
College of Engineering- Center for Environmental Research & Technology

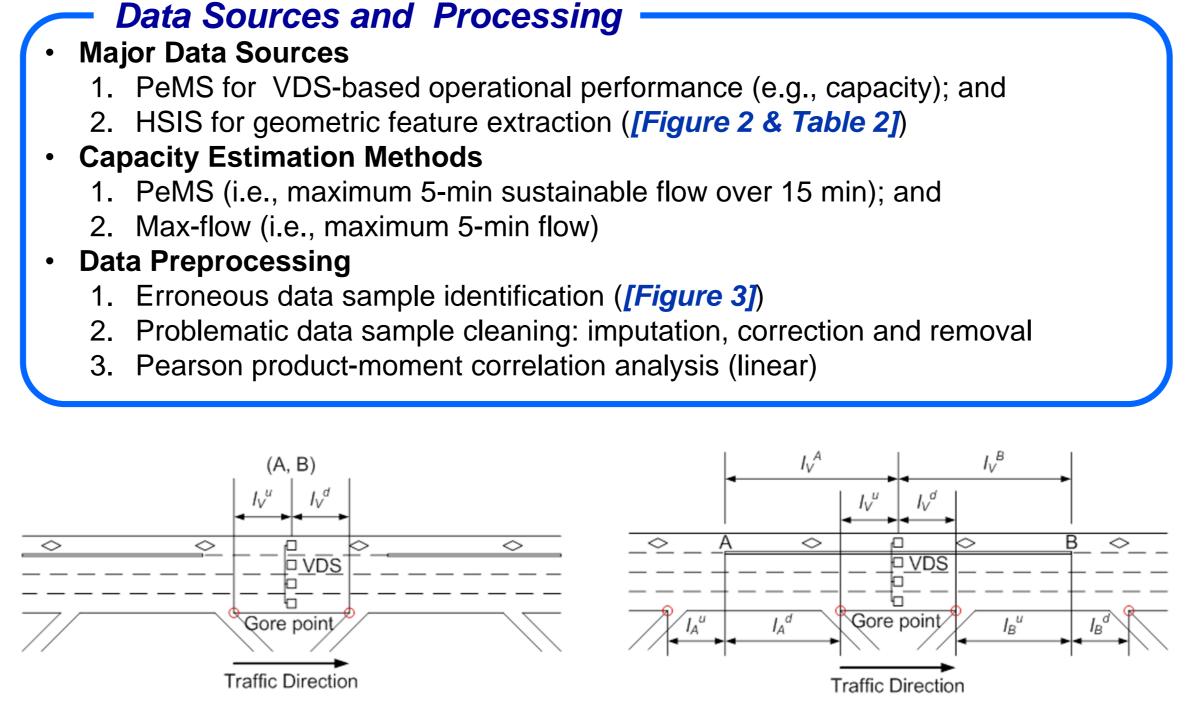
Comparative Analysis of Empirical Capacities between Freeways with Different Types of High-Occupancy Vehicle (HOV) Access Control

Introduction

It is generally accepted that HOV facilities can increase the passengercarrying capability of roadway networks by providing incentives for travelers to carpool or use transit services. Such traveling mode shift may essentially help metropolitan areas address their needs for improved mobility and productivity, while also being sensitive to environmental issues and quality of life.

Compared with any other state in U.S., California has the most extensive network of HOV facilities which consist of two major types of access control: continuous-access vs. limited-access [Figure 1]. The goal of this study is to set up a framework to compare the mobility performance (e.g., capacity) of different HOV facilities (see [Table 1] for the list) in the statistical context, which is useful for the planning, design and operation of HOV facilities.

(b) Limited-access HOV facility

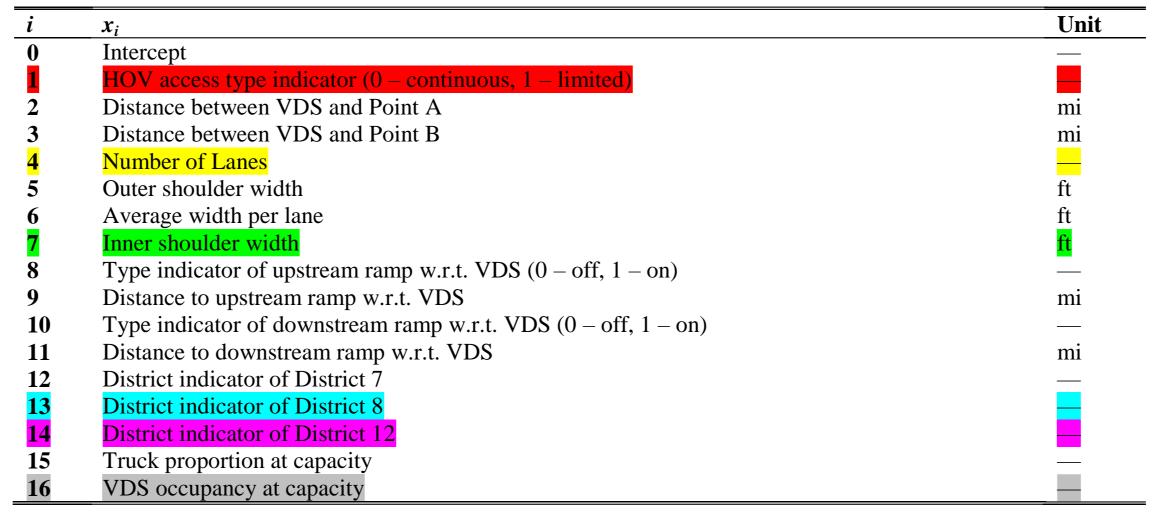

Table [•]	1. List	of HOV	Facilities	within the	Scope	of this	Study
		••••••					••••

	Consider	District	Country	Study D	ann dam:*	I on oth **	No. of VDS	
HOV Type	Corridor	District	County	Study Boundary* Start End		_ Length** (mile)	Covered	
	I-80 W/E	4	ALA	5.3	15.3	10.0	49	
	US-101 N/S	4	SCL	367.3	401.8	34.5	114	
	I-680 N/S	4	CC	31.4	43.3	11.9	66	
Continuous-	I-880 N	4	ALA	10.5	30.3	19.8	38	
access	I-215 N/S	8	RIV	29.2	37.4	8.2	23	
	SR-22 W/E	12	ORA	1.5	13.5	12.0	137	
	SR-55 N/S	12	ORA	12.0	18.0	6.0	41	
	SR-14 N/S	7	LA	0.0	18.5	18.5	32	
	I-105 W/E	7	LA	1.2	16.9	15.7	134	
	I-210 E	7	LA	24.8	39.9	15.1	43	
	I-405 S	7	LA	36.7	46.0	9.3	45	
	I-10 W/E	8	SBD	47.3	57.3	10.0	70	
	SR-60 W/E	8	RIV/SBD	30.8	56.8	26.0	93	
Limited-	SR-71 N/S	8	SBD	5.3	13.2	7.9	38	
access	SR-91 W/E	8	RIV	37.3	59.0	21.7	135	
	I-210 W/E	8	SBD	52.5	67.4	14.9	74	
	I-5N/S	12	ORA	79.2	101.2	22	183	
	I-405 N/S	12	ORA	0.0	24.0	24	224	
	SR-55 N	12	ORA	6.0	12.0	6	34	
	SR-57 S	12	ORA	0.5	12.0	11.5	52	
Total	35					548.3	1625	

* Using absolute post-mile

** For each directional corridor

Guoyuan Wu (gywu@cert.ucr.edu), Kanok Boriboonsomsin (kanok@cert.ucr.edu), Matthew Barth (barth@ece.ucr.edu), and Ramakrishna Tadi (Ramakrishna_R_Tadi@dot.ca.gov)



(a) VDS within ingress/egress area

(a) VDS within barrier

Figure 2. Illustration of geometric information related to VDS location.

Table 2. List of Explanatory Variables in Regression

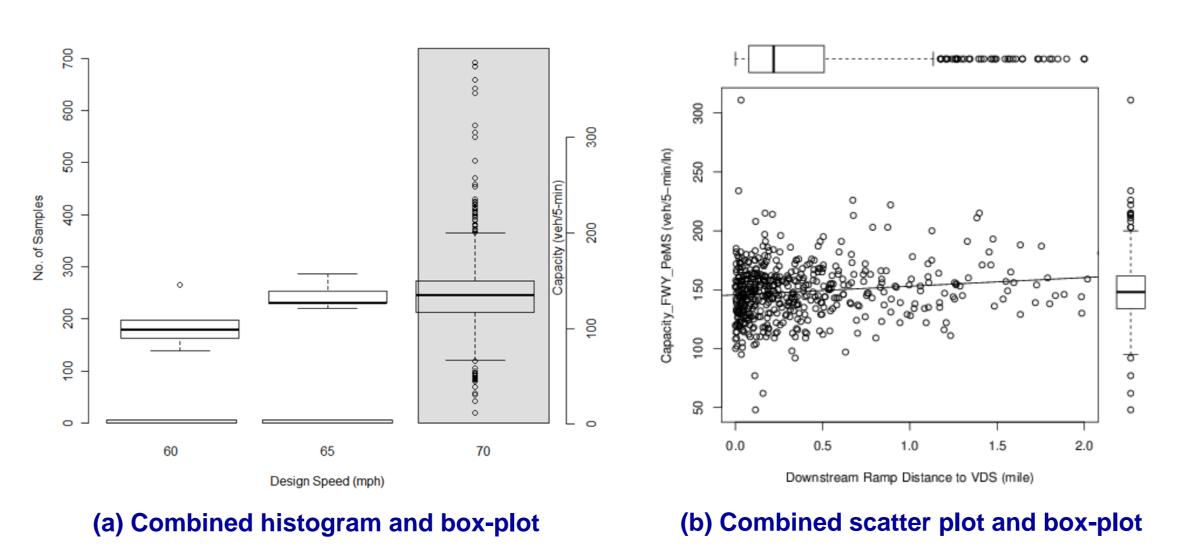


Figure 3. Example tools for exploratory data analysis (EDA)

Regression Models and Results Multiple Linear Regression or MLR (*[Table 3]*)

$$y_i = \sum_{i} \beta_k \cdot x_{i,k} + \varepsilon_i$$

Robust Multiple Linear Regression or R-MLR ([Table 3])

$$f_H(e) = \begin{cases} e^2/2, & |e| \le k \\ k|e| - k^2/2, & |e| > k \end{cases} \text{ and } \omega_H(e) = \begin{cases} 1, & |e| \le k \\ k/|e|, & |e| > k \end{cases}$$

Linear Mixed Effect (LME) Model ([Table 4])

 $y(i,j) = \sum_{k} \beta_k \cdot x_k(i,j) + \sum_{k} b_k(i) \cdot z_k(i,j) + \varepsilon(i,j)$

Table 3. Regression Coefficients for Overall Capacity in MLR and R-MLR Analysis

	MLR				R-MLR		
<i>i</i> *	PeMS		Max-flow		PeMS	Max-flow	
	$\boldsymbol{\beta}_i$	P-Value	$\boldsymbol{\beta}_i$	P-Value	β_i	β_i	
0	-49.31	0.594	-271.50	0.039	-41.00	-238.88	
1	<mark>48.58</mark>	<mark>0.008</mark>	<mark>94.69</mark>	3.0E-04	<mark>48.45</mark>	<mark>88.04</mark>	
2	1.89	0.829	0.85	0.946	-1.75	5.80	
3	7.26	0.420	16.77	0.192	-1.30	12.51	
<mark>4</mark>	<mark>121.32</mark>	<mark>< 2E-16</mark>	<mark>162.86</mark>	<mark>< 2E-16</mark>	<mark>123.17</mark>	<mark>153.53</mark>	
5	3.10	0.431	11.01	0.051	2.81	13.08	
6	2.97	0.542	0.52	0.940	2.40	0.21	
7	<mark>-3.68</mark>	<mark>0.006</mark>	<mark>-3.90</mark>	<mark>0.040</mark>	<mark>-3.16</mark>	<mark>-4.37</mark>	
8	-0.68	0.949	15.22	0.310	-2.72	7.89	
9	0.78	0.827	-2.38	0.638	-2.68	-3.80	
10	-15.79	0.117	-6.14	0.669	-15.48	-7.99	
11	3.27	0.318	1.69	0.718	3.98	4.86	
12	-30.15	0.195	-114.99	6.0E-04	-27.29	-115.60	
<u>13</u>	<mark>-49.59</mark>	0.028	<mark>-111.78</mark>	5.3E-04	<mark>-45.12</mark>	<mark>-106.87</mark>	
<mark>14</mark>	110.46	1.3E-09	<mark>280.96</mark>	<mark>< 2E-16</mark>	<mark>106.16</mark>	<mark>282.04</mark>	
15	-96.67	0.445	-161.51	0.370	-68.14	-207.62	
16	710.14	7.6E-10	1177.38	9.2E-12	686.87	1226.85	
Degree of Freedom	513		513		513	513	
Residual Standard Error	10)2.2	14	5.8	90.40	102.4	
Multiple R-Squared	0.	725	0.7	/90			
Adjusted R-Squared	0.	717	0.7	784			
F-Statistic P-Value	< 2.2	2E-16	< 2.2	2E-16		<u> </u>	

Variables in bold-face are statistically significant at 5% α -level

* Refer to Table 2 for the description of each index i

Table 4. Regression Coefficients for LME Model on Overall Capacity (District Effect)

Effect Type	i		PeMS N	PeMS Method		Max-flow Method	
		x_i	Estimate	t-Value	Estimate	t-Value	
	0	Intercept for D4 data	-52.92		-273.98		
Random Effects*		Intercept for D7 data	-80.65		-386.47		
		Intercept for D8 data	-99.97		-383.82		
		Intercept for D12 data	56.31		6.00		
Fixed	1	HOV access type	47.97	2.660	94.18	3.638	
Effects	•••	•••		•••		•••	

* ANOVA shows variance between Districts is statistically significant (see our paper for details)

Conclusions and Future Work

- A statistical framework is developed to compare the mobility performance of different types of HOV facilities, which can be applied to other similar analyses for managed lanes.
- Three linear regression models indicate that a freeway segment with limitedaccess HOV lane would have higher overall capacity than that of a continuousaccess HOV lane, given that everything else being identical.
- District effects are statistically significant for HOV facility capacity in California.
- An on-going project is to develop and evaluate an alternative HOV facility type, called partially limited access HOV lane, by formulating into a dynamic multicommodity traffic assignment problem based on the Link-Node Cell Transmission Model (LNCTM).

Acknowledgements: This study is funded by the California Department of Transportation. The authors thank all the Caltrans Project Panel Members as well as colleagues from the University of California (UC) Berkeley and UC Irvine for their valuable input and feedback. We also thank Yusuf Mohamedshah for assistance with the access to the HSIS database.

