Visualizing Waikiki

Integrating GIS into Driving Simulation Scenarios

Jason R. Williams: jason.r.williams@dot.gov HDS Onsite Lead

Peter (Tsai-Chia) Chou: chou@dot.gov

HDS Senior Software Engineer

Ryan Cartwright: cartwrir@dot.gov

HDS 3D Modeler / Artist

AAI / Textron Systems Support Solutions

Highway Driving Simulator

(HDS)

Brian Philips, Phd: <u>brian.philips@dot.gov</u>
Human Factors HDS COR, FHWA RD&T

Turner Fairbank Highway Research Center

- Background
 - HDS Features
 - o HDS Activities Types
 - o What GIS is, and Why Do we need it?
- Scenario Elements
 - Roadway geometry, Buildings, Trees, Signs, Signals (Lights + Ped), Traffic, GUI requirements, Data Collection
- GIS Tools
- Questions?

Highway Driving Simulator

New Car Cab 2013 Ford Fusion December 2015

HDS FEATURES

- The Highway Driving Simulator now has 18 Video Channels covering 200 degrees FOV front overlapping for a full 360 degrees with LCD based rear view mirrors.
- 3x Barco SIM10 4K front projectors, each at 4096x2400 resolution with cylindrical warping, edge blending, Auto-Alignment (Color and intensity)
- Multi-Display Operators Console
- 3 Rear View panels (replacing mirrors) 1024x800 resolution each
- 6 Degrees of Motion platform for Pitch, Roll, Yaw, Heave, Sway and Surge
- Audio rendering of Engine, Road, and Wind sounds independently
- A full data capture and replay capability including EyeTracking

Operators Console

4K PROJECTORS

8th International Symposium on Visualization in Transportation

HDS Types of Activities

- Visualization projects to demonstrate how new infrastructure will "look" – articulate the benefits of roadway safety investments
- Behavioral research for safety to understand how the driving environment effects driving performance and what changes can be made to improve safety

What is GIS?

- "A geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present spatial or geographic data." Source: Wikipedia
- "GIS lets us visualize, question, analyze, and interpret data to understand relationships, patterns, and trends." Source: esri website
- GIS data and GIS applications have become ubiquitous in everyday use and coverage of many data types are of high quality and accuracy

GIS Data Layers

8th International Symposium on Visualization in Transportation

GIS Data Resources from FHWA

https://www.gis.fhwa.dot.gov/gisData.asp

Using GIS in Simulation & Visualization

- What Data can we get from GIS?
 - o Elevation Data
 - o Street Data (Open Roads compliant)
 - Vegetation Data (Parks, specific trees along streets, vegetation level)
 - o Building Data (Based on footprint, stories, style, use procedural generation rules)
 - Some city based "furniture"

Advantages of GIS

- Modelling existing "Real World" locations
- o Fit CAD Designs to "Real world" locations
- o For Public Understanding and Involvement (Hey That's my House!)
- o Comparisons of Real World Data matching Simulator Data
- o Many Cities and communities are generating the GIS Database layers for us

Challenges

- o Real-Time simulation must run fast at over 60 fps
- o Many GIS end products are for either proprietary or geared for presentation only (images / videos)
- o Only certain file formats can be used in 3D model environment

GIS Modeling Tools

Google Earth ™

- Not fully GIS, but more of a viewer (data layers restricted and defined by developer)
- Elevation Data
- Imagery (satellite and aerial)
- Map Based Data
- Street View, 360 images based on location along major roads and some foot paths
- Some Building Data from larger cities

● ArcGIS[™]

- Full GIS Database
- Actual Database Engine
- Requires expert knowledge to use

Esris CityEngine ™

- Easy to use Interface
- Parametric based scripting to generate large areas quickly
- Includes all GIS data layers from ArcGIS

■ Autodesk Infraworks 360 TM

- More Gear to Infrastructure Design Engineers and Quickly Generating Data Visualizations
- Also allows for scripting interpolation of data layers
- Large number of Export formats geared toward 3D Modeling

Examples Using InfraWorks 360

8th International Symposium on Visualization in Transportation

Google Earth

Advantages

- o More true representation with data
 - Buildings are vetted by Google and not just generated
 - Constant corrections fixes are added
- o Includes 3D point cloud data for some vegetation / Tree layers
- o Imagery and Elevation Data is fairly high resolution
- Data source and resolution is defined
- o Tightly integrated with Street View

Disadvantages

- Much of the data can't be easily exported (other than elevation and imagery)
- o Does not work directly with other GIS data bases

Google Earth Buildings

Trees

Procedural Solutions

- Can quickly build model based on parameter lookups and substitutions
- For example, using just the foot print, the number of floors and an architectural style, we can approximate many buildings
- Trees and Street Furniture can also be built procedural
- ESRI City Engine may be best if doing allot or procedural modeling.

Waikiki - Video

Challenges

- InfraWorks and ESRI City Engine data is not precise
- Need to make changes based on Google Street View or own surveys
- Point data is still hard to work with
- Level of expertise requirements are high for all the applications and engineering areas (Takes a while to learn)
- Large data sizes can be "clunky" to work with
- Need to control Level of Detail (LOD) switching for real-time, few good tools exist to automatically generate LOD in the GIS world
- Tools are always evolving

ONLINE RESOURCES

Federal Highway Administration

Office of Safety Research and Development

Human Factors Program

http://www.fhwa.dot.gov/research/tfhrc/labs/humanfactors/

Questions?

THANK YOU!