil Engineering Director, Indiana Local Technical Assistance Program Purdue University

Background

- Indiana flexible pavements generally reach end of service because of durability issues after 15-20 years
 - Caused in part by oxidized binder
 - Rutting has been significantly reduced
- Reducing permeability decreases rate of binder aging

Concept

- Lower air voids in the field to improve durability
- Do not sacrifice rutting resistance
- Design at 5% air voids, field compact to 5% air voids
- Keep effective binder content the same
- No increase in compaction effort
- Increase pavement in-service life

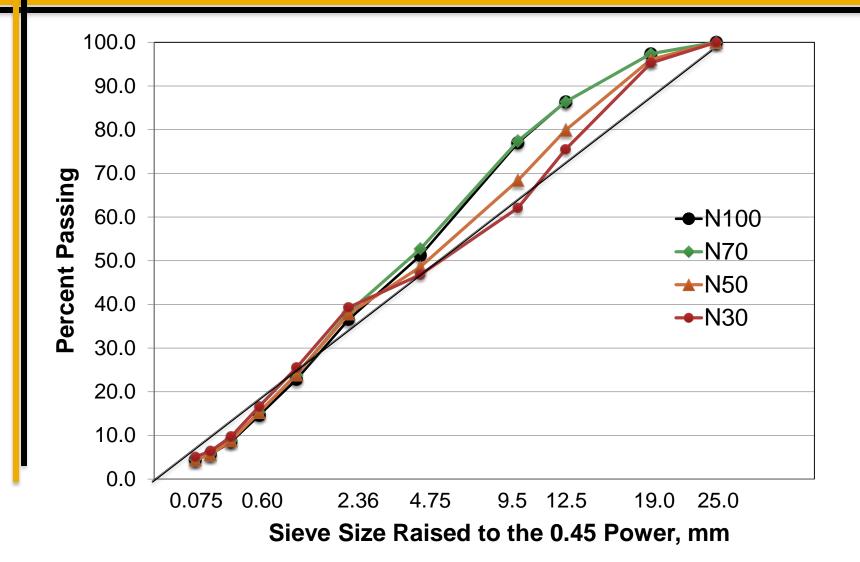
Objective

 Modify laboratory asphalt mixture design compaction as it relates to field compaction in order to increase in-place durability without sacrificing rutting performance

Scope

- Design 3 standard mixtures
- Re-design each mixture at 5% air voids
 - Maintain effective binder content
 - Use 70, 50, 30 gyrations
- Test all mixtures for dynamic modulus and flow number (anticipated in-service air voids)

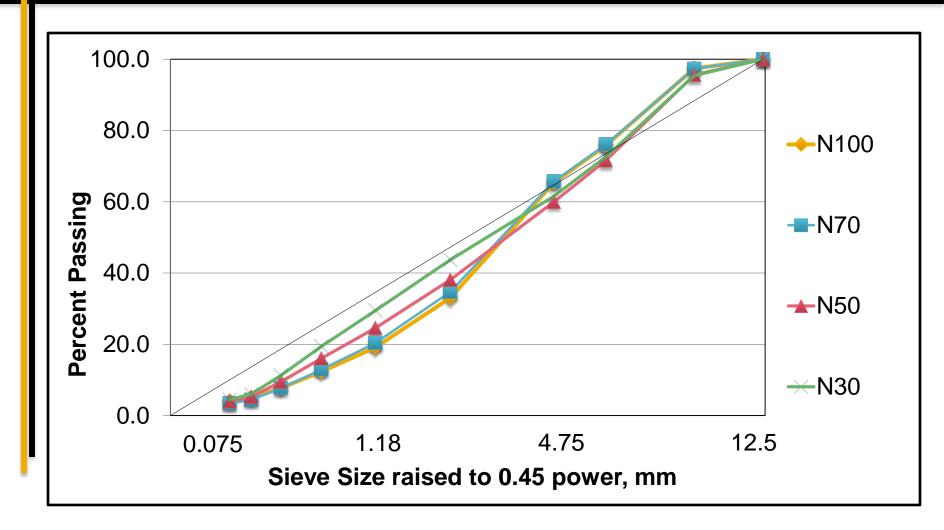
Experimental Matrix


Traffic (MESAL)	No. Gyrations	9.5-mm	19.0-mm
Category 3 (3-10)	30	Х	
	50	X	
(3 ±0)	70	X	
Category 4 (10-30)	30	X	X
	50	X	X
	70	Х	Х

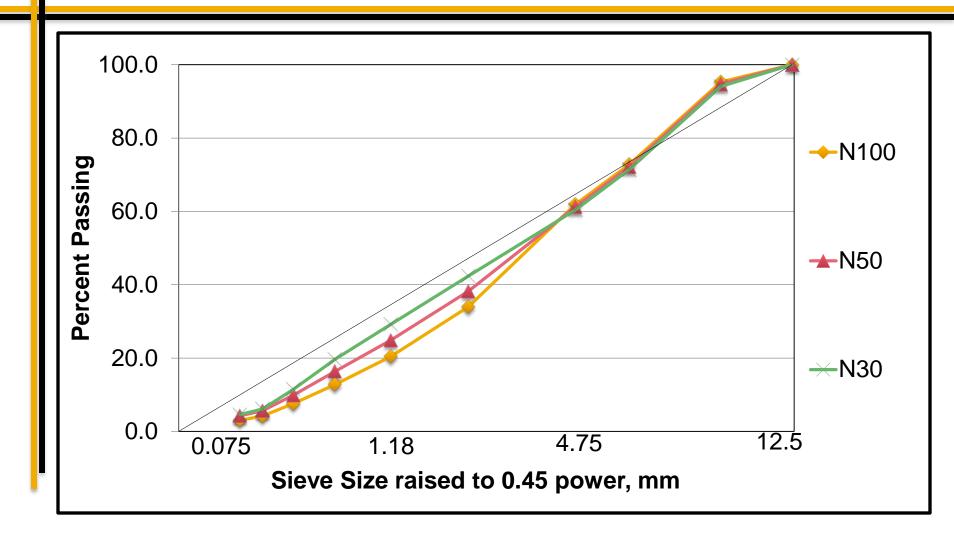
Materials

- Coarse aggregates
 - Limestone, dolomite, blast furnace slag
- Fine aggregates
 - Limestone, dolomite, natural sand
- PG 64-22
- No recycled materials

Category 4, 19.0-mm Designs

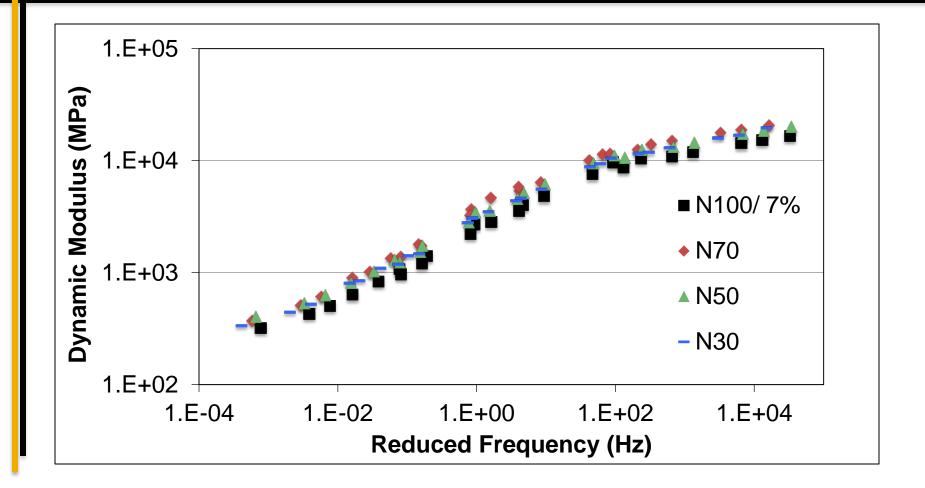

	N100	N70	N50	N30
P _b , %	4.7	4.7	5.1	5.1
P _{be} , %	4.1	4.1	4.1	4.3
V _a , %	4.0	4.9	4.9	4.9
VMA, %	13.6	14.5	14.4	14.9
VFA, %	70.6	66.3	66.0	67.2

Category 3, 9.5-mm Designs

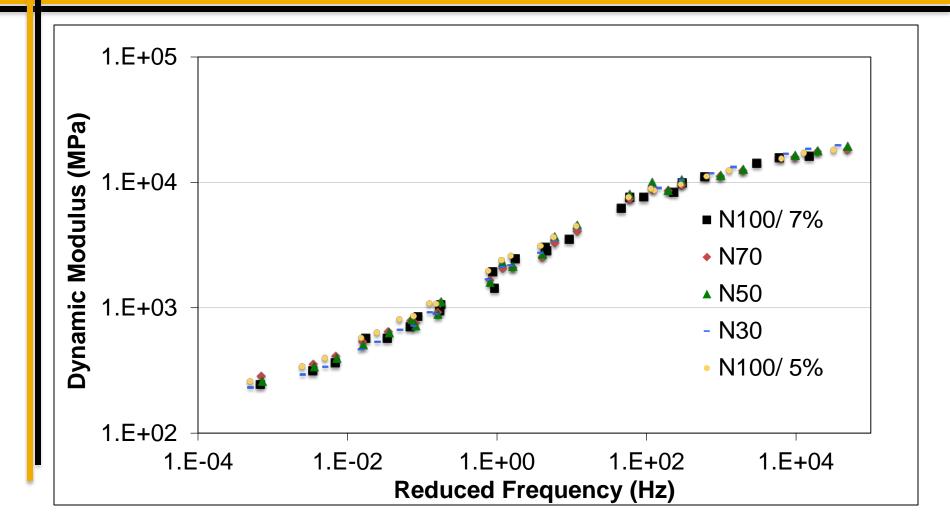

	N100	N70	N50	N30
P _b , %	5.9	5.9	6.0	6.0
P _{be} , %	4.6	4.6	4.6	4.7
V _a , %	4.1	5.1	4.9	5.3
VMA, %	15.0	16.0	15.8	16.3
VFA, %	72.9	67.9	68.9	67.6

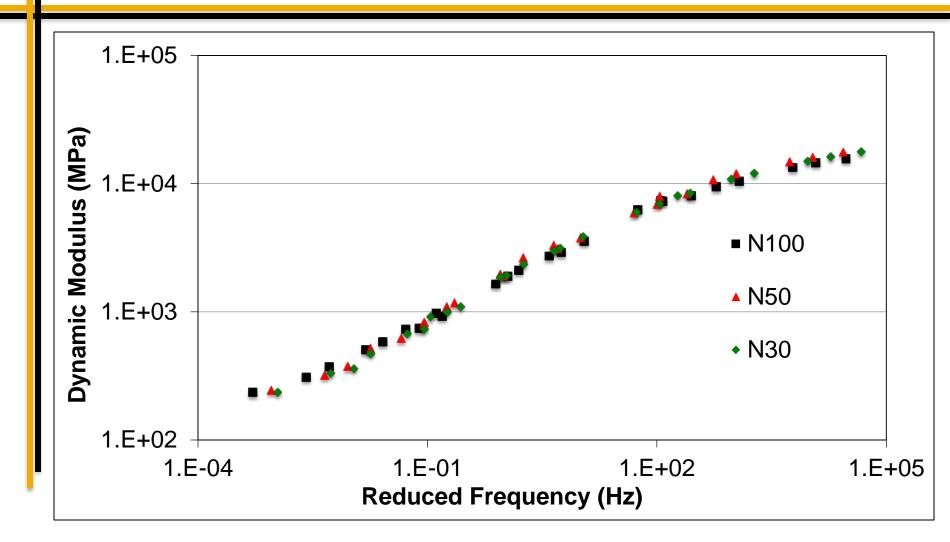
Category 3, 9.5-mm

Category 4, 9.5-mm Designs

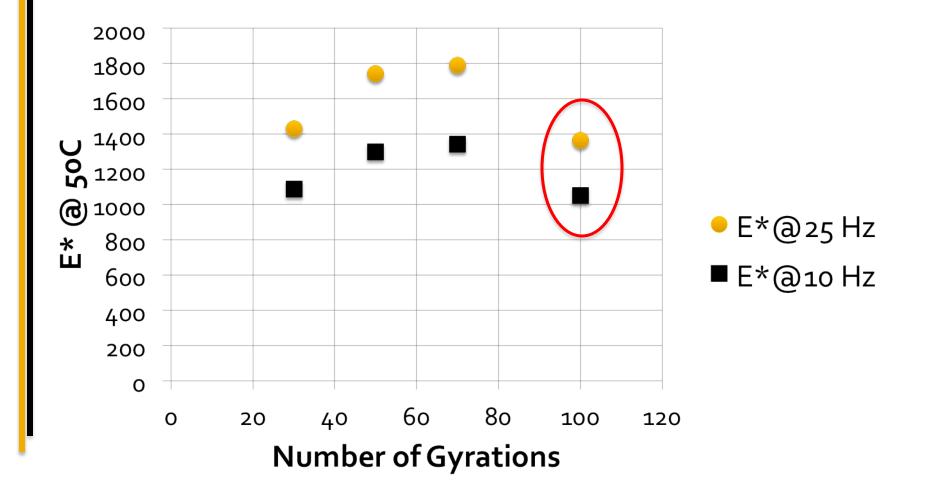

	N100	N50	N30
P _b , %	6.5	6.4	6.4
P _{be} , %	4.8	5.0	5.0
V _a , %	3.8	4.9	5.0
VMA, %	15.0	16.4	16.4
VFA, %	74.9	70.0	69.6

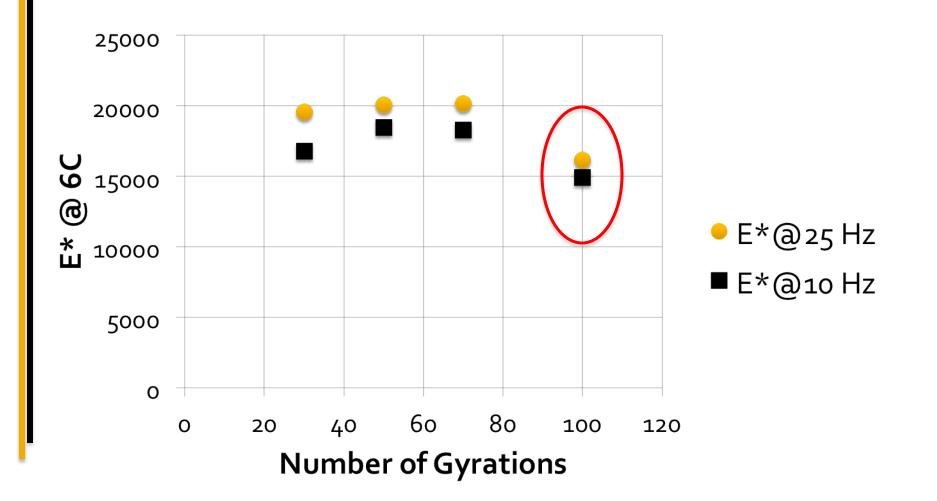
Laboratory Mixture Testing

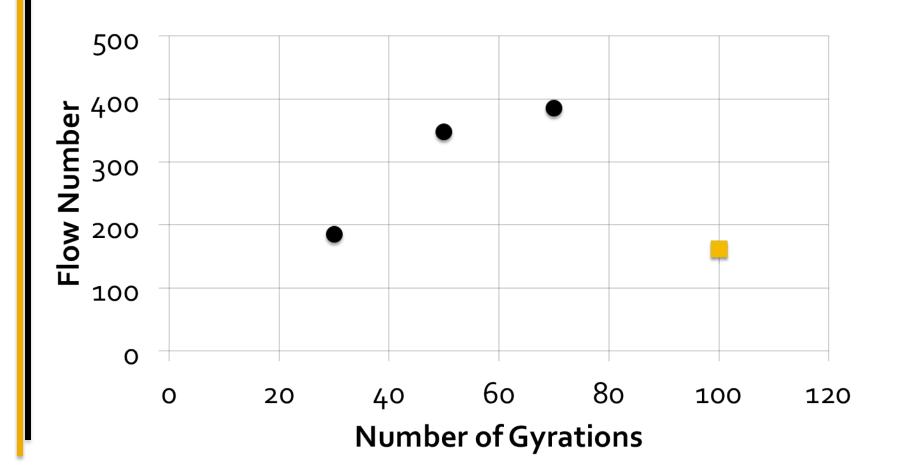

Dynamic modulusFlow number

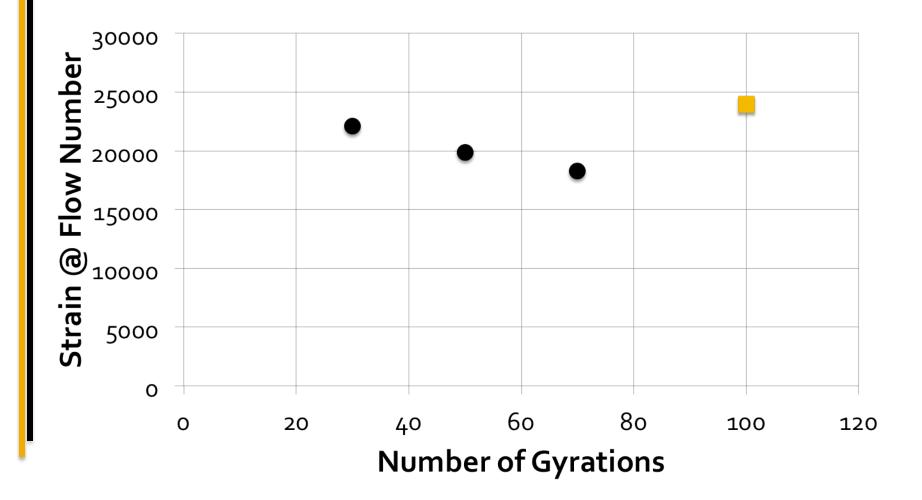

Gyrations	Average Flow Number	Average Strain at FN (μm)
100	162	23,983
70	386	18,269
50	348	19,882
30	185	22,090

Category 3, 9.5-mm




Category 3, 9.5-mm


Gyrations	Average Flow Number	Average Strain at FN (µm)
100- 7%	91	18,114
100- 5%	166	18,174
70	167	17,704
50	163	20,300
30	156	19,204



Gyrations	Average Flow Number	Average Strain at FN (μm)
100	160	23,983
50	253	20,935
30	211	21,033

Conclusions

- Mixtures can be designed at 5% air voids without lowering effective binder content
- Mixtures designed and tested at 5% air voids can have equivalent dynamic modulus and flow numbers as those designed at 4% and tested at 7% air voids
- Results suggests if asphalt mixtures were designed at 5% air voids and placed in service at 5% air voids, they could potentially outperform mixtures designed and placed in a more conventional manner

Recommendations

- Fatigue and low-temperature testing, as well as moisture susceptibility testing, should be completed
- Future work should include additional traffic levels, mixtures containing RAP, RAS, or both, additional binder grades, aggregate types, mixture sizes
- Place field projects

Field Trial 1

- SR-13 near Ft. Wayne, IN
- New overlay, Category 4, 9.5mm
- Original design, N100, 4%, 7%
- Redesigned, N50, 5%, 5%
- Steel slag and limestone coarse aggregates, limestone and natural sands, RAS, PG 70-22

Field Trial 2

- Georgetown Road, Indianapolis
 , IN
- Intermediate layer, Category 3, 19.0-mm
- Original design, N100, 4%, 7%
- Redesigned, N30, 5%, 5%
- Limestone coarse aggregates, dolomite sand, RAS, RAP, PG 64-22

Thank You!

Superpave5 Field Trials

Matt Beeson, PE State Materials Engineer Indiana Department of Transportation

INDOT Concerns

- Benefit
- Cost
- Constructability
- Rutting
 - 30 gyrations sounds "scary"

Superpave5 Field Trial #1

Indiana SR 13

- Middlebury, IN
- 1.5" Mill and Fill
- Trial Mix
 - 9.5-mm NMAS
 165 lb/yd² (1.5 inches)

Trial Mix

- 9.5 mm
- Steel slag coarse aggregate
- PG 70-22 Binder
- 7% RAS
 - 20.2% Binder Replacement

QC Volumetric Properties

	Superpave5			
	DMF	Sub-lot	Sub-lot	Sub-lot
		1	2	3
%AC	5.2	5.61	5.47	5.45
Air Voids	5.0	5.1	4.8	4.7
VMA	17.0	17.2	16.6	17.2

QA Volumetric Properties

	Superpave5				Superpave4
	DMF	Sub-lot	Sub-lot 2	Sub-lot 3	Average
%AC	5.2	5.1	5.1	5.4	5.1
Air Voids	5.0	4.5	4.6	3.4	3.8
VMA	17.0	16.8	15.8	17.4	14.8

Core Density

	Superpave5			Superpave4
	Sublot 1	Sublot 2	Sublot 3	Average
Gmm	2.750	2.761	2.737	2.754
Core Gmb 1	2.538	2.584	2.636	2 528
Core Gmb 2	2.600	2.614	2.646	2.528
%Gmm 1	92.3	93.6	96.3	01.8
%Gmm 2	94.5	94.7	96.7	91.8
Air Voids 1	7.7	6.4	3.7	
Air Voids 2	5.5	5.3	3.3	
Average AV		5.3)	8.2

Superpave5 Field Trial Georgetown Road

Georgetown Road

- Reconstruction and widening
- Trial Mix
 - 19-mm NMAS
 330 lb/yd² (3 inches)

Trial Conditions

- December 12 & 13, 2014
 - Loose samples
 - Cores
- Temperature
 - 34°F to 46°F
 - Light wind

Paving Train

anto Na

RI

1.75

en del

N30 (Superpave5) Mix

R

N30 (Superpave5) Mix

Field Density Quality Control

Research Cores

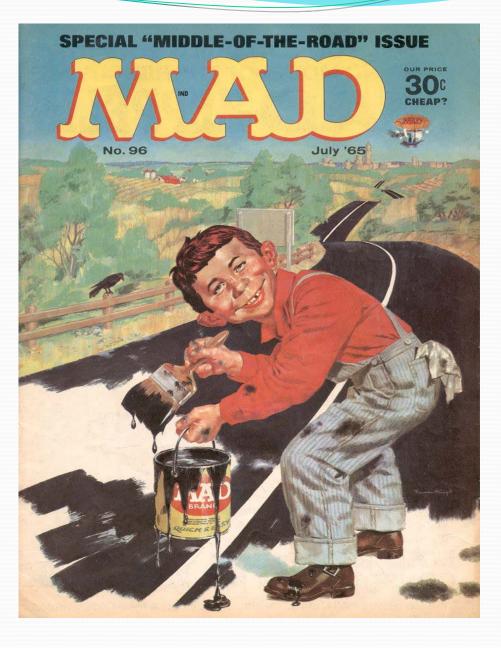
Plate Sample from Road for QA

Loose Research Samples

Research Samples (N30 and N100)

QA Volumetric Properties

	Superpave5			Superpave4	
	DMF	Sub-lot 1	Sub-lot 2	DMF	Sub-lot 1
% Asphalt	4.8	4.44	4.76	4.6	4.68
Gmm	2.480	2.505	2.494	2.494	2.523
Gmb	2.356	2.362	2.367	2.394	2.411
Air Voids	5.0	5.8	5.2	4.0	4.4
VMA 🔇	15.1	14.5	14.7	13.4	12.9


QA Core Density

	Superpave5			Superpave4	
	DMF	Sublot 1	Sublot 2	DMF	Sublot 1
Gmm		2.505	2.494		2.521
Core Gmb 1		2.412	2.345		2.351
Core Gmb 2		2.418	2.398		2.300
%Gmm 1		96.3	94.0		93.2
%Gmm 2		96.5	96.2		91.2
Air Voids 1		3.7	6.0		6.8
Air Voids 2		3.5	3.8	(8.8

What's Next?

- Promising Concept
 - Constructible
 - Performs in the field
 - No rutting to date
 - Research shows a benefit
- Additional Pilot Projects
 - Various ESAL categories
 - Broader Industry representation

Thank you!

