2016 TRB Webinar

Using Asset Valuation as a Basis for Bridge Maintenance and Replacement Decisions

Adam Matteo Jeff Milton Todd Springer

Virginia Department of Transportation Structure and Bridge Division April 11, 2016

Presentation Outline

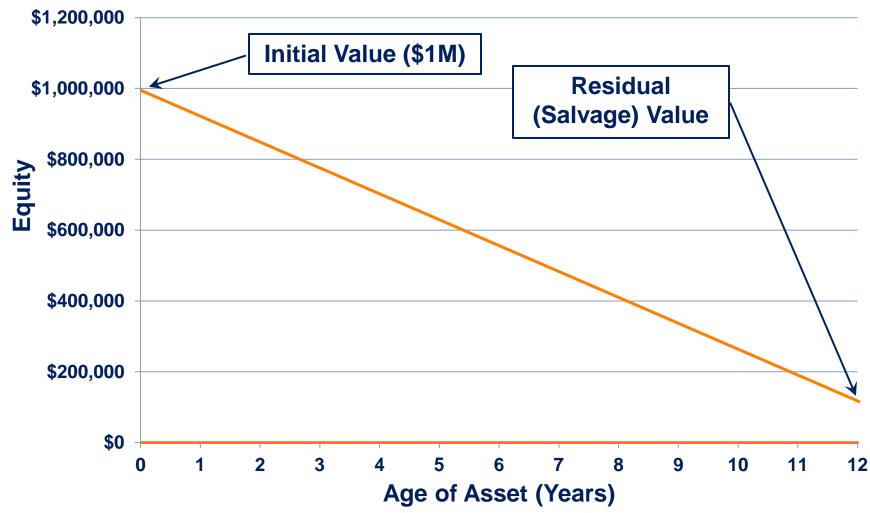
- 1. Calculate the current value and condition of bridges in an inventory
 - Modified Health Index (MHI)
 - Element Condition Data
- 2. Using current valuation (equity) as the basis for engineering decisions on maintenance/replacement
 - Action-effectiveness models and associated cost estimates to develop comparative cost/benefit ratios
 - Long-term predictions of asset values for various alternatives to perform life cycle analysis using estimates
- 3. Using Modified Health Index and other indices to select bridge projects with a Multi-Objective Prioritization Formula

Modified Health Index (MHI)

Using detailed information about bridge conditions from element level data, cost data to develop

- Publicly-owned assets have value but no revenue in most cases
- How do we measure current value (depreciation)
- Thinking like a business

WWUPSD? (What Would UPS Do?)


Current Valuation (Equity) – Multiple Uses

Equity can be a powerful tool in guiding bridge management

- Can determine the most cost-effective actions on a given structure
- Helpful in selecting which structures should be worked on
- Can be used to measure effectiveness of various work programs
- Helpful as a measurement of progress

Measuring Equity – Common Practice (IRS): Time Based Depreciation

Typical Straight-Line Depreciation Curve

5

Modified Health Index: Basic Equation

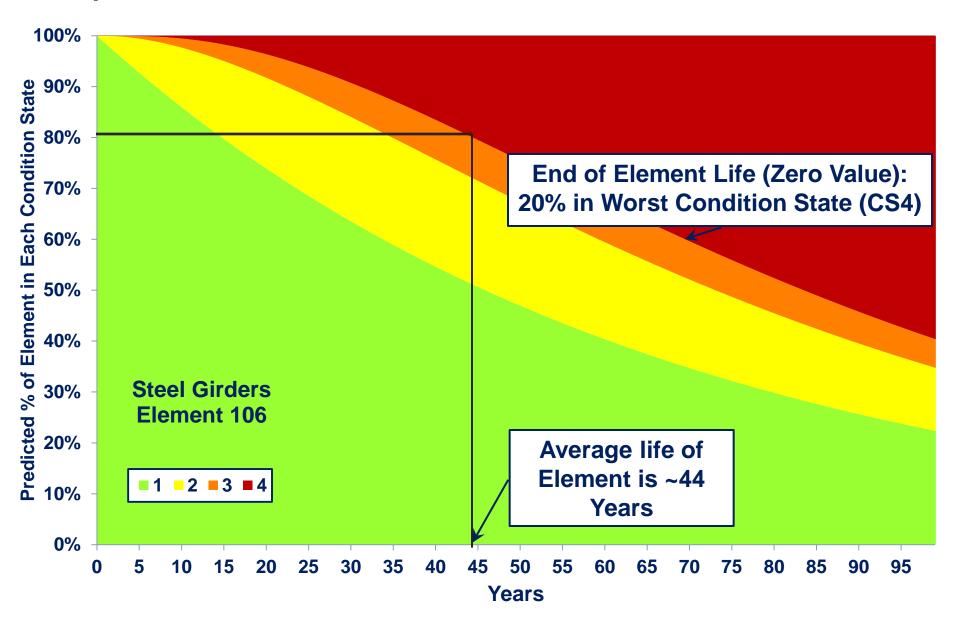
If a structure has the following characteristics:

- 0 to 100 scale
- 0 means end of service life
- 100 for a new (ideal) structure
- Example: If a structure has deteriorated 32%, the MHI = 68 (100 32)

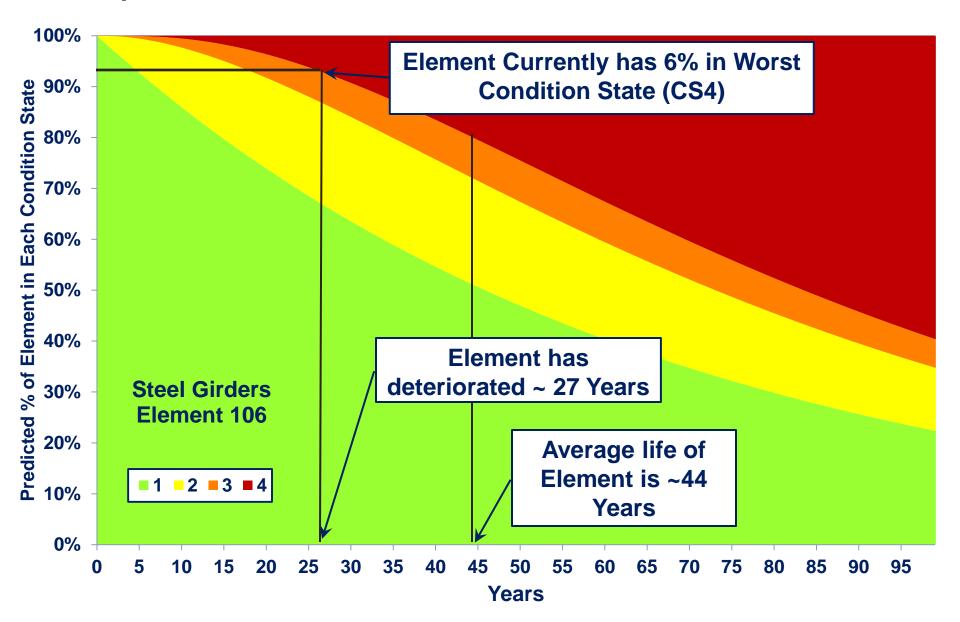
 $MHI = Σ (MHI_{Element} *Replacement Value_{Element})$ Σ Replacement Value_Elements

If Σ Superstructure Value = 0, then deck = 0 If Σ Substructure Value = 0, then deck and superstructure = 0

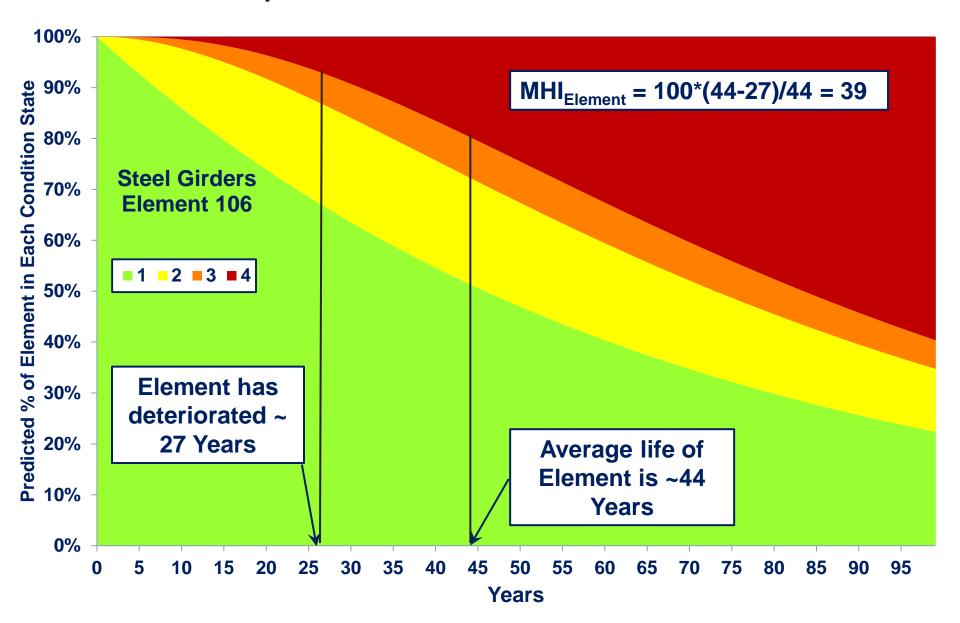
		Element Number								
Element	Units	Steel	Prestressed Concrete	Reinforced Concrete	Timber	Masonry	Othe			
		De	ck/Slab							
Deck	SF		13	12	31		60			
Open Grid Deck	SF	28								
Concrete Filled Grid Deck	SF	29								
Corrugated or Orthotropic Deck	SF	30								
Slab	SF			38	54		65			
Top Flange	SF		15	16						
		Supe	rstructure							
Closed Web/Box Girder	LF	102	104	105			106			
Girder/Beam	LF	107	109	110	111		112			
Stringer	LF	113	115	116	117		118			
Truss	LF	120			135		136			
Arch	LF	141	143	144	146	145	142			
Main Cable	LF	147								
Secondary Cable	EA	148					149			
Floor Beam	LF	152	154	155	156		157			
Pin, Pin and Hanger Assembly	EA	161								
Gusset Plate	EA	162								
		Sub	structure							
Column	EA	202	204	205	206		203			
Column Tower (Trestle)	LF	207			208					
Pier Wall	LF			210	212	213	211			
Abutment	LF	219		215	216	217	218			
Pile Cap/Footing	LF			220						
Pile	EA	225	226	227	228		229			
Pier Cap	LF	231	233	234	235		236			
			ulvert							
Culvert	LF	240	245	241	242	244	243			
			dge Rail							
Bridge Rail	LF	330*		331	332	334	333			
			Joint							
Strip Seal	LF			300						
Pourable	LF			301						
Compression	LF			302						
Assembly with Seal (Modular)	LF			303						
Open	LF			304						
Assembly without Seal	LF			305						
Other	LF			306						
Electron orde	-	B	earing	210						
Elastomeric	EA			310						
	EA			311 312						
Movable (roller, sliding, etc.)				312						
Enclosed/Concealed	EA									
Enclosed/Concealed Fixed	EA			313						
Enclosed/Concealed										


7

Element Data Collected During Inspections AASHTO National Bridge Elements (NBE)


Additional VDOT Elements

Component	Number	Title						
Deck	801	Sidewalk						
	802	Deck Drains						
Superstructure	811	Beam/Girder End						
	812	Reinforced Concrete Frame						
Substructure	821	Steel Abutment						
	822	Steel Wingwall						
	823	Reinf.\ Concrete Abutment						
	824	Reinf.\ Concrete Wingwall						
	825	Timber Abutment						
	826	Timber Wingwall						
	827	Masonry Abutment						
	828	Masonry Wingwall						
	829	MSE Abutments						
	830	MSE Wingwall						
Culverts	831	Concrete Culvert Endwall/Headwall						
	832	Concrete Cuvlert Wingwall						
	833	Roadway Over Culvert						
Joints	841	Asphalt Plug Joint						
	842	Elastomeric Concrete Plug Joint						
	843	Link Slab						
	844	Slab Extension						
	845	Joint Effectiveness						
Slopes & Channels	851	Unprotected Slope						
	852	Protected Slope - Paved						
	853	Protected Slope - Riprap						
	854	Channel						
Protective	881	Wearing Surface - Unprotected Asphalt Wearing Surface						
	882	Wearing Surface - Protected Asphalt Wearing Surface						
	883	Wearing Surface - Thin Overlay						
	884	Wearing surface - Rigid Overlay						
	885	Wearing Surface - Other						


Using Deterioration Models to Determine Current Value: Step 1: Define End of Life of Elements in Terms of Condition States

Using Deterioration Models to Determine Current Value: Step 2: Determine Current Value in Terms of Current Condition

Using Deterioration Models to Determine Current Value: Step 3: Determine MHI for Each Element

Determination of Current Valuation (Equity): Example Equation

Equity = MHI * Structure Replacement Cost

Example Structure: MHI = 39 Replacement Value = \$2,000,000

Equity = .39 * 2,000,000 = \$780,000

Modified Health Index and Current Valuation: Example Calculation #1

Element Name	MHI _{Element}		Element Replacement Value		MHI * Replacement Value
Columns	63	x	\$25,000	=	\$15,750
Pier Caps	54	x	\$30,000	=	\$16,200
Abutments	75	x	\$60,000	=	\$45,000
Girders	83	x	\$160,000	=	\$132,800
Diahragms	86	x	\$30,000	=	\$25,800
Deck	92	x	\$180,000	=	\$165,600
Joints	65	х	\$30,000	=	\$19,500
Parapet	92	x	\$40,000	=	\$36,800
Sum	82		\$555,000		\$457,450

MHI = (\$457,450 ÷ \$555,000)100 = 82

Modified Health Index and Current Valuation: Example Calculation #2

Element Name	MHI _{Element}		Element Replacement Value		MHI * Replacement Value
Columns	63	x	\$25,000	=	\$15,750
Pier Caps	54	x	\$30,000	=	\$16,200
Abutments	75	x	\$60,000	=	\$45,000
Girders	83	x	\$160,000	=	\$132,800
Diahragms	86	x	\$30,000	=	\$25,800
Deck	0	х	\$180,000	=	\$0
Joints	0	x	\$30,000	=	\$0
Parapet	0	x	\$40,000	=	\$0
Sum	42		\$555,000		\$235,550

Note: Replacement Cost of Bridge < ΣElement Replacement Values MHI = (\$235,550 ÷\$555,000)100 = 42

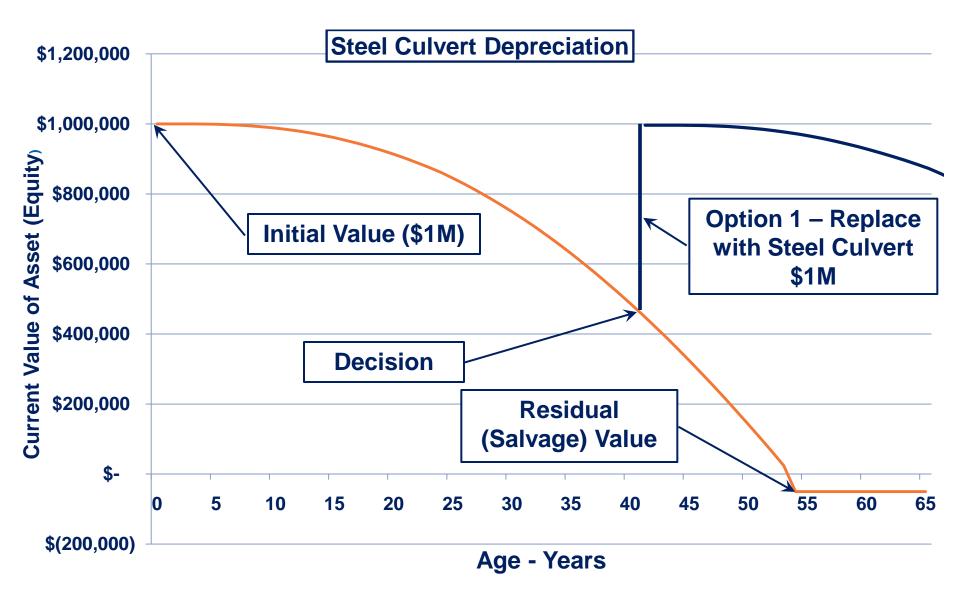
Using Current Valuation to Evaluate Performance of an Entire Inventory of Structures

District	Ava	ailable Funds (Millions)		Aggre	egate Valua Structure (Billions)	s	Average MHI			
	Mainte- nance	Construction	Total	Start of year	End of year	Difference (Millions)	Start of year	End of year	Difference	
Α	\$19.1	\$12.5	\$31.6	\$5.23	\$5.21	-\$23	67.1	66.8	0.3	
В	\$23.1	\$15.5	\$38.6	\$7.22	\$7.21	-\$10	71.5	71.4	0.1	
С	\$20.4	\$14.0	\$34.4	\$6.05	\$5.76	-\$293	70.2	66.8	3.4	
Total	\$62.6	\$42.0	\$104.6	\$18.5	\$18.17	-\$327	69.6	68.3	1.3	

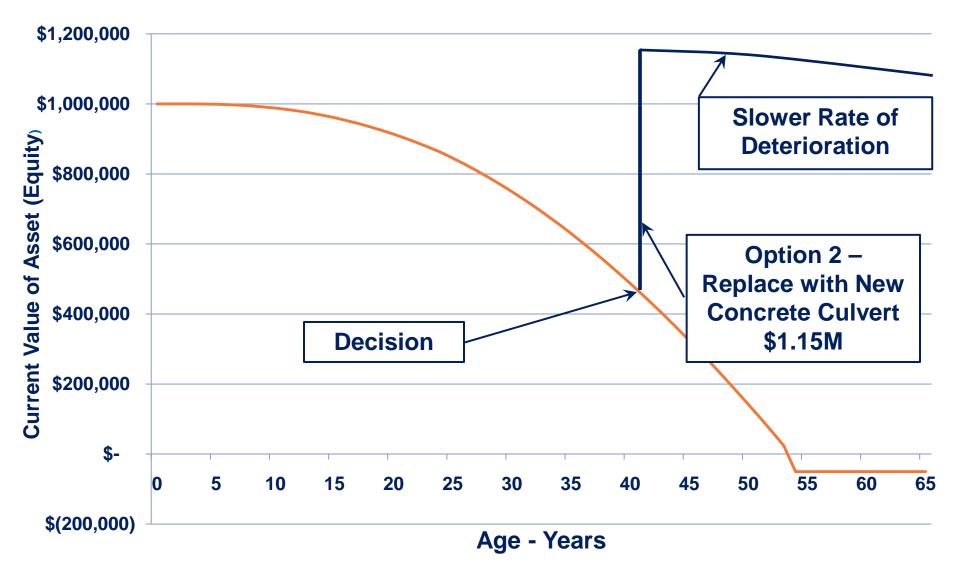
MHI is used as both a condition index and a measurement of current value

Using current valuation (equity) as the basis for engineering decisions on maintenance/replacement

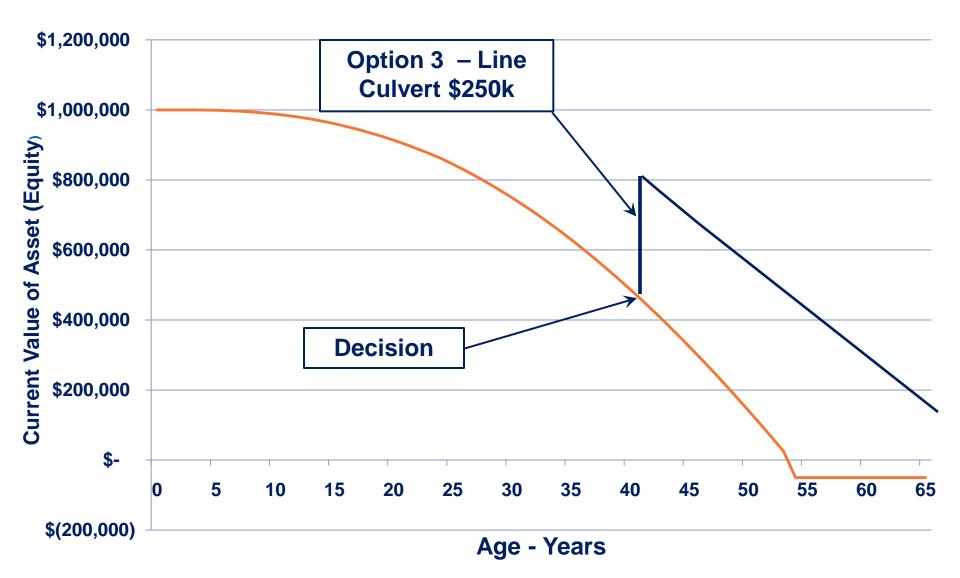
Measuring Equity Benefits for Various Alternatives


Immediate Benefit = Increase in Valuation due to Interventions

Example:


For a structure with MHI = 32 and a replacement cost of \$2,600,000

- 1. Repair Option 1 will increase MHI to 92 for a cost of \$600,000
 - Benefit = (92 32)*\$2,600,000 = \$1,560,000
 - Benefit/Cost = \$1,560,000/ \$600,000 = 2.6
- 2. Repair Option 2 will increase MHI to 74 for a cost of \$350,000
 - Benefit = (74 32)*\$2,600,000 = \$1,092,000
 - Benefit/Cost = \$1,092,000/ \$350,000 = 3.12
- 3. Replace Option will increase MHI to 1.00 for a cost of \$2,600,000
 - Benefit = (100 32)*\$2,600,000 = \$1,768,000
 - Benefit/Cost = \$1,768,000/\$2,600,000 = .68


The Benefits of Using Equity as the Basis for Engineering Decisions

The Benefits of Using Equity as the Basis for Engineering Decisions

The Benefits of Using Equity as the Basis for Engineering Decisions

With Equity Curves Simple Life Cycle Analysis is Practical

			Initia	al Costs					
	Name	Initial Construction	Engineering, Traffic Inspection, Control R/W		Total Initial Cost	Estimated Maintenance Costs Per 10 Year Interval	Replace ment Year	Present Value (calculated)	
Option 1	Coated Steel	\$748,400	\$64,500	\$187,100	\$1,000,000	\$4,000	53	-\$1,131,192	
Option 2	Precast Concrete	\$850,240	\$87,200	\$212,560	\$1,150,000	\$6,000	110	-\$893,554	
Option 3	Steel Liner	\$190,000	\$12,500	\$47,500	\$250,000	\$4,000	30	-\$1,380,666	

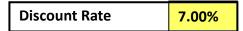
Discount Rate	1.50%
------------------	-------

Suggested PE, CEI, R/W Factor	0.25
--	------

Steel Liner Option Assumes New Steel Culvert Required in 25 Years

Similar Effort was Recently Performed on Hampton Roads Bridge Tunnel Approaches using Life Cycle Principles

	Cı	irrent	Status	Reh	abilitate (N	/ork in	2018)	Replace (Work in 2038)			
Structure (Fed ID#)	Age	MHI	Current Equity (A)	Cost	2018 Post- Repair Value (B)	2048 MHI	2048 Value (C)	2038 Cost = Post-Construct. Value (B)	2048 MHI	2048 Value (C)	
20339	41	.67	\$48.1	\$7.47	\$67.5	.62	\$41.6	\$71.8	.88	\$63.2	
20355	41	.63	\$83.2	\$17.95	\$124.1	.62	\$76.6	\$132.0	.88	\$116.3	
20352	58	.54	\$77.3	\$6.24	\$134.6	.63	\$84.6	\$143.2	.88	\$126.2	
20353	58	.68	\$51.4	\$4.32	\$71.1	.63	\$44.6	\$75.6	.88	\$66.6	
20913	43	.64	\$71.1	\$6.44	\$104.4	.62	\$64.4	\$111.1	.88	\$97.9	
20914	43	.61	\$67.8	\$6.44	\$104.4	.62	\$64.4	\$111.1	.88	\$97.9	
Σ or Avg.	47.3	.63	\$398.9	\$48.9	\$606.1	.62	\$376.1	\$644.8	.88	\$568.1	


Present Value Calculation with 20 Year Horizon

Pr	esent Val	ue Comp	arison - I	Replace v	s. Repair	6 HRBT Ap	proach B	ridges - Al	l Values ir	n Millions o	of 2015 (u	ninflated) dollars
	Initial		mated A enance			Equity							
	Costs				Current		Predicted Values			Lost or Gained Equity per interval			Present
Option	Project Cost	2019 - 2028	2029 - 2038	2039 - 2048	Value (2016) MHI = .63	Post Repair 2018	2028	2038 (pre- Const- ruction)	2048	2019 - 2028	2029 - 2038	2039 - 2048	Value calculated
Repair 2016	-\$49	-\$0.4	-\$0.6	-\$0.8	\$399	\$606	\$561	\$516	\$376	-\$45	-\$45	-\$140	\$ (293)
Replace '36-'38	-\$645	-\$1.1	-\$1.9	-\$2.4	\$399	\$395	\$360	\$322	\$568	-\$39	-\$38	\$174	\$ (596)

Replace or repair all structures. Maintenance costs are applied at year 5 in each interval. All values are expenditures. There are no revenues associated with either option.

Lost equity is applied at the end of each 10 year interval

Comparison is based solely on value of structures and maintenance needs associated with each option. User costs & other factors not included

Using MHI and Other Indices to Select Bridge Projects with a Multi-Objective Prioritization Formula

Multi-Objective Prioritization Formula Selection of Structures for Intervention

Priority = a(**IF**) + b(**CF**) + c(**RF**) + d(**SCF**) + e(**CEF**)

All five unitless variables have a 0 to 1.0 scale

- *IF* = *Importance Factor*
 - measures the relative importance of each bridge to the overall highway network
- CF = Condition Factor

measures the overall physical condition of each bridge based on the condition of each individual element

• RF = Risk Factor

measures four important risk factors: Redundancy, Scour Susceptibility, Fatigue, and Earthquake vulnerability

• SCF = Structure Capacity Factor

measures the capacity of the structure to convey traffic, including the effects of weight restrictions, waterway adequacy, vertical clearance and deck width

• CEF = Cost-Effectiveness Factor

measures the cost-effectiveness of the required work

- a, b, c, d, e are coefficients that may be selected to suit the particular evaluation being performed
- a + b + c + d + e = 1.0

Multi-Objective Prioritization Formula Selection of Structures for Intervention

By separating the five variables users can readily understand why one project has a higher priority than another

Coefficients can be selected to align with the programmatic goals of the agency

Coefficients currently envisioned for VDOT's Bridge Construction Program:

- **a** = 0.30 (Importance)
- **b** = 0.25 (Condition)
- **c** = 0.15 (Risk)
- **d** = 0.10 (Structure Capacity)
- e = 0.20 (Cost-Effectiveness)

Importance Factor

IF = Importance Factor.

Measures relative importance of the structure to the roadway network

Uses these variables:

- Traffic (ADT/Lane)
- Truck traffic (ADTT/Lane)
- Predicted future ADT growth
- Proximity to schools, hospitals and emergency facilities
- Detour vs. traffic
- Functional class of roadway

Condition Factor (CF)

Condition is measured using the Modified Health Index (MHI)

CF = 1.0 – (Modified Health Index/100)

- MHI is a 0 to 100 measurement of condition
- MHI value of 100 represents a bridge without defects
- MHI value of zero represents a bridge that has reached the end of its service life
- MHI provides an overall condition measurement by weighting each element's condition as a proportion of its relative value to the whole bridge
- MHI is calculated using element-level data provided during bridge safety inspections, along with element replacement costs

Risk Factor

RF = **Risk** Factor

measures the risk to structures, with an emphasis on redundancy

```
RF = Part A + Part B \le 1.0
```

Part A:

- = 0.75 if one of Scour Critical or Fracture Critical exists
- = 0.90 if both of Scour Critical and Fracture Critical exists

Part B:

- = 0.10 if one of Seismic Critical or Fatigue Prone Details exists
- = 0.20 if both of Seismic Critical and Fatigue Prone Details exists

Structure Capacity Factor

SCF = Structure Capacity Factor

measures the load and geometric capacity of the structure to convey traffic, including the effects of weight restrictions, waterway adequacy, vertical clearance and deck width

SCF = .40(Weight Reduction Factor) + .30(Waterway/Vertical Clearance Factor) + .30(Deck Width Factor)

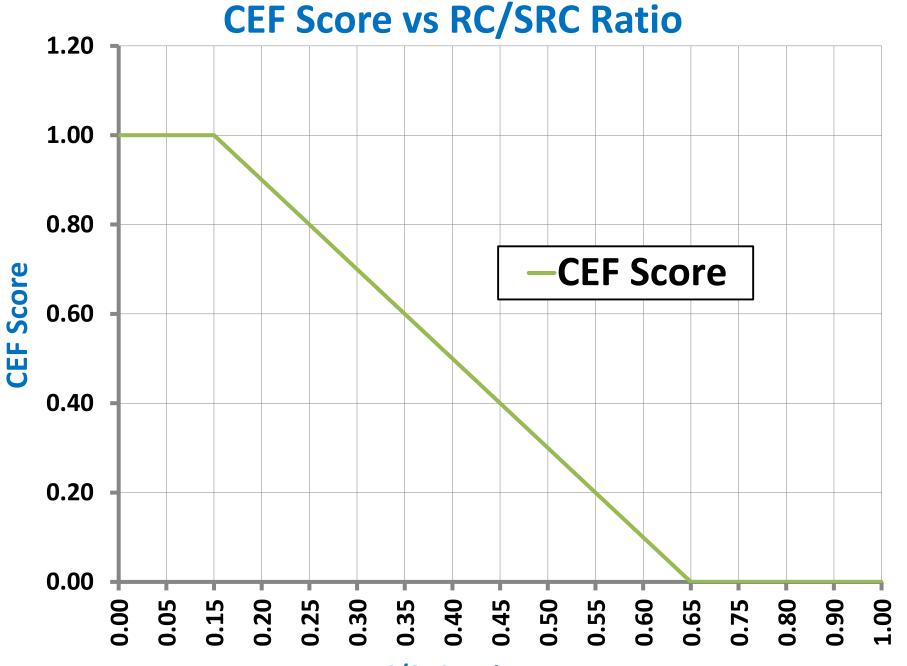
- Weight Reduction Factor (WRF) = 0 to 1.0 score measuring ability of structure to carry Fire Trucks, Ambulances, School Buses and Design Vehicles
- Waterway/Vertical Clearance Factor = 0 to 1.0 score measuring the adequacy of vertical clearance for waterways, railways and trucks
- Deck Width Factor = 0 to 1.0 score measuring adequacy of deck width vs. need

The Weight Reduction Factor is the subject of a forthcoming paper that will be published through the Virginia Transportation Research Council.

Cost-Effectiveness Factor

CEF = Cost-Effectiveness Factor

measures the cost-effectiveness of the required work


CEF = -2(RC/SRC) +1.3 Max 1.00, Min 0.00

- RC = Repair Cost: Initial Prioritization uses Bridge Management System Recommendations. Final Scoring uses refined scope and estimate after prescoping phase
- SRC = Structure Replacement Cost: Based on statewide replacement cost averages with escalation factors for preliminary engineering, right of way, growth, and construction inspection. Final Scoring may be adjusted using more in-depth cost estimates during pre-scoping phase

Note: CEF = 1.00 for ratios of RC/SRC ≤ 0.15 CEF = 0.00 for ratios of RC/SRC ≥ 0.65 CEF varies linearly from 1.00 to 0.00 as ratio of RC/SRC varies from 0.15 to 0.65

Examples of CEF Calculations

Repair Cost (RC)	Str	ucture Replacement Cost (SRC)	Ratio (RC/SRC)	CEF Score
\$ 50,000	\$	1,000,000	0.05	1.00
\$ 150,000	\$	1,000,000	0.15	1.00
\$ 250,000	\$	1,000,000	0.25	0.80
\$ 350,000	\$	1,000,000	0.35	0.60
\$ 367,523	\$	1,000,000	0.37	0.56
\$ 450,000	\$	1,000,000	0.45	0.40
\$ 550,000	\$	1,000,000	0.55	0.20
\$ 650,000	\$	1,000,000	0.65	0.00
\$ 750,000	\$	1,000,000	0.75	0.00
\$ 850,000	\$	1,000,000	0.85	0.00
\$ 950,000	\$	1,000,000	0.95	0.00

RC/SRC Ratio

Formula- Produced Prioritized List

			Variables	5				Final Val	ues	
	0.30	0.25	0.15	0.10	0.20					
Bridge #	Importance Factor	Condition Factor	Risk Factor	Structure Capacity Factor	Cost- Effectiveness Factor	Score	Rank	Scope	Estimate for Recommended Scope	Estimated Total Replacement Cost
16020	0.95	0.90	0.10	0.55	1.00	0.78	1	Major Restoration	\$1,652,651	\$15,034,241
18399	0.99	0.82	0.10	0.85	0.27	0.66	2	Replace Superstructure	\$6,675,231	\$13,014,024
8204	0.85	0.82	0.00	0.00	1.00	0.66	3	Major Restoration	\$280,579	\$3,435,758
16384	0.30	0.97	0.75	0.00	1.00	0.65	4	Major Restoration	\$67,619	\$837,123
2466	0.95	0.98	0.00	0.29	0.32	0.62	6	Rehabilitate Culvert	\$378,938	\$769,496
18724	0.89	0.55	0.00	0.19	0.00	0.42	10	Replace Bridge	\$4,957,098	\$4,957,098
2439	0.79	0.48	0.00	0.59	0.00	0.42	11	Replace Bridge	\$2,179,301	\$2,179,301
17087	0.77	0.83	0.00	0.36	0.71	0.62	7	Replace Superstructure	\$308,190	\$1,040,226
10335	0.60	0.70	0.00	0.52	0.00	0.41	12	Replace Bridge	\$335,158	\$335,158
17878	0.52	0.98	0.00	0.00	1.00	0.60	9	Major Repair	\$363,855	\$3,678,246
5275	0.87	0.54	0.00	0.64	0.74	0.61	8	Replace Superstructure	\$257,366	\$924,388
18419	0.98	0.60	0.10	0.00	0.85	0.63	5	Replace Deck	\$1,949,697	\$8,663,145

Thank you for your time and attention

Questions??