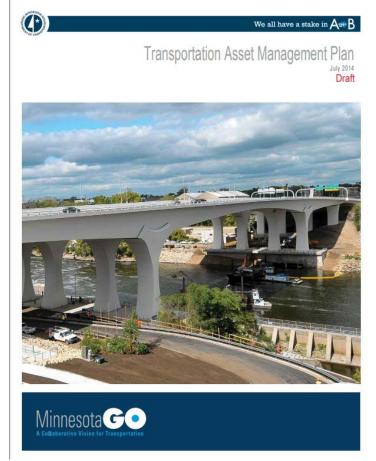


DEPARTMENT OF TRANSPORTATION Shannon Foss | Asset Management Planning Director

July 16th, 2018


Developing a Risk-Based Transportation Asset Management Plan

Timeline

- 2012 MAP-21 TAMP Legislation
- 2014 Minnesota completed a Pilot TAMP
- 2016 Final federal rule released
- 2018 TAMP 2018 Draft federal submission completed in April
- 2019 Final federal submission due in June

2014 Pilot TAMP

- Consultant Applied Pavement Technology
 - Writing
 - Technical Guide
- Sub consultant Paul D. Thompson
 - LCCA Life Cycle Cost Analysis

• 6 assets

• Pavements, Bridges, Overhead Sign Structures, High-Mast Light Towers, Culverts, Deep Stormwater Tunnels

TAMP 2018

- Completed in-house
- Updated Pilot TAMP
- Retired Technical Guide
- Added 6 additional assets
 - Noise Walls, Signals, Lighting, ITS (Intelligent Transportation Systems), Pedestrian Infrastructure, Buildings
- 154 Pages

DEPARTMENT OF TRANSPORTATION

DRAFT Transportation Asset Management Plan

Example of Asset Folio in TAMP

BRIDGES (INCLUDING LARGE CULVERTS)

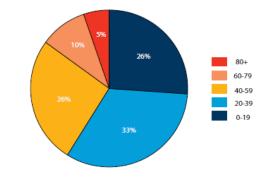

Bridges are large, complex and expensive assets that are custom-designed and built to satisfy a wide variety of requirements. Large culverts 10 feet and greater are also included in the bridge inventory. MnDOT's bridge inventory includes all bridge structures ten feet and greater. There are currently 3,875 bridge structures over 20 feet. The remaining 920 structures are 10 feet or greater but less than 20 feet or are non-automobile bridges.

Figure 4-11: Bridge Inventory and Replacement Value

SYSTEM / FUNCTIONAL CLASSIFICATION	Bridge Count	BRIDGE DECK AREA (SQ. FT.)	Bridge Current Replacement Value	BRIDGE CULVERTS COUNT	BRIDGE CULVERTS CURRENT REPLACEMENT COST
NHS	1,621	31,444,986	\$8.8 billion	745	\$470 million
Non-NHS	1,377	18,504,855	\$5 billion	1,058	\$329 million
TOTAL (State Highway)	2,998	49,949,841	\$13.8 billion	1803	\$799 million

Notes: NH5 do not include locally-owned NH5 bridges (23); replacement values range from \$50' sq. ft. to \$8201sq. ft. depending on bridge type, size and complexity, MnDOT has initiated a process to collect locally-owned NH5 pavement and bridge data (i.e. material type, AADT, construction and treatment history, design details), and will be developing a solicitation process that aligns with the state-owned NH5 investment direction

Figure 4-12: Bridge Age Profile (by deck area in sq. ft.)

Data Collection, Management, and Reporting Practices

Data Collection:

- Data collection based on National Bridge Inspection Standards (NBIS), AASHTO and MnDOT requirements
- Most bridges are inspected every other year in Minnesota (some more or less frequently based on inspection results)
- Districts perform/supervise inspections with some centralized management and Quality Assurance/Quality Control of data collected

Data Management:

- Structure Information Management System (SIMS) used to enter, submit and manage inspection data
- Bridge Replacement and Improvement Management (BRIM) tools used to analyze data

Data Reporting:

Bridge inspection and inventory reports available through MnDOT's website and the SIMS application

Figure 4-13: Bridge Condition Rating Scale (Based on NBIS Rating Scale)

9	98	7			4	3	2	1	0
	Goo 7 - 9		Satisfactory 6	Fair 5			Poor 0-4		

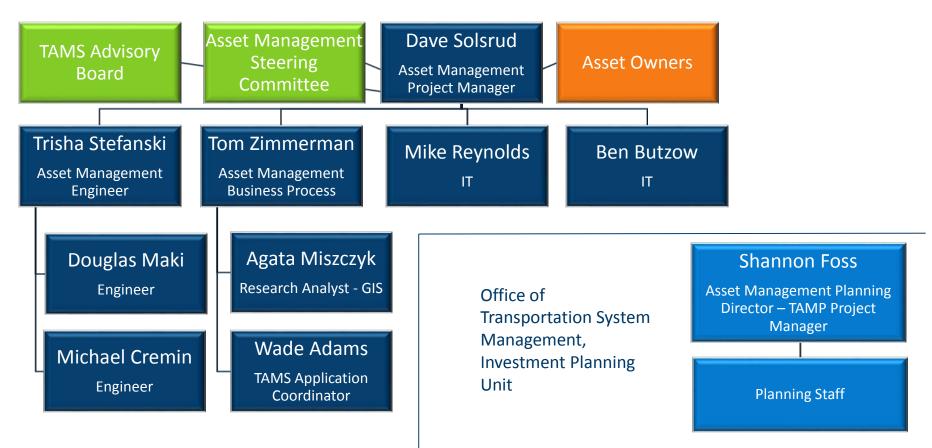
Figure 4-14:Bridge Current Condition, Targets, and Investment to Achieve Targets in 2027 Based on State Performance Measures

SYSTEM	2017 CONDITION (% POOR)	TARGETS (% POOR)	INVESTMENT REQUIRED TO ACHIEVE TARGETS		
NHS	4.7%	≤ 2%	\$1.1 billion		
Non-NHS	2.1%	≤8%	\$430 million		
TOTAL	4.3%	NA	\$1.5 billion		

Note: NH5 does not include locally-owned NH5 bridges (23)

Federal Bridge Performance Measures and Targets

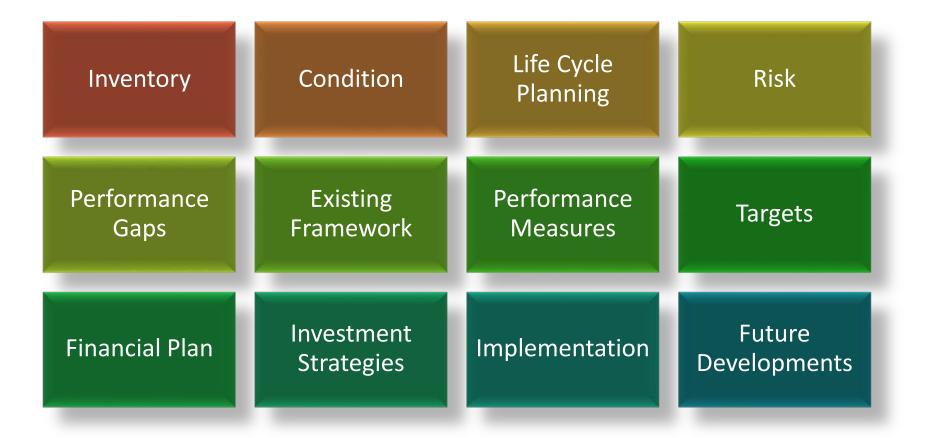
The federal performance bridge measures are based on NBI condition ratings.


Figure 4-15: Bridge Current Condition, Targets, and Investment to Achieve Targets in 2027 Based on Federal Performance Measures

SYSTEM	2017 CONDITION (% GOOD)		TARGET (% GOOD)		INVESTMENT REQUIRED TO ACHIEVE TARGETS
NHS	47.4%	1.5%	TBD	TBD	TBD
TOTAL	NA	NA	NA	NA	TBD

Asset Management Organization

Tim Henkel – Modal Planning & Programming Management Division – Assistant Commissioner Jean Wallace – Assistant Division Director



Teams

Asset Management Planning Director – TAMP Project Manager

TAMP 2018 Development

Assets Included – NHS and non-NHS

Asset Classes							
Pavements	Bridges	Culverts	Deep Stormwater Tunnels				
High Mast Light Towers	Overhead Sign Structures	Pedestrian Infrastructure	ITS				
Noise Walls	Traffic Signals	Roadway Lighting	Buildings				

Assets Included – NHS and non-NHS

Asset Sub-Classes								
Concrete Pavement	Bituminous Pavement	Large Culverts	Small Culverts	Wood Noise Walls				
Concrete Noise Walls	Curb Ramps	Sidewalks	Driveways with Sidewalk	Pedestrian Bridges				
Rest Areas	Weigh Stations	Small/Medium Truck Stations	Large Truck Stations	Salt Sheds				
Heated Storage Sheds	Unheated Storage Sheds	Office Buildings	Miscellaneous Buildings	Fiber Communication Network				
Fiber Network Shelters	Traffic Management System Cabinets	Dynamic Message Signs	Traffic Monitoring Cameras	Traffic Detector Stations				
Communication Equipment	MnPASS Readers	Reversible Road Gates	Ramp Meters	Rural Intersection Conflict Warning Systems				
Road Weather Information System Sites	Automatic Traffic Recorders	Weigh-In-Motion Sites	Road Closures					

Worksheets and Tools

TRANSPORTATION ASSET MANAGEMENT PLAN LIFECYCLE COST CONSIDERATION WORKSHEET

Work eroups have identified the following assets and sub-assets below for Life Cycle Cost (LCC) analysis. This worksheet provides a basic framework for LCC analysis data collection. Each Work Groups is charged with completing the pre-assignment for each of the assets/sub-asset identified below. Review the worksheet and provide us with the LCC information (asset rating, deterioration and inspection and treatment cycles/costs) performed assets/sub-assets. Please makes user to identify/desprate sub-asset LCC information (eq. solewarks).

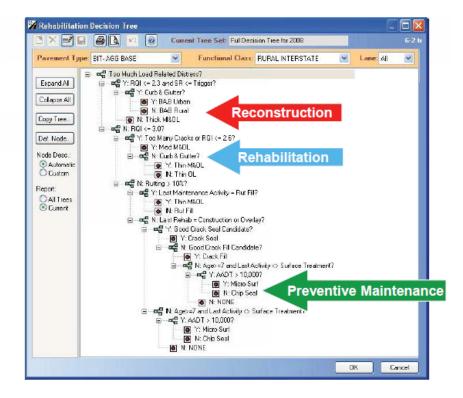
Asset (Condition) Rating & Detenioration

- Does the asset have a current rating system? _____ (If yes, proceed to question 1a. If no, proceed to question 1b)
- a. What is the current asset rating system? Explain when the asset is considered good, fair, poor, very poor/critical, etc. This could be based on asset condition, service life or other criteria (e.g. state/federal compliance criteria).
- b. What would be a desired rating system for the asset? Explain when the asset would be considere¹/good, fair, poor, very poor/critical, etc. This could be based on asset condition, service life or other criteria (e.g. state/federal compliance criteria).
- 2. What is the typical/historical (in most cases this is without maintenance) service life of the asset?
- 3. What is the desired/industry or manufacturer recommended (with maintenance) service life of the asset?
- 4. How long does it take for this asset to deteriorate from good to fair, fair to poor, and poor to very poor/critical without any maintenance?
- 5. How long does it take for this asset to deteriorate from good to fair, fair to poor, and poor to very poor/critical, with maintenance?

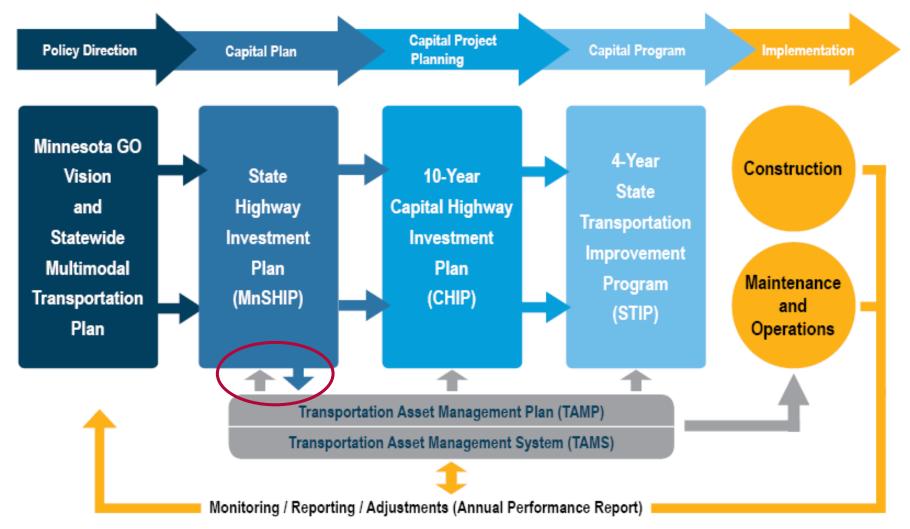
Inspection Timeframe and Costs

Do you currently inspect the asset (sub-assets)? _____ (If yes, proceed to question #1a. If no, proceed to question #1b)

a. What is the


b. What is a d		Ta	able 1 – Treatments a	nd Costs for	(Ir	nsert Asset Name)		
Treatment Cos	Treatment Category	Desired Treatments	Desired/ Industry	Klost Likely Condition	Typical Treatments	Typical Age or Condition	Most Likely Condition	Typical Cost Range	Most Representative
For each of the within that cate applied (if know or condition lew applied.			Recommended Age or Condition Level When Treatment Should Be Applied	After Treatment		Level When Treatment Is Applied	After Treatment	(low-to- high)	or Average Cost
Please also pro Group consider used for your c as part of TAM	Preventive/Routine Maintenance								
	Minor Rehabilitation								
	Major Rehabilitation								
	Replacement								

- Using worksheets through the planning process, we learned:
 - They ensure consistency
 - They make future updates more efficient
 - It is not a "one size fits all" approach for all 12 asset classes
 - Consistent reporting aides the "cross-asset" decision making process
 - Can easily apply to other assets


Asset Management Systems

- TAMS Transportation Asset Management System
 - Traffic Signals, Lighting, ITS, Hydraulics, and Traffic Barriers
- HPMA Highway Pavement Management Application
- BRIM Bridge Replacement and Improvement Management
- Excel Spreadsheets

Planning & Programming Framework



Lessons Learned

- TAMP development methodology worked well
- Risk-based setting/proposal of targets for "other assets" beneficial
- Rapid response made to asset risk assessed in pilot: inspection and remediation of OSS structures
- Increase in "other asset" funding levels in State Highway Investment Plan (MnSHIP)

- Pilot led to creation of Asset Management
 Project Office and Asset
 Management Steering
 Committee
- Need better understanding of deterioration for many asset classes
- Move from a reactive to proactive approach for managing assets

Next Steps

- Communications and Implementation Plan
- Complete research needs, risk mitigation strategies, and process improvements identified Chapter 9: Implementation and Future Developments
- Support (decentralized) district decision making
- Advance the culture of asset management

Thank you!

Shannon Foss

Shannon.foss@state.mn.us

651-366-3878

mndot.gov