Psychology of Roadway Interactions: Implications for Road Safety

Tara Goddard
Portland State University
Traffic Crashes: The Numbers

In 2014:

Pedestrians:
- 4,884 killed (more than 12 per day)
- 65,000 injured* (one injury every 8 minutes)

Bicyclists:
- 726 people killed (~2 per day)
- 50,000 injured* (one injury every 10.5 minutes)

Economics:
- Cost of pedestrian injury for kids 14 and under: $5.2 billion
- Cost of bicyclist injury: $4 billion

*Known to be underreported in police data

Goddard 2016
Crashes: Injury Severity

Automobile only

- Property Damage Only: 40%
- Injury or Fatality: 60%

Automobile and Bicyclist or Pedestrian

- Property Damage Only: 7%
- Injury or Fatality: 93%

Goddard 2016
Crash Causation

Day time, unimpaired driver

- Looked but failed to see: 48%
- Misjudged, inattention, distracted: 52%
- All others: 34%
- Looked but failed to see: 17%
- Misjudged speed or path: 21%
- Inattention: 28%

Source: Brown, I. D. (2005). Review of the “looked but failed to see” accident causation factor. UK Department for Transport

Goddard 2016
What causes “Looked but failed to see” (LBFTS) errors?

- Multiple hazard perceptions tests in laboratories demonstrate that drivers do not recall or react to everything in their visual environment, even critical events, despite opportunity to see hazards.

- “It is plausible to suggest that the looked-but-failed-to-see error does not arise due to the physical environment but as a result of the drivers’ visual search strategy and/or mental processing.” – Herslund & Jorgensen, 2003

Goddard 2016
Controlled Processes

- Are intentional
- Involve awareness
- Require effort
 - Typically slow
- Executed serially
- Tend to be linguistic
 - Reportable in words

Goddard 2016
Automatic Processes

- Do not require intention
- Do not require awareness
- Do not require effort
 - Typically fast
 - Executed simultaneously
- Tend to be perceptual
 - Hard to capture in words

Goddard 2016
A test of attention (count the passes by the team in white shirts)
A test of attention (count the passes by the team in white shirts)

Image credit: Daniel Simons, personal website
Inattentional Blindness (IB)

Cause:
A *psychological* lack of attention

Outcome:
Failing to perceive an unexpected stimulus in plain sight

Goddard 2016
The psychology of (in)attention

“Attention creates no idea” – William James, 1890

“It is possible to conceive of [attention] as an effect and not a cause, a product and not an agent . . . Attention creates no idea; an idea must already be there before we can attend to it”

-(William James, The Principles of Psychology (1890) p. 450)

Are certain types of ideas more important than others?

Goddard 2016
An important type of idea: Attitude

- Evaluation of a person, object, group, concept, etc.
- “Psychological tendency to evaluate an entity with favor or disfavor” (Eagly & Chaiken, 1998)
 - Has multiple components
 - Has conscious and unconscious aspects
 - Can affect mental models and processing
 - Can direct attention

Goddard 2016
The ABCs of attitudes

Affective
- Moods, emotions

Behavioral
- Intended and enacted behaviors

Cognitive
- Thoughts, beliefs

Goddard 2016
Attitude toward bicyclists: Negative attitude example

<table>
<thead>
<tr>
<th>Category</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affective</td>
<td>Moods, emotions
Ex: “Bicyclists annoy me”</td>
</tr>
<tr>
<td>Behavioral</td>
<td>Intended and enacted behaviors
Ex: “I do not want to bicycle”</td>
</tr>
<tr>
<td>Cognitive</td>
<td>Thoughts, beliefs
Ex: “Bicyclists should not block cars”</td>
</tr>
</tbody>
</table>

Goddard 2016
Explicit vs implicit attitudes

Explicit Attitudes
- Deliberate, conscious
- Voluntarily accessible, can be acknowledged

Implicit Attitudes
- Automatic, below conscious awareness
- Involuntarily activated

Goddard 2016
Inconsistent explicit and implicit attitudes

Explicit Attitudes
- Deliberate, conscious
- Ex: “Bicyclists are doing good things for the environment”

Implicit Attitudes
- Automatic, below conscious awareness
- Ex: “Bicyclists are annoying”

Goddard 2016
Implicit vs. Explicit Attitudes

- Implicit and explicit attitudes are distinct, but related.

- Meta-analysis: $r = .27$ for implicit attitudes for prediction of behavioral, judgment, and physiological measures (Greenwald, et al. 2009)

- Better predictor than explicit attitudes when:
 - automatic processing conditions (e.g., time pressure, cognitive load)
 - Sensitive topics like prejudice
 - Nonverbal or subtle behaviors

Goddard 2016
Implicit Bias

- Implicit bias affects:
 - Policy preferences
 - Doctors’ behaviors with minority patients
 - Hiring and job interview selection
 - Police behavior with minorities

- Might implicit bias affect issues in the transportation domain?

Goddard 2016
Previous studies have shown that drivers do not respond equally to all pedestrians

- Drivers yielded more frequently to visibly disabled pedestrians (Harrell 1992)
- Drivers more likely to yield to pedestrians in same age group (Rosenbloom et al 2006)
- Drivers in highest status cars less likely to yield to a pedestrian (aka “The BMW Study”) (Piff et al 2012)
- Drivers displayed racially-biased yielding behaviors to pedestrians at crosswalks (Goddard et al (2015), Coughenour et al (2017))
Similarly, drivers do not respond equally to all bicyclists

- Walker (2007) and Florida DOT (2011) determined that drivers passed more closely to male, Lycra-wearing “cyclists”
- Walker and Garrard (2014) found that drivers only gave more passing distance to “Police: Video Recording in Progress” vest
Bias in the Transportation Context

Point-of-view via mode may affect evaluation of other people’s intent or motivation, and future mode choice

- Gatersleben et al (2013) found that when viewed from a car, people rated a simulated playground interaction as “threatening”, while viewed as a passerby on foot, rated the interaction as playful

- Moody et al (2016) found that implicit bias toward “car pride” and against bus use improved prediction of mode choice
Attitudes just one piece of a complex puzzle, but understudied in context of bike/ped safety

The Conceptual Model of Roadway Interactions

- **Sociocultural**
 - Social norms
 - Roadway culture
 - Structural (in)equality
 - Stereotypes
 - Social dominance
 - System justification
 - Public investment in facilities
 - Vehicle design

- **Physical**
 - Facility design
 - Speeds and volumes
 - Level of separation

- **Individual**
 - Demographics
 - Social Identity
 - Experience as out-group mode user
 - Cognitive load
 - Experience with specific infrastructure and/or other out-group users

Goddard 2016
Implications

- Can design “overrule” these implicit biases?
- Can education or enforcement be better informed by theory?
- How do we normalize or legitimize all roadway users?

Goddard 2016
THANK YOU

Questions on these slides or research cited: Tara Goddard
goddard@pdx.edu