

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA

Exposure to Risk and the Built Environment, an Empirical Study of Bicycle Crashes in Minneapolis

Olivia (Jueyu) Wang. PhD student, University of Minnesota Greg Lindsey. Professor, University of Minnesota

Research Objectives

- Test the "safety in number hypothesis" by using aggregated bicycle crashes and bicycling traffic (bicycling count and modeled bicycling count).
- Assess the potential of bicycle facility demand models to measure bicyclists' exposure to risk.
- Estimate the probability of crashes at intersections and street segment and assess the effects of built environment on the probability of crashes.

Introduction

Data and Methods

traffic: A comparison of fully-specified and reduced-form models Transportation Research Records 2016

Data and Methods

2817 Crashes from 2005 to 2014

SIN Effect Evaluation

Crash Probability Model Results

	R
	SG
	<u> </u>
Model	ts

~ - ~ \

Intersection Level Model Street	Segment Level Model
---------------------------------	---------------------

	(N=257)	(N=8/3)
Variables	Impacts	Impacts
Ln(Peak hour bike count)	+	++
Ln(Vehicle AADT)	++	++
Land Use Attributes		
Job accessibility	+	
Number of intersection	-	
Land use entropy		++
% commercia		++
Bike Facility Variables		
bike facility indicator	-	
Trail Crossing	+	
Prob>Chi2	0.0001	0.0000
AIC	226.41	370.17
BIC	258.41	408.34

/ . .

Key Findings

- SIN
- facility demand models \rightarrow exposure to risk.
- Intersection:
 Higher job accessibility
 Trail crossing
 Poor Street Connectivity
- Street: Mixed Land Use Commercial Land Use

Results

Implications

1) Improve understanding on bicycling crash by

• Implementing more comprehensive counting programs

2) and Improve safety by:

• Targeting intersections and street segments with high bicycle and traffic volumes for interventions and countermeasures—for example, priority signals or hybrid beacons at trail crossings.

• Interventions and countermeasures for the areas with mixed land use and higher % of commercial use (indicating more conflicts between bicyclists and vehicles).

Thank You !

