

# Roadside Infrastructure Life Cycle Planning

"Dontcha know" all asset classes are important?

Trisha Stefanski, PE

## How To Talk "Minnesotan"

- "Dontcha know" If you need a random Minnesotan phrase to shove in any sentence and still make complete sense to another Minnesotan, this is the phrase. Honestly, this saying means absolutely nothing.
- "Uff-da" You can express any sort of emotion with this one word
- "Hotdish" You might call this a casserole or something like that, but in the upper midwest, it's a hotdish.
- "You betcha" Just like it sounds, "you betcha" is a way to agree with someone or say yes.
- "Skol" This Norwegian word used by Vikings actually means cheers and to good health.

## MnDOT TAMP: From Pilot to Draft

### **MnDOT Timeline**

2014 – Pilot TAMP Completed

One of 3 states

2017 -TAMP2 Started

Conducted planning processes

2018 – TAMP2 Completed

Pilot Updated with "TAMP2" Efforts



### TAMP Roadside Infrastructure Assets

#### **HYDRAULIC INFRASTRUCTURE – PILOT TAMP**

- Deep Stormwater Tunnels
- Highway Culverts

#### **OVERHEAD SIGN STRUCTURES – PILOT TAMP**

#### **HIGH-MAST LIGHT TOWERS – PILOT TAMP**

#### **NOISE WALLS**

- Wood
- Concrete

#### **TRAFFIC SIGNALS**

#### **ROADSIDE LIGHTING**

#### PEDESTRIAN INFRASTRUCTURE

- Curb Ramps
- Sidewalk
- Driveway with Sidewalk
- Pedestrian Bridge

### TAMP Roadside Assets Cont.

#### **BUILDINGS**

- Rest Areas
- Weigh Stations/ Scales
- Class 2 and 3 Truck stations (small and medium)
- Class 1 Truck stations (large)
- Salt sheds

- Storage sheds (heated or partially heated)
- Storage sheds (unheated)
- Office Buildings
- Miscellaneous Buildings

#### **INTELLIGENT TRANSPORTATION SYSTEMS**

- Fiber communication network
- Fiber network shelters
- Traffic Management System (TMS) cabinet
- Dynamic Message Signs
- Traffic monitoring cameras
- Traffic Detector Stations/Site-loops and radar
- Communication Equipment
- MnPASS Readers

- Reversible Road Gates
- Ramp meters
- Rural Intersection Conflict Warning Systems (RICWS)
- Road Weather Information Systems Sites (RWIS)
- Automatic Traffic Recorders (ATR)
- Weigh-In-Motion System Sites (WIM)
- Road Closure

## Why Add Roadside Infrastructure Assets?

- Valuable Assets = \$4.7B
- Enhance Tradeoff Decisions
- Decrease Agency Risk
- Set Performance Measures
- Lower Life Cycle Costs
- "Uff-da"



| STATE HIGHWAY SYSTEM<br>ASSETS                                  | UNIT/<br>COUNT |
|-----------------------------------------------------------------|----------------|
| Pavements Roadway Miles                                         | 14,331         |
| Bridges                                                         | 4,801          |
| Highway Culverts                                                | 40,687         |
| Deep Stormwater Tunnels                                         | 8              |
| Overhead Sign Structures                                        | 1,858          |
| High-Mast Light Towers                                          | 478            |
| Noise Walls                                                     | 434            |
| Signals and Lighting (Signal systems and pole mounted lighting) | 28,566         |
| Pedestrian Infrastructure (Curb ramps and pedestrian bridges)   | 21,273         |
| Buildings                                                       | 875            |
| Intelligent Transportation Systems                              | 14,310         |

## Life Cycle Planning (LCP)

### **GOAL**:

Which investments, made today, are most cost-effective in the long-term to keep the infrastructure in service for as long as feasibly possible?

### MnDOT "HOTDISH":



- A. Performance Based Long Range Planning
- B. Life Cycle Cost Based Project Alternative Selection
- C. Life Cycle Management Strategies for Individual Assets

## Applying Life Cycle Planning at MnDOT



8

# Roadside Assets: (A) Performance Based Long-Range Planning

Figure 6-5: System Stewardship Performance Targets and Outcomes

| INVESTMENT<br>CATEGORY               | SYSTEM                      | TARGET               | PROJECTED<br>OUTCOMES (203 |
|--------------------------------------|-----------------------------|----------------------|----------------------------|
| Pavement Condition                   | Interstate                  | 2.0% poor (or less)  | 4.0% poor                  |
| Pavement Condition                   | Other NHS                   | 4.0% poor (or less)  | 8.0% poor                  |
| Pavement Condition                   | Non-NHS                     | 10.0% poor (or less) | 18.0% poor                 |
| Bridge Condition                     | NHS                         | 2.0% poor (or less)  | 5.0% poor                  |
| Bridge Condition                     | Non-NHS                     | 8.0% poor (or less)  | 7.0-8.0% poor              |
| Roadside Infrastructure<br>Condition | Culverts                    | 10.0% poor (or less) | 14.0-15.0% poor            |
| Roadside Infrastructure<br>Condition | Deep Stormwater<br>Tunnels  | 10.0% poor (or less) | 23.0-24.0% poor            |
| Roadside Infrastructure<br>Condition | Overhead Sign<br>Structures | 6.0% poor (or less)  | 25.0% poor                 |

# Roadside Assets: (A) MnSHIP Performance Based Long-Range Planning

- Performance Levels For Each Investment Category:
  - Minimum maintenance
  - Minimally meet performance requirements
  - Maintain investment
  - Reduce funding scenarios
- Roadside Infrastructure
   Rationale For Adjusting Existing
   Direction

Figure 6-4: Investment Direction by Time Periods

| INVESTMENT CATEGORIES                | FY2018-<br>2021 | FY2022-<br>2023 | FY2024-<br>2037 |
|--------------------------------------|-----------------|-----------------|-----------------|
| Pavement Condition                   | 33.5%           | 47.3%           | 52.9%           |
| Bridge Condition                     | 15.6%           | 8.2%            | 9.7%            |
| Roadside Infrastructure              | 8.7%            | 6.9%            | 7.7%            |
| Jurisdictional Transfer              | 0.0%            | 0.5%            | 0.5%            |
| Facilities                           | 0.0%            | 0.4%            | 0.5%            |
| Traveler Safety                      | 4.2%            | 3.1%            | 3.1%            |
| Twin Cities Mobility                 | 5.7%            | 6.8%            | 0.0%            |
| Greater Minnesota Mobility           | 0.0%            | 1.4%            | 0.0%            |
| Freight                              | 2.8%            | 2.7%            | 3.0%            |
| Bicycle Infrastructure               | 0.8%            | 0.5%            | 0.6%            |
| Accessible Pedestrian Infrastructure | 1.8%            | 2.4%            | 2.7%            |
| RCIP                                 | 3.3%            | 1.2%            | 1.0%            |
| Project Delivery                     | 14.3%           | 15.7%           | 16.0%           |
| Small Programs                       | 6.1%            | 2.8%            | 2.3%            |

Maintain approximate current investment amount.

Prioritize investment concurrent with pavement and bridge projects. Proactively address high-risk elements with stand-alone projects.

# Roadside Assets: (B) LCP Project Based Alternatives



- Align Needs With Bridge or Pavement Project
- Utilize Life Expectancy
  - Concrete Noise Walls
- Evaluate Materials
  - Culvert materials can be tailored to local soil acidity in consideration of MnDOT's maintenance costs.

Figure 6-15: Culvert Maintenance and Repair Activities

| TREATMENT           | UNIT        | COST/UNIT |
|---------------------|-------------|-----------|
| Inspection          | Each        | \$70      |
| Cleaning            | Each        | \$380     |
| Reset Ends          | Each        | \$3,000   |
| Joint Repair        | Each        | \$3,300   |
| Pave Invert         | Linear Foot | \$22      |
| Replace Ends        | Each        | \$5,800   |
| Slipliner           | Each        | \$12,000  |
| Cured Inplace Liner | Each        | \$25,000  |
| Trench Replacement  | Each        | \$38,000  |
| Jack Replacement    | Linear Foot | \$788     |



Figure 6-20: Signals Maintenance and Repair Activities

| TREATMENT                           | UNIT | COST/UNIT |
|-------------------------------------|------|-----------|
| Reactive Maintenance                | Each | \$399     |
| Operations Check                    | Each | \$380     |
| Electrical Preventative Maintenance | Each | \$124     |
| Electronic Preventative Maintenance | Each | \$132     |
| Replace LED indicators              | Each | \$20,000  |
| Replace Electronics                 | Each | \$30,000  |
| Structural Inspection               | Each | \$1,000   |

### **Buildings Workshop**

- For lifespan, use inspection data (condition ratings) and treatment costs (20-100 years useful life)
- Tools of life cycle cost worksheet
  - Typical Remaining Useful Life curve
  - Treatment cost charts and activities (Maintenance/Rehab)

|        |                |     | Remaining Useful Life - Typical Curve |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|--------|----------------|-----|---------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|        | System Age     | New |                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rating | Condition      |     |                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5      | Excellent      |     |                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4      | Good           |     |                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3      | Fair           |     |                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2      | Poor           |     |                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1      | Crisis/Failure |     |                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### Pedestrian Infrastructure Workshop:

Typical Life-Cycle Management Strategy – **Central business district (CBD) sidewalks** (Unit = block length of 300 ft.)

| Typical<br>Age<br>(years) | Age<br>Range<br>(years) | Treatment                                | Typical<br>Treatment<br>Cycle (years) | Typical<br>Condition<br>When Applied | Typical Cost<br>(\$ /unit) | Cost Range<br>(\$ / unit ) |
|---------------------------|-------------------------|------------------------------------------|---------------------------------------|--------------------------------------|----------------------------|----------------------------|
| 0                         | 0                       | Initial cost of Sidewalk                 | 50                                    | Reconstructi<br>on                   | \$26,000                   | -                          |
| 10                        | 0-10                    | Major rehabilitation (panel replacement) | 40                                    | Varies                               | \$1,240                    | -                          |
| 20                        | 20-40                   | Preventative Maintenance (grinding)      | 20 years or as needed                 | Varies                               | \$400                      | -                          |
| 30                        | 30-40                   | Major rehabilitation (panel replacement) | 40                                    | Poor                                 | \$1,240                    | -                          |
| 40+                       | N/A                     | End of Analysis Period                   | N/A                                   | N/A                                  | N/A                        | N/A                        |

## **LCCA** Results

7/10/2018





# Voila "HOT DISH"!!



## Challenges Encountered and Lessons Learned

- Do We Have The Data and Is The Analysis Accurate?
  - <u>Current</u> Inventory
  - Condition or Age
  - What are Lifespans (Min Maintenance vs Typical)
  - Deterioration Rates



- Condition, Age (Obsolescence), Compliance, Categories
- Huge Time Commitment for Facilitators and Experts
- Have Worksheets for Asset Experts



## Successes..."YOU BETCHA"!!

- Several Groups of Stakeholders and Heavy Involvement
- LiDAR Inventory and Assessment Project



- As-Built Special Provision
- NEW Enterprise Asset Management Software (TAMS)



## SKOL and Thank You!



Trisha.Stefanski@state.mn.us 651-234-7993