Development of Statewide Pedestrian Safety Performance Functions

10th UTC Spotlight Conference

Jun-Seok Oh, Valerian Kwigizile, Keneth Kwayu Western Michigan University

Transportation Research Center for Livable Communities

Michigan Pedestrian Crash 2010-2014

1

Total Pedestrian Crashes and Fatality Percentages

Distribution of Pedestrian Crashes by Crash Location

Alcohol Involvement: Who had used alcohol - driver or pedestrian?

Hit and Run Crashes (2010-2014)

Transportation Research Center

for Livable Communities

 Almost 27% of total pedestrian crashes are hit and run

Risk Behaviors and Crash Causes

Six (6) pedestrian-related risk behaviors and crash causes:

- 1. Failing to yield and disregarding traffic control (by both pedestrians and motorists)
- 2. Pedestrians being in roadway (standing, lying, walking, playing, etc.)
- 3. Pedestrian being near vehicle (disabled vehicle, entering/exiting parked vehicle, bus-related, etc.)
- 4. Pedestrian walking along roadway (with traffic, etc.)
- 5. Loss of control (by motorists or pedestrians)
- 6. Other/unknown (off-road parking, unusual circumstances, etc.)

Distribution of Pedestrian Risk Behaviors

- Pedestrian in Roadway
- Pedestrian Near Vehicle
- Loss of Control
- Pedestrian Walking Along Roadway

Safety Performance Functions - Data from 4 Michigan cities

Ann Arbor, East Lansing, Grand Rapids, and Flint

Intersection Pedestrian SPF

 $N_{int_ped_crash}$

- $= exp(-.043449 NLN_{minor} + .000018 ADT)$ + .000056 PedVol + .0455736 NumBar
- -.0035416 NumGrad +.043991)

Possion Regression Model

- Number of Lanes on Minor Street
- ADT
- Ped Vol
- Number of Bars (within 1/4 mile)
- Population with Graduate Degree (within 1/4 mile)

Statewide Data & Sampling

Case study: All intersections on arterials and collectors in

Michigan urban areas (over 12,000 intersections)

Preliminary data collection

- Intersections by the number of legs
- Intersections by roadway class
- Urban population
- Pedestrian crash data (2010-2014)

Output: Sample intersections for detail

data collection (300 samples)

Pedestrian Exposure Surrogate Measure

Pedlevel =

 $0.0707(perc_{publ} - 0.974) + 0.0008(pop_{sqmile} - 420.178) +$

 $0.0153(pov_{tot_{blw}} - 13.473) + 0.0011(walking_{qmile} - 36.32) +$

Factor Analysis	Standardized Coef.	Std. Err.	z	P>z
Percent using public transport	0.5397	0.0440	12.26	0
Population Density (per mile^2)	0.6959	0.0345	20.17	0
Percent of Poverty	0.6131	0.0392	15.65	0
Walking per square mile	0.5299	0.0448	11.82	0
Pedestrian Facility	0.2568	0.0545	4.72	0
Walk Score	0.8347	0.0288	29.01	0
Proportion of Commercial LU	0.3244	0.0518	6.26	0

Models

Count models

- Poisson Regression Model (NRM)
- Negative Binomial Regression Model (NBRM)
- Zero Inflated Poisson Regression Model (ZIP)
- Zero Inflated Negative Binomial Model (ZINB)

Results

Zero Inflated Poisson Regression Model

$$\mathsf{Ped-crashes} = \left[1 - \frac{1}{1 + e^{(0.918 + 2.375 \, Pedlevel)}}\right] \, \mathsf{x}$$

 $\left[e^{-1.094+0.0234 AADT_{maj}+0.0405 AADT_{min}+0.2392 Pedlevel}\right]$

- Ped_Level: + 0.2392 (2.69)
- AADT-maj: + 0.02364 (2.14)
- AADT-minor: + 0,0405 (2.51)

Conclusion

Difficulties in Pedestrian Crash Modeling

- Randomness of Pedestrian Crashes
- Lack of Exposure Data

Future Needs

- Statewide pedestrian exposure data
- Pedestrian facility database/inventory
- Alternative approaches?

