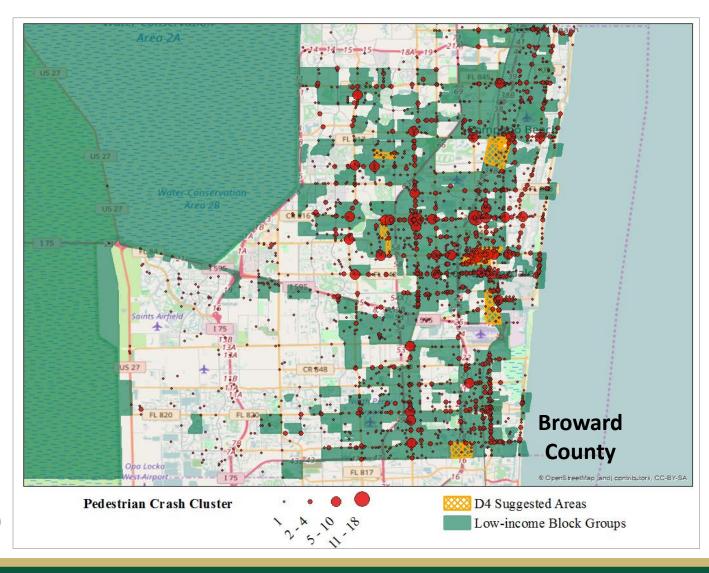


Spatial Analysis of Pedestrian Crashes in Low-Income Areas

10th University Transportation Centers Spotlight Conference: Pedestrian and Bicycle Safety

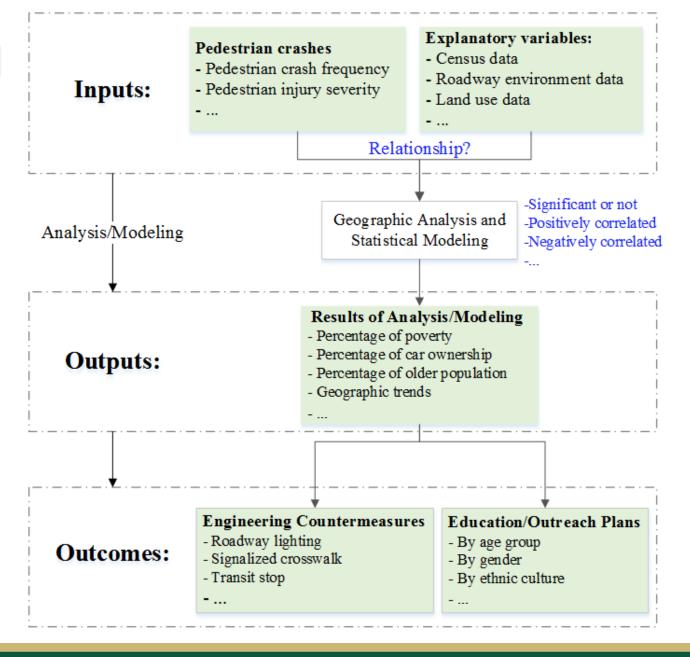
Pei-Sung Lin, Ph.D., P.E., PTOE Rui Guo, Ph.D. Achilleas Kourtellis, Ph.D. Elzbieta Bialkowska-Jelinska, GISP

December 2, 2016


Introduction

Pedestrian crash rates were disproportionately higher in low income areas

Low-income BGs:


poverty rates >15% or per-capita income < \$21,559

From: Governing (2014)

Method

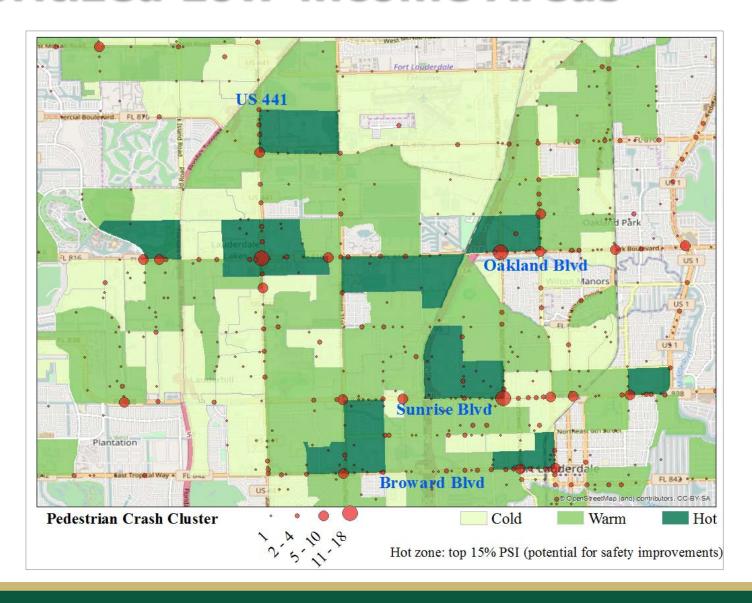
Data Collection and Compilation

- Crash data: FDOT Crash Analysis Reporting (CAR) System
- Demographic factors: U.S. Census Databases

- GTFS Data

 Exchange
- Road environment factors: FDOT TranStat GIS, Transit
- Land use types: Property appraiser, HERE, License files

Analysis and Results


Average Effects (-)	Demographic Factors	Average Effects(+)
	Public transit or bike (%)	0.052
	Low education level (%)	0.047
	Zero-car ownership (%)	0.043
	Minority-African American (%)	0.019
-0.055	Older population (%)	
Average Effects (-)	Road Environment Factors	Average Effects(+)
	Intersections (#)	0.082
	Traffic signals (#)	0.655
	Bus stop per mile (#)	0.170
-0.012	Lower-speed roads (%)	
Average Effects (-)	Land Use Types	Average Effects(+)
	Discount stores (#/mi ²)	0.226
	Convenience stores (#/mi ²)	0.071
	Fast food restaurants (#/mi ²)	0.069
	Grocery stores (#/mi ²)	0.057
	Barber shops (#/mi ²)	0.049

Prioritized Low-income Areas

Hot zone: top
low-income
areas with more
crashes than
other areas with
similar features

Cold zone: lowincome areas with <u>less</u> crashes compared to other similar areas

Countermeasures/Outcomes

Engineering Countermeasures

- Improved pedestrian features at specific intersections with certain land use types
- Street lights at transit stops
- Slow-speed zones at some streets and traffic calming
- Enhanced-visibility crosswalks
- Rectangular Rapid Flashing Beacon
- Landscaping barriers at some locations
- Roadway lighting and lighting level improvement
- Road Safety Audit (RSA)
- Refuge islands
- •

Education/Outreach Plan

- Development of education/outreach plan focusing on prioritized low-income areas
- Education on traffic rules and laws, and nighttime safety for drivers, pedestrians and bicyclists in low-income areas
- Pedestrian safety grassroots education
- Business sweeps on identified high-crash corridors in low-income areas
- Safety/infrastructure education tip cards
- Social media outreach
- Partnership with specific stores
- •

Dr. Pei-Sung Lin and Dr. Rui Guo

Center for Urban Transportation Research
University of South Florida

lin@cutr.usf.edu

rui@cutr.usf.edu

