A Feasibility Study for Weather–Controlled Variable Speed Limits (VSL) in Norway

2016 International Conference on Winter Maintenance and Surface Transportation

Weather

Torgeir Vaa, Norwegian Public Roads Administration
Trond Foss, SINTEF Transportation
Learning outcomes

• Variable speed limits (VSL) has become relevant in Norway because the speed limit is set up on highways.
• The study show how an ITS application for VSL may function for a virtual pilot on E18 in Vestfold County (2 + 2 lanes highway).
• The study focuses on road surface conditions (friction).
• The pilot show the potential for a VSL system, but the system is not ready to be implemented.
• Several research questions has to be addressed.
Background

- The building of highways with high speeds and traffic volumes is increasing in Norway.
- There is a new policy in Norway to increase the speed limit on highways from 90 and 100 km/h up to 110 km/h.
- It has also been politically discussed the introduction of 130 km/h as an upper speed limit.

Picture source: www.dinside.no
Background

The proposal from the government is raising the speed limit on certain motorways to 110 km/h. At the same time, State Secretary Bård Hoksrud introduces variable speed limits. That means speed limits customized to weather, implying a significant reduction if the driving conditions are difficult.

State Secretary Bård Hoksrud wants variable speed limits

Supported by Norwegian council for Traffic Safety
Introduction

• Highways with high traffic volumes will usually have standard requirements implying that the road surface should be bare a short time after the weather incident/snowfall

• However, there will be certain weather conditions that prevents the contractor to maintain the required level of service all the time

• A reduction of the stopping abilities and traction control during winter time when the required level of maintenance cannot be achieved, will be critical on highways with high traffic volumes and high speed limits
Introduction

• Research has shown that drivers reduce the speed when the driving conditions are getting worse but not to the extent that is needed for keeping the risks on an acceptable level.

• This implies an increased probability for severe traffic accidents to occur during the periods when the drivers do not adapt their speed to the actual driving conditions.
Introduction

• During periods with snow and ice and low friction there is a need to inform the travelers and temporarily reduce the speed limits until the required maintenance level has been achieved

• Hence, one should expect periods where there is a need to activate ITS applications that informs the travelers on the driving conditions and reduce the speed limit
Objectives of the feasibility study

• Investigate state-of-the-art for:
 • ITS applications informing travellers about weather and road conditions that may cause an increased risk level concerning traffic safety
 • ITS applications that reduce the speed limit due to bad weather and road conditions
ITS applications studied

<table>
<thead>
<tr>
<th>Inform travellers about weather and road conditions</th>
<th>Reduce the speed limit due to weather and road conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>This application includes:</td>
<td>This application includes:</td>
</tr>
<tr>
<td>• monitoring the road and weather conditions by data collection</td>
<td>• monitoring the road and weather conditions by data collection</td>
</tr>
<tr>
<td>• management of data collected</td>
<td>• management of data collected</td>
</tr>
<tr>
<td>• distribution of road and weather condition information to the travellers</td>
<td>• effectuate reduced speed limits</td>
</tr>
</tbody>
</table>

Picture source: ntl.bts.gov

Picture source: thetimes.co.uk
Methodology

The methodology applied for the state-of-the-art for the two ITS applications has been to:

• Define a physical architecture for systems that:
 • Collects data about weather and road conditions
 • Determine the status for now and for the next coming hours (prognoses)
 • Informs the travellers about the weather and road conditions
 • Effectuates (manually or automatically) traffic management measures like reduced speed limits
State-of-the-art for weather and road condition information systems

A literature review

- describes the findings in US, Canada and 5 countries in Europe that have road and weather conditions comparable with the conditions in Norway in the winter period

- Both web based systems, smart phone apps and SMS services
State-of-the-art for Variable Speed Limits (VSL)

The literature search shows that:

- Most published scientific articles are mainly concerned with the use of microscopic traffic simulations to evaluate future implementations of VSL System
- Most of the public Traffic management documents available on the Internet deal with temporary variable signs implemented on roads in the case of road works
- There is no or very little information on the strategies and procedures behind the use of VSL
- An exception is the Finnish literature available in English that have some information on the principles for reducing the speed due to road surface conditions, heavy rain or poor visibility

08.03.2016
Example on conditions for reduced speed using VSL

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>VALUES</th>
<th>VMS-SIGN</th>
<th>INFO SIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D) DANGEROUS ROAD CONDITIONS</td>
<td>Speed limit by automatic system 80 km/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speed limit 60 km/h manually, if traffic control center officer decides that it is necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VMS/INFO-signs automatically according to following rules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT LEAST ONE OF FOLLOWING TERMS (D1...D3) FULFILL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D1) DANGEROUS CONDITIONS BECAUSE OF ROAD SURFACE CONDITIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right lane friction</td>
<td>μ < 0.15</td>
<td>'Slippery road' (144)</td>
<td>"DANGEROUS ROAD SURFACE CONDITIONS"</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road surface temperature</td>
<td>Road surface < +2°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D2) DANGEROUS CONDITIONS BECAUSE OF RAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form of rain</td>
<td>18 = freezing rain</td>
<td>'Slippery road' (144)</td>
<td>"FREEZING RAIN"</td>
</tr>
<tr>
<td>(D3) DANGEROUS CONDITIONS BECAUSE OF VISIBILITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visibility</td>
<td>< 100 m</td>
<td>'Danger'</td>
<td>"POOR VISIBILITY"</td>
</tr>
</tbody>
</table>
Objectives of the feasibility study

• Describe how an ITS application for VSL may function for a virtual pilot on E18 in Vestfold County (2 + 2 lanes highway), Norway

• By virtual pilot is meant that the found requirements for VSL are applied on the highway section without really changing the speed limits

• Recommend future work based on the findings in the study
Study area in Norway
Hanekleiva RWIS station, E18

• With optical sensor
The E18 pilot

• The pilot road E18 have seven RWIS stations instrumented with optical sensors and LED variable speed limit signs are already in place.
Results from the pilot
Results from the pilot
Period 20.02.2015 00:00 – 02.03.2015 23:50
Possible causes for differences at measuring sites within the same area

- Differences in climate
- Differences in topography
- Sensors
 - Differences in sensors, e.g. caused by lack of calibration
 - Differences in sensor maintenance, e.g. cleaning of lenses
Grelland RWIS station, E18

Friction: 0.13
Gulli North RWIS station, E18

Friction 0.17
Fokserød RWIS station, E18

Friction: 0.14
Rødbøl North RWIS station, E18

Friction: 0.18
Rødbøl North RWIS station, E18

08.03.2016
Research questions

• What are the speed limits that should be used? 70, 90 and 110 km/h or other speed levels?

• What are the friction limits to be used for a dynamic speed limit balancing the risk caused by reduced friction?

• How many sensors are needed?

• Availability of additional data sources

• What is the accuracy and reliability of the sensors installed?

• How does uncertainty and reliability influence on the speed change algorithms?
Learning outcomes

• Variable speed limits (VSL) has become relevant in Norway because the speed limit is set up on highways.
• The study shows how an ITS application for VSL may function for a virtual pilot on E18 in Vestfold County (2 + 2 lanes highway).
• The study focuses on road surface conditions (friction).
• The pilot shows the potential for a VSL system, but the system is not ready to be implemented.
• Several research questions have to be addressed.

• Contact information: torgeir.vaa@vegvesen.no